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Abstract. This paper investigates the following problem: Given a tree
T , can we find a set of points in the plane such that the Voronoi diagram
of this set of points is a drawing of T? We study trees that can be drawn
as Voronoi diagrams both in the Euclidean and in the Manhattan me-
tric. Characterizations of drawable trees are given and different drawing
algorithms that take into account additional geometric constraints are
presented.

1 Introduction

Voronoi diagrams are one of the most studied structures in computational geo-
metry because of their use in key application areas including metrology, astro-
nomy, biology, GIS, computer graphics, and operations research [1,12]. Often
papers and book chapters that are devoted to Voronoi diagrams simplify the
matter adopting the “no-degeneracies assumption”, i.e assuming that no four
sites defining the diagram are co-circular (see, e.g., [13]). Under this assump-
tion, Voronoi diagrams in the Euclidean metric have all vertices of degree three.
However, the increasing demand of robust and reliable computational geometry
methodologies in recent years has been leading to re-studying basic geometric
problems and structures within more realistic frameworks in which simplifying
assumptions that rule out degenerate configurations of the input are avoided.

This paper studies degenerate Voronoi diagrams, i.e. Voronoi diagrams that
contain vertices of degree higher than three originated by four or more co-circular
points (also called sites in the following). Based on the observation that a typical
degeneracy for Voronoi diagrams is the one in which co-circular points give rise to
a tree-like structure (see, e.g. [14,12]) we investigate the combinatorial properties
of degenerate Voronoi diagrams by asking what type of trees can be the Voronoi
diagram of some set of sites in the plane. This question can be naturally turned
into the following graph drawing problem: Given a tree T , can one represent T
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so that the resulting drawing is the Voronoi diagram of some set of sites in the
plane?

We recall that the the problem of analyzing the combinatorial properties
of a given type of geometric graph has a long tradition in the computational
geometry and graph drawing communities [2]. We give a few examples below.
Monma and Suri [11] proved that each tree with maximum vertex degree at
most five can be the Euclidean minimum spanning tree of some set of vertices
in the plane, while no tree having at least one vertex with degree greater than
six can be drawn as a minimum spanning tree on the plane. As for trees having
maximum degree equal to six, Eades and Whitesides [7] showed that it is NP-
hard to decide whether such trees can be Euclidean minimum spanning trees on
the plane. The problem of representing a tree as a Euclidean minimum spanning
tree in the three dimensional space is studied in [8]. Dillencourt has shown that
all Delaunay drawable triangulations are 1-tough, and have perfect matchings [5],
and that all maximal outerplanar graphs are Delaunay drawable [4]. Dillencourt
and Smith [6] show that any triangulation without chords or non facial triangles
is Delaunay drawable. The problem of deciding whether a graph can be drawn as
rectangle of influence graph and the design of efficient algorithms for computing
such a drawing when one exists is investigated in [9]. A survey on the problem
of drawing a graph as a given type of geometric graph can be found in [3].

Representing a tree as a Voronoi diagram has many interesting aesthetic fea-
tures. It captures the natural way of drawing a tree so that groups of adjacent
vertices appear close to each other while vertices not incident to a certain edge
are drawn far apart from that edge. Also, the shape of the edges varies accor-
ding to the chosen metric for the Voronoi diagram: in the Euclidean metric the
edges follow the straight-line standard, i.e. they are straight lines, while in the
Manhattan metric the edges follow the semi-orthogonal standard, i.e. they are
polygonal chains of segments with slope 0, ∞, or ±1. A drawing of a graph
that is the Voronoi diagram of a set of sites when distances are measured ac-
cording to the Euclidean metric (also called L2 metric) is a Euclidean Voronoi
drawing. Similarly, a Manhattan Voronoi drawing is a drawing of a graph that
is the Voronoi diagram of some set of sites in the plane when distances are mea-
sured according to the Manhattan metric (also called L1 metric). For display
purposes, we assume that in a Voronoi drawing all edges have finite length, that
is the infinite rays of a Voronoi diagram are replaced by edges of finite length
in a Voronoi drawing. A graph that admits a Euclidean (Manhattan) Voronoi
drawing is said to be Euclidean (Manhattan) Voronoi drawable. Figure 1 (a) and
(b) shows a Euclidean and a Manhattan Voronoi drawing of a tree, respectively.
In both figures, the white circles represent the sites whose Voronoi diagram is
the drawing of the tree.

