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Abstract. In this paper, we study rectangle of influence drawings, i.e.,
drawings of graphs such that for any edge the axis-parallel rectangle
defined by the two endpoints of the edge is empty. Specifically, we show
that if G is a planar graph without filled 3-cycles, i.e., a planar graph
that can be drawn such that the interior of every 3-cycle is empty, then
G has a rectangle of influence drawing.

1 Introduction

Let G = (V, E) be a planar graph. A planar straight-line drawing of G is a map-
ping of the vertices to points in the two-dimensional grid such that no two edges
intersect (except at common endpoints) and no edge intersects a vertex other
than its endpoints. It has been known for a long time that every planar graph
has a planar straight-line drawing; see e.g. [6]. In this paper, we are interested in
straight-line drawings that are also prozimity drawings: an edge in the drawing
implies that the two endpoints of the edge are “close” by some definition. In this
paper, we study a type of proximity drawings known as rectangle of influence
drawings, where an edge implies that the axis-parallel rectangle defined by its
endpoints contains no other points of the drawing.

Existing results A recent survey of proximity drawings can be found in [5].
The notion of rectangular visibility where two points “see” each other if and
only if their rectangle of influence is empty, was first defined in [7]. Alon et al.
call two points box separated if and only if their closed rectangle of influence
is empty. They constructed an upper bound on the graph of all box separated
points, i.e. on the closed rectangle of influence graph [1]. Rectangle of influence
graphs were then investigated in [9] with respect to the data analysis problem
and later extended by [4] such that two sets of points are given, P and O, in
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which p1,p2 € P see each other if and only if their rectangle of influence contains
no points from O.

In [8], Liotta et al. examined rectangle of influence drawings with respect
to graph characterization or the proximity drawing problem. In particular, they
investigate whether several subclasses of planar graphs as well as complete graphs
admit rectangle of influence drawings. They study both the model where the
rectangle of influence is closed (which is what we mainly consider in this paper),
and also the model where the rectangle of influence is open.

In all existing works, only strong rectangle of influence drawings have been
studied; i.e., there is an edge (v, w) in the drawing if and only if the axis-parallel
rectangle defined by the points assigned to v and w is empty except for these two
points. As opposed to this, we will allow weak rectangle of influence drawings,
where edges are optional, i.e., need not be added if the rectangle of influence is
empty.

Our results We study weak planar rectangle of influence drawings and show
that a large class of planar graphs has such a drawing. More precisely, if G is
a planar graph that has a planar drawing such that the interior of any 3-cycle
is empty (we call this a drawing of G without filled 3-cycle), then G has a weak
planar rectangle of influence drawing. Since in any planar closed rectangle of
influence drawing, any 3-cycle must be empty, the converse also holds: if G is a
planar graph, then it has a weak planar closed rectangle of influence drawing if
and only if it can be drawn without filled 3-cycle.

Note that a drawing without filled 3-cycle is the same as a drawing where the
outer-face is not a 3-cycle and that has no separating 3-cycle (that is, a 3-cycle
such that both inside and outside the cycle are other vertices). Testing whether
a graph can be embedded without a separating 3-cycle can be done in O(n) time
[2], and a slight modification of this algorithm yields an O(n) time test whether
a planar graph has a drawing without filled 3-cycles.

2 Definitions

We assume familiarity with basic graph theoretic and geometric terminology (see
also [3] and [10]).

A graph is called planar if it can be drawn in the plane without an edge
crossing. A specific planar drawing splits the plane into components called faces;
the unbounded face is called the outer-face. A planar graph is called triangulated
if all faces are 3-cycles, and internally triangulated if all faces except the outer-
face are 3-cycles.

If a planar drawing is fixed, then we call a 3-cycle filled if there is a vertex
inside the drawing of the 3-cycle. If G is a planar graph that has a planar drawing
such that there are no filled 3-cycles, then we call G an NF3-graph.

A straight-line embedding of a graph G = (V,E) is an injective mapping
p : V — R? such that for any edge (v,w) and any vertex x, the open line
segment (p(v),p(w)) does not intersect p(z). It is called a planar straight-line
embedding if additionally for any pair of edges (v, w), (v/,w’) the open line seg-
ments (p(v), p(w)) and (p(v'),p(w’)) do not intersect. For ease of notation, we
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will drop the use of the function p, and use graph-theoretic terms such as vertex
to denote both the graph-theoretic object and its representation in a drawing.

