LayoutShow: A Signed Applet/Application for
Graph Drawing and Experimentation

System Demonstration

Lila Behzadi

Department of Computer Science
York University
4700 Keele Street, North York
Ontario M3J 1P3, Canada

lila@cs.yorku.ca

Abstract. LayoutShow is a Java-based multi-threaded applet/application
for experimentation with graph drawing algorithms, particularly, force-
directed algorithms. The motivation behind the development of this soft-
ware is the lack of features that would help to experiment, and as a
result, understand the behavior of force-directed algorithms in the exi-
sting graph drawing software. Some of these features include smooth
node-based and iteration-based animations, display of running-time and
iteration counts, and variety of initial layout algorithms. LayoutShow
supports a number of force-directed graph drawing algorithms as well as
layouts based on eigenvectors. Node-based and iteration-based anima-
tions have been implemented. In addition, the software provides some
algorithms for producing non-random initial layouts for force-directed
algorithms. File 1/O using GML file format has been implemented. Fur-
thermore, users of LayoutShow applet can choose to perform local file
I/0 since LayoutShow is a signed applet. To our knowledge, LayoutShow
is the first graph drawing software with this feature.

1 Introduction

At the start of our research on improving the existing force-directed graph layout
algorithms which resulted in CostSpring layout algorithm [1], we realized that
the existing graph embedding software do not accommodate all the features that
are useful in experimenting with and better understanding the force directed
algorithms. As a result, LayoutShow, an application/applet for graph drawing,
was developed.

In this Paper, we first discuss LayoutShow’s features. Then, we describe the
way that different components of the system interact with each other. This is
followed by two snapshots of LayoutShow. Finally, we present a list of known
bug and limitations.

LayoutShow has been implemented using JDK 1.1.6 [13] under Solaris 2.5.1
(SunOS 5.5.1). It has also been tested in Linux 2.0.36, Windows 98, and Windows
NT 4.0 as an application as well as an applet. The source, and bytecode of

J. Kratochvil (Ed.): GD’99, LNCS 1731, pp. 242-249, 1999.
© Springer-Verlag Berlin Heidelberg 1999

A Signed Applet/Application for Graph Drawing and Experimentation 243

LayoutShow classes for down-load, and the LayoutShow applet can currently be
found at “http://www.cs.yorku.cs/ lila/work.html”.

2 Features

2.1 Outline
LayoutShow provides functionality to

— Generate a variety of graphs: complete graphs, rectangular , hexagonal, and
triangular grids, complete binary trees, random graphs, hypercubes, and
circular graphs.

— Draw graphs using different force-directed Spring algorithms: CostSpring?
[1], GEM [4], FR [5], KK [8], and a combination of eigenvectors layout [11]
and CostSpring [1].

— Generate initial layouts for Spring algorithms using: CostChosen 2 [1], Insert
[4], and EigenLayout [11].

— Randomize a graph.

— Obtain graph quality measurements®: number of edge crossings, longest edge
to shortest edge ratio, edge length deviation, and cost value: a graph layout
quality measurement described in [1].

— Perform iteration-based and node-based animations. Some of the Spring al-
gorithms find the forces acting on a node and reposition this node. In this
case, it is possible to update the layout after a node is repositioned, node-
based animation, or after all the nodes are repositioned once, iteration-based
animation. LayoutShow gives the user the opportunity to choose one of these
animation types, or no animation at all. For Spring algorithms such as FR [5]
which move the nodes at once, only iteration-based animation is applicable.

— Configure the algorithms.

— Label the nodes.

— Reading/Writing a graph from/to disk using the GML [6] file format.

2.2 The LayoutShow Applet

We mentioned that LayoutShow is an application and also an applet. When
running LayoutShow as an applet, all the classes that LayoutShow needs are
down-loaded in one HTTP transaction. This has been achieved through the use
of a JAR, Java Archive file [3]. This may slightly slow down the speed at which
the applet is loaded, but it will certainly speeds up the execution once the applet

! CostSpring is a variation of spring-based graph drawing algorithms that has been
developed as a part of the author’s Master Thesis.

2 CostChosen is an algorithm to generate initial layouts for force-directed algorithms
that has been developed as a part of the author’s Master Thesis.

3 These quality measurements are mainly relevant to the layouts produced by a force-
directed spring-based algorithm which LayoutShow focuses on.

244 L. Behzadi

is loaded and is running. A JAR file can also be compressed, as the JAR file for
LayoutShow is. The current size of this file is about 0.5 megabytes.