It is worth mentioning that the requirement of clustering together adjacent
vertices has been already considered in the context of proximity drawings, a
family of straight-line drawings of graphs which include Gabriel drawings, re-
lative neighborhood drawings, and β-drawings among its representatives. In a
proximity drawing two vertices are adjacent if some local proximity constraint
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(a) (b)

Fig. 1. (a) Euclidean Voronoi drawing and (b) Manhattan Voronoi drawing of a tree.
The white circles are sites, the black circles are vertices of the drawing.

is satisfied; for example, in a Gabriel drawing it is required that the disk having
the two vertices as antipodal points does not contain any other vertex. However,
the satisfaction of the local proximity requirements in these types of drawings
is often at the expenses of other important aesthetic constraints, such as having
an uniform edge length and/or having an area of the representation that is poly-
nomial with the size of the input graph (see, e.g. [10]). As a contrast, Euclidean
Voronoi drawings only require a screen-area that is polynomial in the input size.
For references on proximity drawings of graphs see [3].

The main results of this paper can be summarized as follows.

– We characterize Euclidean Voronoi drawable trees. Such trees are those
whose interior vertices have degree at least three. Our result extends a pre-
vious result by Dillencourt [4] who proves that all maximal planar graphs
are drawable as Delaunay triangulations, thus implying that any tree with
internal vertices of degree exactly three is Euclidean Voronoi drawable.

– We present different algorithms that compute Euclidean Voronoi drawings of
trees and that can satisfy different additional aesthetic constraints. We show
how to compute radial Euclidean Voronoi drawings, i.e. Voronoi drawings of
rooted trees in which the root of the tree is placed at the center of a disk
and all vertices at distance k from the root are drawn on a disk of radius
k and having center at the root. We also show how to compute uni-length
Euclidean Voronoi drawings of trees, i.e. Euclidean Voronoi drawings where
all edges have the same length. Further, we show that the above drawing can
be computed so that all the the angles between the outgoing edges of each
vertex in the drawing are constrained to be equal. The time complexity of
the proposed algorithms is linear in the real RAM model of computation.
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– Motivated by the graphic appeal of drawing trees in a semi-orthogonal stan-
dard, we extend the investigation from the Euclidean to the Manhattan
metric and study which trees are Manhattan Voronoi drawable. While the
study of the Euclidean Voronoi drawable trees relies on a well-know theorem
(see, e.g., [13]) which characterizes point sets whose Voronoi cells in the
Euclidean metric are unbounded, as far as we know there is not a counter-
part of such theorem in the Manhattan metric. We start our investigation
of Manhattan drawings of trees by giving a characterization of the sets of
points whose Voronoi diagrams in the Manhattan metric are trees.

– Since in the semi-orthogonal standard there cannot be more than eight edges
incident on the same vertex there is a natural upper bound on the vertex
degree of Manhattan Voronoi drawable graphs. Surprisingly, not only there
cannot be Voronoi drawable trees whose vertices have degree eight, but we
also show that there cannot exist drawable trees with vertices having degree
larger than five. We also give examples of Manhattan drawable trees having
vertices of degree five.

– We characterize those binary trees that are Manhattan Voronoi drawable.
This result can be seen as the counterpart for the Manhattan metric of the
result by Dillencourt [4] for the Euclidean metric.

For reasons of space, some proofs have been omitted or sketched in this
extended abstract.

2 Preliminaries

Let P = {p0, p1, . . . , pn−1} denote a set of n distinct points in the plane. A point
p ∈ P will be called a site. For a given metric, we denote with d(u, v) the distance
function between two points u and v.

Under the Euclidean or L2 metric, the Voronoi region of a site pi, denoted by
V (pi) is the set of all points q for which d(q, pi) ≤ d(q, pj) for all sites pj , with i 6=
j. The set of all points q for which d(q, pi) = d(q, pj) is the Euclidean separator
of pi and pj and is denoted as Sep(pi, pj). Under the Manhattan or L1 metric,
this definition is as follows [1]. Assume that pi is lexicographically smaller than
pj and let Dom(pi, pj) = {q|d(q, pi) < d(q, pj)} and Dom(pj , pi) = {q|d(q, pj) ≤
d(q, pi)}. The Manhattan separator of sites pi and pj , denoted by Sep(pi, pj), is
defined as the common boundary of Dom(pi, pj) and Dom(pj , pi). The Voronoi
region of a site pi under the L1 metric is V (pi) =

⋂
j 6=i Dom(pi, pj). Therefore

the Voronoi region of a site in the L1 metric in general does not contain all points
of its boundary and may contain areas of thickness 0. Since the characterization
results and the drawing techniques of this paper are not affected by whether the
Voronoi cells contain their boundaries or have areas of thickness 0, we assume
throughout the paper that a Voronoi region of a site always contains its boundary
both in the Euclidean and in the Manhattan metric, and does not contain areas
of thickness 0.