Given two distinct points p, p’ in the plane, R[p, p] denotes the minimal axis-
aligned rectangle containing both p and p’. We call R[p, p] the closed rectangle
of influence of p,p’. If R[p,p'] is a non-degenerate rectangle, then we denote
by R(p,p’) the interior of R[p,p’]. If R[p,p'] is a line segment, then we denote
by R(p,p’) the open line segment between p and p’. We call R(p,p’) the open
rectangle of influence of p, p’. Let P be a set of points. If we take P, together with
all line segments [p, p’] (where p,p’ € P) for which the open/closed rectangle of
influence contains no points of P other than p and p’, then we obtain a straight-
line drawing of some graph, called the strong open/closed rectangle of influence
graph of P. We say that a graph G has a weak open/closed rectangle of influence
drawing if there exists a one-to-one mapping V — P C R2? such that G is a
subgraph of the strong open/closed rectangle of influence graph of P. As we will
not study strong rectangle of influence drawings further, for easier notation we
will drop “weak” for the remainder of this paper. We also use the term oRI-
drawing for an open rectangle of influence drawing, and cRI-drawing for a closed
rectangle of influence drawing.

3 Rectangle of Influence Drawings for NF3-Graphs

Our study of NF3-graphs was motivated by the following observation:

Lemma 1. If a graph admits a planar closed rectangle of influence drawing,
then it is an NF3-graph.

Proof. Assume that a graph G has a planar cRI-drawing, and let {a,b,c} be
the points of a 3-cycle of G. The minimum enclosing rectangle of points {a, b, ¢}
must be empty (except for a,b,c), because it is the union of the rectangles of
influence RJa,b], R[b, ], R[c, a], which must be empty because these are edges.
Since the minimum enclosing rectangle also contains the straight-line drawing of
the 3-cycle {a, b, c}, and since the drawing is planar, that means that no vertex
can be inside the 3-cycle in G. So every 3-cycle in G is empty, which means that
G is an NF3-graph.

In this section, we show the reverse of this lemma, i.e., we show that every
NF3-graph admits a planar closed rectangle of influence drawing. We prove this
first for a special class of NF3-graphs; namely, those that are biconnected and
have an embedding that is internally triangulated and has no chord, i.e., no edge
between two non-consecutive vertices on the outer-face. Then we show that any
NF3-graph can be converted into such an NF3-graph by adding edges; this shows
that any NF3-graph has a weak planar rectangle of influence drawing.

3.1 Biconnected, Chordless, Internally Triangulated NF3-graphs

Assume for the remainder of this section that G is a biconnected NF3-graph
and that an embedding of G exists that has no filled 3-cycles, no chords, and is
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internally triangulated. This embedding will be used as the input for a drawing
algorithm presented in this section and whenever we talk about the graph G,
we in fact refer to this embedding. Throughout this section, we assume that G
has at least 4 vertices; any graph with less than 4 vertices has a planar cRI-
drawing. This implies that the outer-face has at least 4 vertices, because if it
had 3 vertices, it would be a filled 3-cycle since n > 4.

Our algorithm to create a planar cRI-drawing of G is similar in spirit to
previous algorithms for planar straight-line drawings (e.g. [6]): add vertices to
the drawing one-by-one or in small groups, and maintain an invariant that allows
one to add these vertices easily. However, both the manner of selecting the next
group of vertices and the invariant is different in our algorithm.

The Invariant Our invariant is, loosely speaking, that the relevant part of the
outer-face of the current subgraph is drawn on a diagonal. To make this more
precise, we need more definitions. To be able to state these definitions precisely,
we modify the input graph.

Definition 1. Let G4 denote a connected induced subgraph of G = (V,E) and
let Vs be the set of vertices of Gs. Let vy, v1,va, ... ,Um_1 be the list of vertices
on the outer-face of Gs in order. G5 may not be biconnected, so some vertices
may appear more than once in this list. We require that any vertex in V —Vj lies
in the outer-face of G5. An edge (v, w) on the outer-face of G is called an active
edge if one of its incident faces is not the outer-face of G and contains a vertex
from V. — V. A vertex v; on the outer-face of G is called an internal vertex if
both (vi—1,v;) and (vi,vir1) are active edges and there is path from v;_1 to vi41
that uses only vertices in V. — Vy (where the arithmetic in the indices is done
modulo m). A ridge R = {ry,ro,... ,r1} of Gs is a set of consecutive vertices on
the outer-face of Gs such that R contains all active edges and internal vertices

of Gs.