Due to Java security restrictions a regular applet cannot access files on the
local disk*. For this reason, VGJ [10], another graph drawing tool that is available
as an applet, does not allow load and save operations. Although this restriction
exists for applets by default, but Java has provided ways for permitting an applet
to access a local disk and have all the privileges that a Java application has. This
is done using signing and verifying JAR files. We have signed the JAR file of
LayoutShow, providing the option of using the LayoutShow applet with all the
privileges of an application including File I/O. This is particularly important
since traditionally graph drawing applets such as VGJ did not allow file I/O
that is an important part of graph visualization®. GDS [2] requires the user
to send his/her data files to their server, and they return the URL of the file
that contains the layout graph (produced on the server side) to the user. This
approach is slow specially if the graph is large. In addition, with the increasing
speed of the processors that average users currently have, there is no need for
relying on a server to do the computations when the computation can be done
locally and reasonably fast. The details of the concepts and procedures of signing
and verifying an applet can be found in [3].

3 The Overall Design of the System

In this Section we elaborate on the way that various components of the Layou-
tShow software interact with each other to support the computations for finding
the new node positions, drawing the graph, and animation. The computation of
node positions for a graph (computation module), and its actual drawing on the
screen (display module) make up the two main modules of any graph drawing
software. Traditionally in software such as Graphlet [7] and VGJ [10], first the
new positions of the nodes are computed, and then the graph is (re)drawn. These
two actions happen in a sequential order. We have used the multi-threading capa-
bilities of Java for simultaneous position computations and drawing of a graph.
To the best of our knowledge on the Java-based graph drawing software, this is
a new design on the way these two modules cooperate in such tools. Figure 1
show the relationship between the computation and the display modules.

The Two Threads The tasks of computation and display are managed by two
threads: drawThread and computeThread that share the graph as a common
data. As a result, the segments of the code in which these two threads read or
modify the graph are considered as critical sections, and must not be executed

4 Any discussion on Java security in this thesis refers to the Java 1.1.x security model
3], [13].

5 This is because data may have been produced by another tool and saved in a file,
and now the user needs to visualize this data.

A Signed Applet/Application for Graph Drawing and Experimentation 245

drawThread computeThread
while(true){ For Each Iteration{
while(Synch.getReadyStatus() == false){ Compute Node Positions
Synch.waitThis(); while(Graph.Synch.getReadyStatus() == true){
CS } Graph.Synch.waitThis()
generateImage() CS }
Synch.setReadyStatus(false) Write the Graph Positions and Layout
drawImage() Information Back
} Graph.Synch.setReadyStatus(true)
}
Graph
- Node Positions
- Layout Information: iterations, computeThread references Synch
through the Graph

time, cost, # of crossings, ...

- Synchronization Object

Synch

boolean ready
synchronized void setReadyStatus(boolen status){

ready = status

super.notify All()
drawThread directly references }
Synch
synchronized boolean getReadyStatus(){

return ready

synchronized void waitThis() {

super.wait()

Fig. 1. Synchronization scheme between drawThread and computeThread in Layout-
Show.

simultaneously®. Furthermore, the order in which these sections are executed is

crucial.

5 We must note that by simultaneous execution of threads we do not mean that threads
run on multiple processors. What we refer to is the processor sharing by multiple
threads through pre-emption.

246 L. Behzadi

The Critical Sections The two critical sections are:

1. The writing back of the new node positions by the computeThread.
2. The reading of these new positions by the drawThread.

It is clear that item 1 above should be executed before item 2, and synchroniza-
tion is required to manage this.

Synchronization The synchronization of the critical sections are managed by
using the wait and notify mechanism of Java [9] through a synchronization ob-
ject: Synch (see Figure 1). As we can see in this Figure, the drawThread loops
infinitely, and in each iteration if the Synch object indicates that the graph
is not ready to be drawn then the drawThread waits on the Synch object”.
On the other hand, after writing the node positions, the computeThread calls
Synch.setReadyStatus (true) which in effect calls the notifyAll function of
Synch. This resumes drawThread which now can start generating the image. At
this point, the computeThread can continue computing the node positions for
the next iteration. However, it cannot write the new positions back to the graph
unless the drawThread has already called Synch.setReadyStatus(false). If
the drawThread has not called this function the computeThread will wait on the
Synch. The drawThread makes this call after it reads the graph and generates
the image, however, the actual drawing of the image occurs after the call to
this function. As a result, the code segments that are labeled with CS (for criti-
cal section) in Figure 1 cannot be executed simultaneously by the two threads.
And, the node positions are computed before the image is drawn. We must also
note that the methods of Synch object are synchronized, and therefore, only one
thread at the time may exist in this object.

For algorithm that don’t have multiple iteration, or for when the animation
option is off in force-directed algorithms, the node positions are only written
back once at the end of the algorithm by the computeThread. However, in case
of iteration-based animation the node positions are all written back once at
the end of each global iteration, and the image is redrawn. In case of node-
based animation, the position of the node that has moved is written back and
the image is redrawn. For any choice of animation, the computation of the node
position(s) and generation/drawing of the graph can occur concurrently resulting
in a smoother animation.

Snapshots of LayoutShow Window

Figure 2 shows a snapshot of LayoutShow window with a hexegonal grid drawn
using the CostSpring algorithm [1].

