A Force-Directed Algorithm that Preserves Edge
Crossing Properties

Francois Bertault

Department of Computer Science and Software Engineering
University of Newcastle
Callaghan 2308 NSW Australia

francois@cs.newcastle.edu.au

Abstract. We present an iterative drawing algorithm for undirected
graphs, based on a force-directed approach, that preserves edge crossing
properties. This algorithm insures that two edges cross in the final dra-
wing if and only if these edges crossed on the initial layout. So no new
edge crossings are introduced. We describe applications of this techni-
que to improve classical algorithms for drawing planar graphs and for
interactive graph drawing.

1 Introduction

Force-directed algorithms are commonly used for graph drawing because they
are easy to implement and often achieve good results. Many force-directed algo-
rithms have been proposed, which differ in the force model or the convergence
method used. Usually, the force model is chosen to try to obtain uniform edge
lengths, and show symmetries in the graph [2,3,4]. However, these algorithms
can introduce a lot of edge crossings, which reduces the readability of the dra-
wing. Algorithms with more complicated force models that try to reduce these
edge crossings have also been proposed. These algorithms use genetic methods
or simulated annealing, but are slow, difficult to parameterize, and don’t insure
that the resulting drawing is planar when the graph is planar.

The best classical algorithms for drawing straight-line planar graphs requires
the graph to be biconnected [1,5,7]. For drawing general planar graphs, the first
step is to modify the graph, by using augmentation techniques [6], that is by
adding nodes and edges to the graph. Figure 1 shows an example of a planar
graph, drawn using a planar graph and a basic augmentation technique. Note
the lack of symmetry and variation in edge length.

The basis of the approach presented in this paper is to combine the useful
characteristics of both classical planar graphs and force-directed algorithms. The
approach proceeds by first finding a planar drawing using classical algorithms
and then iteratively applying a new force directed algorithm, called PrEd. The
final drawing improves symmetry and uniformity of edge lengths, while preser-
ving initial edge-crossing properties of the graph. This insures that no new edge
crossings are introduced. Figure 1 shows an example of planar graph drawn with

J. Kratochvil (Ed.): GD’99, LNCS 1731, pp. 351-358, 1999.
© Springer-Verlag Berlin Heidelberg 1999

352 F. Bertault

N

Fig. 1. Left: planar graph obtained using the LEDA planar graphs drawing
algorithm. Right: planar graph obtained by applying the PrEd algorithm to the
initial layout on the left. Note that the planar embedding remains the same.

this method. The initial planar layout is shown in Fig. 1. Note that the planar
embedding remains the same.

The PrEd algorithm is not limited to planar graphs. The intrinsic property
of the algorithm is that two edges cross on the final drawing if and only if these
edges crossed on the initial layout. This property is well suited for interactive
graph drawing. A user can easily indicate the desired relative position between
nodes and edges by simply moving nodes interactively. The PrEd algorithm will
then improve the graph symmetry and produce more uniform edge lengths.

2 PrEd algorithm

We consider a graph G = (V, E), where V is a set of nodes, and FE a set of
undirected edges (a,b) = (b,a) € V x V. The number of nodes is denoted |V|
and the number of edges | E/|. The principle of the PrEd algorithm is the following.
At each iteration, for each node v of the graph, a force F'(v) is computed, that
depends on the positions of the nodes and edges of the graph. Each node is
then moved in the direction of F'(v). The main difference with classical force-
directed algorithms is that we restrict, for each node, the maximum amplitude of
the move such that the edge-crossing properties are preserved. This restriction
depends on the direction of the force.

2.1 Computation of forces

The force model is very similar to other force-directed algorithms. Three kinds
of forces between nodes and edges are considered: the attraction forces between
nodes linked by an edge; the repulsion forces between each pair of nodes, and
the repulsion forces between nodes and edges.

A Force-Directed Algorithm that Preserves Edge Crossing Properties 353

The position of a node v is denoted (z(v),y(v)). The Euclidean distance
between two nodes a and b is denoted d(a,b) and § is the length of the ed-
ges that we would like to obtain. The force applied to a node v is denoted
F(v) = (F;(v), Fy(v)). The attraction force F'*(u, v) and repulsion force F" (u, v)
between two nodes uw and v of the graph, are defined by:

d(u,v) —5?

Fp) = S (al) — () FY) = g (o) — afu)

This has been shown to be effective [3].

For the computation of the repulsing force F¢(v, (a,b)) between a node v and
an edge (a,b), we consider a virtual node i,, defined by the projection of the
node v on the vector formed by the vertices of the edge. A force is applied to
nodes v, a and b only if the virtual node i, is located on the edge, and if the
distance between v and 7 is smaller than a parameter . We ignore forces if v = a
or v ==b.

C=din))? iy € (a,0),d(v,6,) <
F¢(v,(a,b)) = d(v,iy) (@(iv) (v)) vEa,v#b
0 otherwise

The overall force applied to a node v is obtained by summing the attraction
and repulsion forces.