Definition 2. A set of monotonically decreasing points is a set of points P =
{p1,p2,... ,pi} such that for 1 < i <1 we have x(p;) < x(p;i+1) and y(p;) >
Y(pi+1)-

Definition 3. Given a subgraph G5 C G, a planar cRI-drawing I' of G is said
to satisfy the invariant if there exists a ridge R = {r1,...,ri} such that

— R is a simple path,

— R is drawn on a set of monotonically decreasing points, and

— no point in I' is above the ridge, i.e., if we draw the polygonal chain through
points in R, then no point in I' is strictly above or to the right of a point of
this polygonal chain.

For an illustration of the above definitions, see Figure 1.

Remark 1. If I' satisfies the invariant, then we may assume without loss of ge-
nerality that the ridge is drawn on a diagonal line.
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Fig. 1. Illustration of the invariant. On the left is a graph G with vertices in Vj
in black; on the right is a drawing of G5 that satisfies the invariant; the ridge R
consists of vertices 1, 5, 6, 7, 8 and 3; the region that is known not to contain
any other point of the drawing of G is shaded; active edges are shown thicker
and vertices 5 and 8 are internal.

Proof. Because the ridge is on a set of monotonically decreasing points, we have
xz(r1) < z(rg) < -+ < x(r) and y(r1) > y(r2) > -+ > y(ry). It is known
[8] that if we apply an order-preserving transformation to a cRI-drawing, i.e.,
a transformation so that the orders along the z-axis and along the y-axis are
preserved, then the resulting drawing is again a cRI-drawing. One can also verify
that if the initial drawing was planar, then so is the resulting drawing. Thus,
we can define a transformation of I" that maps r; to (¢,{ + 1 — i) and that is
order-preserving. The resulting drawing then also satisfies the invariant and the
ridge is drawn on a diagonal line.

Adding Vertices In this section we show how to build a drawing while maintai-
ning the invariant. We start by initialising V; as a set of consecutive vertices on
the outer-face of G. If the outer-face of G has size ¢, we require that 3 < |V,| < t.
G is the subgraph induced by V; and the ridge R contains all vertices in V.
Since G is biconnected, R is a simple path. We place r1,...,r; on the diago-
nal y = —z. Since [ is less than the cardinality of the outer-face and G has no
chords, there are no edges between these vertices other than between consecutive
ones, so we obtain an cRI-drawing of G. Notice that all edges in G4 are active
and that all vertices except ry and r; are internal. It is easy to verify that the
invariant holds.

So assume now that we have a drawing I" of a subgraph G, that satisfies the
invariant, and R = {rq,...,r} is the ridge of this drawing. Now we show how
to add more vertices to this drawing. Specifically, we will give two methods of
adding vertices that clearly maintain the invariant. In the next section we then
show that one of these possibilities can always be applied.

We first develop a generic placement of a point such that the point sees (that
is, has an empty rectangle of influence to) many points on the ridge. For a vertex
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v, denote by z(v) and y(v) the a- and y-coordinate of the point that corresponds
to v in I'. We define

row,, = {(v,y) € R?|lz > 2(riy1),y(ri) <y <y(riz1)}, and
col,, = {(v,y) € R%*|ly > y(rj—1),z(rjo1) <z < z(rj)}

See also the left picture of Figure 2.

Ti @

Ti+1

Tk

Tj Tj

Fig. 2. Definition of row,, and col,,. Placing a point p in their intersection means
that p sees all vertices r;,7i41,...,7;.

Lemma 2. Ifp is a point in row,, Ncol,, fori < j—1, then R[p,ry] is empty
fori <k <j.

Proof. For i < k < j, all points in R[p, 7] are above the ridge, therefore R|[p, r]
is empty by the invariant. For k& = ¢, note that R[r;,r;11] is empty because
(ri,7i41) is an edge. Since all points in R[p, ;] are either above the ridge or in
R[ri,7i41], it follows that R[p,r;] is empty. Similarly one shows that R[p,r;] is
empty.

To explain the methods of adding vertices, we distinguish types of neighbours
of the ridge-vertices.

Definition 4. Let the ridge degree, or rdeg(v), of a vertex v € V — V; be the
number of ridge vertices adjacent to v.

Definition 5. For 1 < ¢ < I, let B; be the neighbours of r; in V — V; that
have ridge degree > 2 and are adjacent to a consecutive set of ridge-vertices
starting at r;. More formally, B; = {v € V — V; : there exists a j > i such that
the neighbours of v in R are 74, 7it1,...,7j—1,7;}. Set B = Ué:1 B;. We call a
vertex v a vertex of type B if v € B.
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Lemma 3. For 1 <i <1, we have |B;| < 1.