The Voronoi diagram of P , denoted by V or(P ) is the collection of all bound-
aries of the Voronoi regions V (pi). A point that lies in at least three different
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Voronoi regions is called a Voronoi vertex. Since vertices of a Voronoi diagram
lie in at least three Voronoi regions, Voronoi drawable trees do not have vertices
of degree 2.

Let p be a point in the plane and let l− and l+ be two lines of slope −1 and
+1 through p respectively. The lines l− and l+ define four convex cones with
apex p. We call East cone of p, denoted by EC(p), the cone to the right of p, i.e.
the cone that contains the positive x−axis with p as origin. Similarly, we define
the North cone of p (NC(p)), West cone of p (WC(p)), and South Cone of p
(SC(p)) as the cones with apex p and that are above, to the left, and below p
respectively. The cones EC(p), NC(p), WC(p) and SC(p) do not include points
of l− or l+. The set of points of l+ with x− and y−coordinates larger than those
of p is called the north-east bisector of p and is denoted by ne(p). The north-west
bisector of p, denoted as nw(p) is the portion of l− whose points have larger y-
and smaller x−coordinates than p does. Similarly, the south-east bisector of p
(denoted as se(p)), and the south-west bisector of p (denoted as sw(p)) can be
defined as the portions of l+ and l− that lie in the third and fourth quadrant of
p and that do not contain p.

Let C(p) be one of the four cones of p defined above, i.e. C = EC, NC,
WC or SC. We use the notation C[p] to denote the cone C(p) including its
boundary (but excluding the apex p). C[p) includes only the right boundary
when the interior of the cone is viewed from p, and C(p] is the cone plus the left
boundary. For example, EC[p] = EC(p)∪se(p)∪ne(p), NC[p) = NC(p)∪ne(p)
and NC(p] = NC(p) ∪ nw(p). Finally we denote by e(p) and w(p) the points on
the horizontal line through p to the right and left of p respectively, and by n(p)
and s(p) the points on the vertical line through p above and below p respectively.

3 Euclidean Voronoi Drawings of Trees

In this section we first characterize the family of Euclidean Voronoi drawable
trees and then show different algorithms that compute Euclidean Voronoi dra-
wings of trees. Our characterization is based on the following result.

Theorem 1. [13] Let P be a set of sites and let p ∈ P . The Voronoi region of
p is unbounded if and only if p is a vertex of the convex hull of P .

By Theorem 1, the Voronoi diagram of P is a tree if and only if all sites of
P are in convex position. In the next lemma we study sets of sites in convex
position.

Lemma 1. Each tree without vertices of degree two is Euclidean Voronoi dra-
wable.

Proof. Let T be a tree without vertices of degree two. We prove the lemma by
defining a set of sites P , for which V or(P ) is isomorphic to T . The edges of
V or(P ) that have infinite length are replaced by edges of finite length at the
end of the construction. We root T at an arbitrary non-leaf vertex r. Suppose r
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has degree k. Place a point c0 on the plane at an arbitrary location and draw a
circle C0 around c0 with radius 1. Place k sites on C0 at arbitrary locations. The
Voronoi diagram of these sites is a tree with a single non-leaf vertex of degree
k placed at c0; c0 is the Voronoi vertex that represents r. For each site around
C0, draw a line tangent to C0 through the site. We say that a point lies on the
inside of one of these tangent lines if it lies on the same side as c0. The remaining
sites of P that define the other internal Voronoi vertices of T will all be placed
outside the circle C0 but inside the tangent lines.

We define the other points of P such that V or(P ) is isomorphic to T by
traversing T from r to the leaves. The vertices at depth m (i.e. the vertices
whose path from r consists of m edges) are drawn only after all vertices at depth
m−1 have been drawn. Suppose we want to draw vertex vj whose parent vi has
been already drawn and let ci be the Voronoi vertex representing vi. Vertex vj

is drawn by defining a new disk whose center is on one of the infinite Voronoi
edges incident on ci. Let ej = Sep(p, q) be this edge, where p and q are two sites
already defined in a previous step of the algorithm. Let C be the set of all circles
whose centers define the Voronoi vertices drawn so far. Let L be the set of all
lines that are tangent to the circles in C and that pass through the sites that
have already been placed.

The following tasks are executed.

– Place vertex cj on the edge ej , and draw the circle Cj with center cj through p
and q. Place cj sufficiently close to ci so that Cj is partially inside all tangent
lines in L and outside all circles in C.

– Let kj be the degree of vertex vj in T . Place kj − 1 sites on the portion of
Cj that lies inside all tangent lines in L and outside all circles in C.