Fo(v)= Y Fi(uo)+ Y Filuv)+ > Filv,(a,b)— Y Filu, (v,w))
(u,w)EE ueV (a,b)EE u(EV,i)uEV
v,w)eEE

We have a similar formula for the F,(v) component.

2.2 Computation of the amplitude of moves

The node-edge repulsion force has been used in other algorithms in order to
avoid overlapping between nodes and edges. However, since we consider discrete
moves of the nodes during the steps of the algorithm, this does not guarantee
that a node will not cross an edge and create a new crossing. For preserving
the crossing properties between edges, a zone Z(v) is associated to each node v.
Z(v) indicates where the node v is allowed to move. A zone is defined by eight
arcs Z1(v), ..., Zs(v). The zone of a node v can be represented with only eight
values Rj(v),..., Rg(v), corresponding to the radius of the arcs. The zone of
a node is not the maximal area in which a node is allowed to moved without
changing the crossing properties. The choice of representing zones by eight arcs
is a good compromise between efficiency and liberty of move of the nodes.

The amplitude of move of a node v, with a force F'(v) applied to it, is bounded
by the value of the arc that contains F'(v). For example, in Fig. 2, the node v
moves in direction of the force F(v), with an amplitude bounded by Rg(v). An
arc with an infinite radius is represented in white on the figure.

354 F. Bertault

The computation of the zones is made such that we avoid the creation of new
crossings, while considering only one node and one edge at a time. For each pair
of node v and edge (a,b), the idea is to consider two cases, depending on the
position of the virtual node 7, that we defined for the computation of repulsive
forces between nodes and edges. In both cases, we restrict the move of the nodes
v, a and b for avoiding the creation of crossing. If the virtual node 4, is located
on the edge (a,b), we also allow the node v to “escape” by increasing its distance
to the edge (a,b). If the virtual node i, is not located on the edge (a, b), we allow
the node v to “turn around” the edge (a,b).

To compute the zones of each node of the graph, the eight values of each
zone are first initialized to infinity. Then, for each pair of node v and edge (a, b),
we consider the position of the virtual node i,:

Case 1 If i, is on the edge (a,b) (Fig. 3). We consider the segment [v, i,], and we
search which arc s of Z(v) intersects the segment. We update the values
of the zones as follow:

R;(v) = mln(R (v),d(v,i,)/3), j=r(s—=2),...,r(s+2)
R;(a) = min(R;(a),d(v,i,)/3), j=r(s+2),...,r(s+6)
R;(b) = mln(R](b), d(v,iy)/3), j=r(s+2),...,r(s+6)
where 7(j) =1+ (j mod 8)

Case 2 If i, is not on the edge (a,b) (Fig. 4). We update the values of the zones
as follow:

R;(v) = min(R;(v), min(d(a,v),d(b,v))/3), j=1,...,8
Rj(a) = min(R;(a),d(a,v)/3), ji=1...,8
R;(b) = min(R;(b), d(b,v)/3), j=1,...,8

In summary, the steps of the PrEd algorithm are, for one iteration:

Step 1 Computation of the forces applied to each node: O(|V|? + |V||E|).
Step 2 Computation the values of the zone of each node: O(|V||E|).
Step 3 Move of each node, with the amplitude of the move bounded by its zone:

o(Vv-

F(v)

Fig. 2. Move of a node v according to its zone Z(v).

A Force-Directed Algorithm that Preserves Edge Crossing Properties 355

Fig. 3. Computation of the zones for a node v and an edge (a,b) (case 1).

The overall complexity of one step is O(|V|*> + |V||E|). In practice, the al-
gorithm works well for small or sparse graphs. For example, the figure 1 was
obtained in 100 iterations and 3 seconds. In some cases, the distance between
nodes can be small.

2.3 Correctness
Theorem 1. The PrEd algorithm preserves edge-crossing properties of a graph.

Proof. We first show that one step of the algorithm preserves non crossing edges.
For this, we consider two non crossing edges (u,v) and (a,b). The idea of the
proof is to show that we can construct two polytopes (i.e. an intersection of half
planes), P(u,v) and P(a,v), such that we have:

P(u,v) N P(a,b) =0, Z(u)U Z(v) C P(u,v) and Z(a) U Z(b) C P(a,b) (2.1)

Since a polytope is convex, and the ends of edges can only move inside their
zone, the edges remains in their polytope after the moves of the ends.

The key point of the proof is to show, for a node v and an edge (a,b), that
we can define a polytope P,(a,b), containing Z(a) and Z(b) and not Z(v). We
consider the two following cases, according to the position of the virtual node
iy. The other cases are deduced by renaming:

Case 1 If i, € (a,b). We define P,(a,b) by the half plane with a boundary
orthogonal to the segment [v,i,], that passes throw the middle of this
segment as shown in Fig. 3.