Proof. Assume that we had two vertices b1, bs which both belong to B;. By the
definition of Gy, this means that they are both in the outer-face of Gs. And by
Definition 5 both are adjacent to r; and r;41. One of these two 3-cycles must be
filled, contradicting the assumption on the graph.

In the remainder of this section, we will denote by b; the (unique) vertex in
B;, if it exists.

Definition 6. For 1 < i <1, let C; be the vertices in V — Vy that are adjacent
to r; and have ridge degree 1. Set C = Ué:1 C;. We call a vertex v a vertex of
type C if v e C.

Definition 7. For 1 < i < I, let D; be all those vertices in V — Vy that are
adjacent to r;, but neither of type B nor of type C. Set D = Uézl D;. We call a
vertex v a vertex of type D if v € D.

A vertex of type D must have ridge degree > 2 (otherwise it would be of type
(), and its neighbours on the ridge are not an interval on the ridge (otherwise
it would be type B). In particular therefore, if v € D, then there exists ¢, j such
that j >4+ 1 and v is adjacent to r; and 7}, but not to r; 4.

Placement I Assume there exists a vertex v € B such that rdeg(v) > 3.

Say, v = b;, then by definition b; is adjacent to r;,7i11,...,7; for some
j >+ 1. Place b; in the intersection of row,, and coly,;. The new ridge is R =
{ri,...,mi,bs,75,...,m}. By Lemma 2, b; can see all of r;,...,r;, so the new

drawing is a planar cRI-drawing. One easily verifies the other conditions of the
invariant.

Tk

Fig. 3. Illustration of Placement I and Placement II.

Placement II Assume there exists an 1 < ¢ < [ such that r; is internal and
D; =0.
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Since r; is internal, the two edges eg = (r;-1,7;) and e; = (r;,7;41) on the
outer-face of G are active and hence on the ridge, in particular therefore ¢ > 2.
Since eg and e; are active and G is internally triangulated, there are vertices
x;—1 and z; in V —V; such that x;_; is adjacent to r;_; and r; and z; is adjacent
to r; and 741

By definition, rdeg(x;—1) > 2 and rdeg(x;) > 2. Assume first rdeg(z;) > 3.
Because D; = (), z; must be of type B or C, but by rdeg(xz;) > 3 it must be of
type B. So we have found a vertex of type B with rdeg(x;) > 3, which means that
we can apply Placement I. Similarly, we apply Placement I if rdeg(x;_1) > 3.

So we can place a vertex unless rdeg(x;_1) = rdeg(x;) = 2. This implies that
x;—1 is incident only to 7;_1 and r; on the ridge, and z; is incident only to 7;
and 7;41 on the ridge. Therefore ;1 = b;_; and x; = b;, and in particular
Ti—1 79 L.

Write C; = {c1,¢2,...,¢;} such that {b;_1,c1,...,¢;,b;}, are the neighbours
of r; in G — G, in clockwise order; this is possible because D; = (). Note that
C; may be empty, in this case we have j = 0. Let b;_; = ¢y and b; = c¢j41.
Because G is internally triangulated and r; is internal, the incident faces of r;
are 3-cycles, and therefore the edges (ck,cr+1), 0 < k < j must exist. Place
{bi—1,c1,...,¢;,b;} on a diagonal within the intersection of row,,_, and col,,
such that they are monotonically decreasing; see the right picture of Figure 3.

Since row,,_, Ncol,, , was empty in I" and we placed the new vertices on a
monotonically decreasing diagonal, ¢ can see cgy1 for 0 < k < j. Also, any ¢y,
0 < k < j can see r;; this holds because the configuration is simply Lemma 2
rotated by 7. Notice that {b;—1,c1,...,¢;,b;} has no chord, because any chord
would induce a filled 3-cycle between the two endpoints and r;. Therefore, the
new drawing is a planar cRI-drawing of the subgraph induced by the vertices.
The new ridge is R = {ry,...,m—1,bi—1,¢1,...,¢j, b, Tit1,... ,7}. One can
verify the conditions of the invariant.

Proof of Correctness We now show that Placement I or Placement II is always
possible. In fact, we show that Placement IT (which possibly causes a Placement
1) is always possible.

Lemma 4. Let G be a biconnected, chordless, internally triangulated NF3-graph.
Let G be a strict subgraph of G, and let I' be a planar cRI-drawing of G that
satisfies the invariant with ridge R = {ry,...,r}. Then there exists a vertex r;
that is internal and D; = 0.