Figure 3 displays a snapshot of LayoutShow window performing the Cost-
Chosen initial layout algorithm [1]. The middle panel of main window of Layou-
tShow has CardLayout manager which allows for multiple Component objects to

" Object A waits on object B when object A calls the wait function of object B. A
call to notify or notifyAll of B can resume A.

A Signed Applet/Application for Graph Drawing and Experimentation 247

LayoutShow: Graph - HGZ216-306.gml
File Generate Layout Options
Stop | Suspend | Resume | Randomize |

4

et

Time(sec) |23.?48 Iterations |854

Fig. 2. Snapshot of LayoutShow’s main window.

overlap [15]. This middle panel has two overlapping components: the default is a
Canvas (see Figure 2), and the other one is a Panel with 10 Canvas objects (laid
out in 5 columns and 2 rows) to support the simultaneous execution of Spring
algorithms on different initial random layouts of a graph in CostChosen initial
layout. The user can choose the number of initial layouts that are used where
the maximum number of initial random layouts is 10. Once the algorithms for
all initial layouts terminate, then the graph layout quality value of the resulting
layouts will appear on top of each canvas with the lowest one flashing in red (see
[1] for this quality value’s formula). Then after a delay, the resulting layout with
the lowest quality value will appear on the single canvas of main window.

4 Bugs and Limitations

The known bugs and limitations of the current implementation of LayoutShow
are as follows

— LayoutShow currently does not provide graph editing facilities. This is a
feature that will be added to the system.

248

L. Behzadi

LayoutShow: Graph - Untitled

$uspand] Resurns | Randomize |
Q: 5.01 Q: 2.73

Tirastse) I'),O iherakicns |-)

Fig. 3. Snapshot of LayoutShow’s main window with a
multiple-canvas panel.

A very simple approach to labeling has been used which results in overlapping
labels in some cases.

Even though, our graph structure supports directed graphs, but the drawing
of directed edges have not yet been implemented in LayoutShow.
Currently, Netscape and Internet Explorer, the two commonly used Internet
browsers, can only support Java signed applets [3] if they have a Java Plug-
in [14] installed. Our LayoutShow applet is signed by JDK 1.1.6 [13], and
tested using Java Plug-in 1.1 [12]. Although, Sun has promised that the final
version of Java Plug-in 1.2 would also support the applets signed by JDK
1.1.x, but we have not tested our signed applet using Java Plug-in 1.2.

The animation in a LayoutShow applet that is running under the default
Java virtual machine of a Netscape browser sometimes hangs. We recommend
using a Java Plug-in [12].

A Signed Applet/Application for Graph Drawing and Experimentation 249

References

1

11.

12.

13.

14.

15

. L. Behzadi A Cost-oriented Approach to Spring-based Graph Embedding in Layou
tShow: a Java Environment for Graph Drawing. Master Thesis, York University,
July 1999. Currently available at: http://www.cs.yorku.cs/"1lila/work.html.

. S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation service
on the WWW. In Proceedings of Graph Drawing ’96, pages 45-52. Springer-Verlag,
1997.

. M. Campione, K. Walrath, and A. Huml. The Java Tutorial Continued : The Rest
of the Jdk. Addison-Wesley, Massachusetts, December 1998.

. A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for undirec-
ted graphs. In Proceedings of Graph Drawing ’94, pages 388—403. Springer-Verlag,
1995.

. T. Fruchterman and E. Reingold. Graph drawing by force-directed placement.
Software-Practice and Fxperience, 21:1129-1164, 1991.

. M. Himsolt. GML: A portable graph file format. Technical report, Uni-
versity of Passau, 94030 Passau, Germany, 1997. Currently available at:
http://www.fmi.uni-passau.de/Graphlet/GML/gml-tr.html.

. M. Himsolt. The Graphlet system. In Proceedings of Graph Drawing 96, pages
233-240. Springer-Verlag, 1997.

. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31:7-15, 1989.

. D. Lea. Concurrent Programming in Java. Addison-Wesley, Massachusetts, 1997.

. C. McCreary and L. Barowski. VGJ: Visualizing graphs through java. In Procee-

dings of Graph Drawing ’98, pages 454—455. Springer-Verlag, 1999.

T. Pisanski and J. Shawe-Taylor. Characterizing graph drawing with eigenvectors.

Technical report, Royal Holloway, University of London, 1998. Currently available

at: http://www.ijp.si/tomo/papers/papers.htm.

Sun Microsystems. Java Plug-in Documentation, 1998. Currently available at:

http://java.sun.com/products/plugin/1.1.2/docs/index.html.

Sun Microsystems. JDK 1.1 Documentation, 1998. Currently available at:

http://java.sun.com/docs/index.html.

Sun Microsystems. Java Plug-in 1.2 Documentation, 1999. Currently available at:

http://java.sun.com/products/plugin/1.2/docs/index.docs.html.

. J. Zukowski. Java AWT Reference. O’Reilly and Associates, California, 1997.

	Introduction
	Features
	Outline
	The LayoutShow Applet

	The Overall Design of the System
	Bugs and Limitations