356 F. Bertault

Fig. 4. Computation of the zones for a node v and an edge (a,b) (case 2).

Case 2 If iy, ¢ (a,b), with d(iy, a) < d(iy,b). We define P, (a,b) by the half plane
with a boundary forming an angle of 7/4 with the segment [a,v], as
shown in Fig. 4. This plane contains Z(a) if the radius of Z(a) is smaller
than d(a,v)/(2v/2), and we chose to define the radius of the zones by
d(a,v)/3. We also verify easily that this half plane contains also Z(b),
since the radius of Z(b) is given by d(b,v)/3.

The final step of the proof is to verify, according to the positions of the virtual
nodes, that we can define the polytopes P(u,v) and P(a,b) that verify property
(2.1).

Case 1 If i, € (a,b) and i, € (a,b): we define P(a,b) = P,(a,b) N P,(a,b), and
P(u,v) = R?\ P(a,b).
Case 2 If iy € (a,b), iy, ¢ (a,b):
(a) If ig € (u,v), i ¢ (a,b), and d(u,i,) < d(a,i,): we define P(a,b) =
P,(a,b), and P(u,v) =R?\ P(a,b).
(b) If i ¢ (u,v) and iy ¢ (a,b): we define P(a,b) = P,(a,b), and
P(u,v) =R?\ P(a,b).
Case 3 If 4y, ¢ (a,b), iy, ¢ (a,b), iq ¢ (u,v) and iy ¢ (a,b), with d(a,u) <
min(d(a,v),d(b,u),d(b,v)): we define P(a,b) = P,(a,b), and P(u,v) =
R2\ P(a,b).

For verifying that one step of the algorithm preserves crossing edges, we use
similar techniques. If two edges (u,v) and (a,b) cross, we remark that we can
remove the crossing by moving the nodes only if we can obtain a crossing between
the virtual edges (u,a) and (v,b), or between (u,b) and (v, a).

A Force-Directed Algorithm that Preserves Edge Crossing Properties 357
3 Further work

The efficiency of the algorithm could be greatly improved. We could, instead of
considering all edges of the graph for defining the zone of a node, consider only
a restricted set of edges that “surround” that node. The set of edges that we
need to consider could be determine in a preprocessing step of the algorithm.

The PrEd algorithm can also be combined with a simple “jumping” heuristic,
for reducing edge-crossings in general graph drawing. The initial positions of
nodes are obtained using a classical force-directed algorithm. Then, for each
pair of edge crossings, we test, during the iterations of the PrEd algorithm, if the
fact to remove this crossing, by placing one end near the intersection, reduces the
total number of crossing in the graph. This naive approach can give good results
on simple graphs, but is very expensive. Figure 6 demonstrates this algorithm to
remove edge crossings. Further work could be to look for better heuristics based
on this idea.

4 Conclusion

The PrEd algorithm takes O(|V|? + |V||E|) time to complete one iteration. It
preserves crossing and non-crossing edges during the iteration steps. This pro-
perty is well suited for improving the drawing of straight-line planar graphs,
where the initial position of nodes is obtained from a classical algorithm.

Initial Final with PrEd Initial Final with PrEd

Fig. 5. Examples of interactive drawing with the PrEd algorithm. The initial
position of nodes is specified by the user, and the PrEd algorithm improves

symmetry and edge length criteria without changing the relative position of
nodes.

358 F. Bertault

Initial “yumping”-PrEd Initial “yumping”-PrEd

Fig. 6. Combination of a the PrEd algorithm with a “jumping” operation for
reducing edge-crossings.

The PrEd algorithm can also be applied for interactive drawing of general
graphs. The user can modify interactively the position of the nodes, and the
algorithm improves the drawing criteria such as symmetry and uniform edges
lengths. Relative positions of nodes are preserved by the algorithm. Small mo-
difications of the graph induces small modifications on the new representation
of the graph. Examples of drawings obtained this way are shown in Fig. 5.

References

1. H. de Frayssex, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10:41-51, 1990.

2. P. D. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149-160,
1984.

3. T. Fruchterman and E. Reingold. Graph drawing by force-directed placement.
Software-Practice and Ezperience, 21(11):1129-1164, 1991.

4. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31:7-15, 1989.

5. G. Kant. Drawing planar graphs using the Imc-ordering. Proc. IEEE Symp. on
Foundation of Computer Science, pages 101-110, 1992.

6. Goos Kant and Hans L. Bodlaender. Triangulating planar graphs while minimizing
the maximum degree. Information and Computation, 135(1):1-14, 1997.

7. P. Mutzel. A fast linear time embedding algorithm based on the Hopcropt-Tarjan
planarity test. Technical report, Institut fiir Informatik, universitat zu Koln, 1992.

	Introduction
	PrEd algorithm
	Computation of forces
	Computation of the amplitude of moves
	Correctness

	Further work
	Conclusion