Proof. We have two cases.

Case 1: D = (). Since G, is a strict subgraph of G, there exists a vertex v on
the outer-face of G4 that has neighbours in G — G. At least one incident edge
of v on the outer-face of G5 must be active, for if they were both inactive, then
v would be a cut-vertex of GG, but G is biconnected by assumption.

So assume e = (v, w) is active. If neither v nor w are internal, then e would
be a chord of G, which is impossible because G is chordless. So assume that one
vertex, say w, is internal and by the invariant it belongs to the ridge, say w = ;.
Since D is empty, so is D;, and the claim follows.
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Case 2: D # (). Recall that for any v € D there exists 7, j such that j > i+ 1
and v is adjacent to 7; and r;, but not to r;11. Among all possible v € D and
all possible choices of such i, j for v, choose a v,4,j that minimize j — 1.

We claim that r; 1 is the desired vertex. Note that r;11 is internal: since v is
adjacent to r; and r; and there is at least one vertex in V — V; adjacent to r;42
we conclude that there is a path from r; to r;1o using only vertices in V;. Also,
D; 11 must be empty. For assume there exists a w € D; 1, then w # v because w
is adjacent to r;41 while v is not. Therefore, all neighbours of w must be inside
the cycle {v,7;,7i41,...,7;,v}. Let 77 > ¢ 4+ 1 be such that w is incident to r;
and rj/, but not to 41, then ¢ > i and j° < j by the above. In fact, i’ > i +1,
because w is incident to ;1. Therefore j* — i’ < j — i, contradicting the choice
of 4 and j.

So 7,11 is internal and D;;; = (), and we have found the desired vertex.

Thus, as long as G is not completed, we can always apply either Placement
I or Placement II and obtain a planar cRI-drawing of a larger subgraph. This
proves the following theorem:

Theorem 1. Any biconnected, chordless, internally triangulated NF3-graph G
has a planar closed rectangle of influence drawing.

3.2 Extension to all NF3-Graphs

Lemma 5. If G is an NF3-graph, then we can add edges to G until we get a
graph that is a biconnected, chordless, internally triangulated NF3-graph.

Proof. (sketch) We show first that if G has a cutvertex or a chord, then we can
always add an edge without creating a filled 3-cycle. Hence we can add edges
to G until it is biconnected and chordless and remains an NF3-graph. We can
then, similarly to the method shown in [2], add edges to G such that it remains
a chordless NF3-graph and becomes internally triangulated.

Theorem 2. A graph admits a weak planar closed rectangle of influence drawing
if and only if it is an NF3-graph.

Proof. The “only if” direction was shown in Lemma 1. The ”if” direction follows
from Theorem 1 and Lemma 5.

Corollary 1. Any NF3-graph G has a planar open rectangle of influence dra-
wing.

Proof. The proof follows from Theorem 2 and the fact that a closed rectangle of
influence drawing is a weak open rectangle of influence drawing [8].

Corollary 2. Any 4-connected planar graph that is not triangulated has a planar
closed rectangle of influence drawing.

Proof. This follows by choosing the outer-face of the graph to be the face that
is not a 3-cycle; the drawing then has no filled 3-cycles and the graph is an
NF3-graph.



368 T. Biedl, A. Bretscher, and Henk Meijer

4 Conclusion

In this paper, we have studied rectangle of influence drawings, and have shown
that a planar graph has a weak planar closed rectangle of influence drawing if and
only if it can be embedded without filled 3-cycles. In particular, all 4-connected
planar graphs that are not triangulated have such a drawing.

We conclude with remarks and pointers to open problems:

— Some planar graphs (for example K,) have an open planar rectangle of influ-
ence graphs even though they are not an NF3-graph. But other planar graphs
(for example the octahedron) can be shown not to have such a drawing. Can
we characterize those planar graphs that have a planar open rectangle of
influence drawing? Can we find an algorithm to determine whether a planar
graph has such a drawing?

— Does every planar graph have a weak open rectangle of influence drawing (it
need not be planar)? How about closed rectangle of influence drawings?

— Does every NF3-graph have a strong rectangle of influence drawing?

— In our construction, no two vertices are ever placed in the same row or in
the same column. By applying an order-preserving transformation, we thus
obtain a drawing in an n X n-grid. But one vertex per row/column seems
a waste. Can we show that every NF3-graph has a rectangle of influence
drawing of area significantly less than n2?
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