– Draw the kj − 1 lines through the new sites tangent to Cj . Add these lines
to L and add Cj to C.

We can derive that the algorithm is correct based on the following two ob-
servations. Firstly, we can always place cj close enough to ci so that Cj falls
partially inside all tangent lines and outside all circles. Secondly the k − 1 sites
we place on Cj are closer to cj than to any other vertex ci, so the vertices of the
Voronoi diagram of previously placed sites do not change.

The drawing algorithm defined in the proof of Lemma 1 can be modified in
order to satisfy additional geometric constraints that define aesthetic criteria
traditionally used in graph drawing to improve the readability of the drawings.
For the definition of radial drawing and uni-length drawing see [2].

Theorem 2. Any tree T whose internal vertices have at least three incident
edges is Euclidean Voronoi drawable. A Euclidean Voronoi drawing Γ of T can
be computed in time proportional to the size of T in the real RAM model of
computation. Γ can satisfy additional aesthetic requirements:

– Γ can be a radial drawing, such that for each vertex v ∈ Γ all outgoing angles
of v are the same.

– Γ can be a uni-length drawing, such that for each vertex v ∈ Γ all outgoing
angles of v are the same.
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4 Point Sets in the Manhattan Metric

We start our investigation of Manhattan Voronoi drawings of trees by giving a
characterization of the sets of points whose Voronoi diagrams in the Manhattan
metric are trees. This is achieved by independently characterizing sets of points
whose Manhattan Voronoi diagrams are acyclic and those whose Manhattan
Voronoi diagrams are connected.

Under the L1 metric, a Manhattan separator Sep(pi, pj) is a semi-orthogonal
polygonal chain, i.e. a chain whose segments can have slope 0, ∞, and ±1. An
edge of a Manhattan Voronoi drawing is a subset of a Manhattan separator and
hence it can have bends, each bend defining a turn of an angle that is a multiple
of π/4. The next property studies what a Manhattan separator can look like for
a set of two sites.

Property 1. Let p and q be two sites. The eight possible shapes of the Manhattan
separator Sep(p, q) are shown in figure 2 (a).

(a) (b)

Fig. 2. (a) Manhattan separators of two sites. (b) Manhattan Voronoi drawing of a
tree with two degree vertices of degree five.

We say that p has the empty East cone property if EC[p] does not contain
sites. Similarly, p has the empty North, empty West, and empty South cone
property if NC[p) does not contain sites, WC[p) or WC(p] does not contain
sites, and SC(p] does not contain sites respectively. We say that p has an empty
cone property if it has either the empty East, or North, or West, or South cone
property. By exploiting Property 1 and the fact that the Voronoi region V (p)
of a site p is a star-shaped polygon with p in its kernel, the following can be
proved.

Theorem 3. A Voronoi diagram Vor(P) is acyclic if and only if all sites p have
an empty cone property.

The Voronoi diagram of a set of sites in the Manhattan metric may be not
connected. Intuitively, a Voronoi diagram is not connected when there exists a
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site such that two of its four cones are empty while the other two contain sites.
However, since the cones may or may not contain their boundaries and since
there can be sites aligned along lines with slope ±1, a more precise statement of
this condition is needed.

Lemma 2. If there is a site p ∈ P such that EC[p] does not contain sites, NC(p]
contains sites, WC(p] or WC[p) does not contain sites, and SC[p) contains sites,
then V or(P ) is not connected.

Lemma 3. If there is a site p ∈ P such that EC(p) contains sites, NC[p) does
not contain sites, WC[p] contains sites, and SC(p] does not contain sites, then
V or(P ) is not connected.

Lemma 4. If there is a site p ∈ P such that EC(p] ∪ NC[p) contains sites,
WC[p)∪SC(p] does not contain sites, and sw(p) contains sites, then V or(P ) is
not connected.

Lemma 5. If there is a site p ∈ P such that SC(p] ∪ EC[p) contains sites,
NC[p) ∪ WC(p] does not contain sites, and nw(p) contains sites, then V or(P )
is not connected.

A site p is called a separating site if at least one of the sets of the conditions
in the Lemmas 2, 3, 4, or 5 holds.

Theorem 4. Let P be a set of sites and let V or(P ) be the Voronoi diagram of
P in the L1 metric. V or(P ) is connected if and only if there exists no separating
site p ∈ P .

Theorem 5. Let P be a set of sites and let V or(P ) be the Voronoi diagram of
P in the L1 metric. V or(P ) is a tree if and only if there is no separating site in
P and each site p ∈ P has an empty cone property.

5 Manhattan Voronoi Drawings of Trees

Because of Property 1, the number of distinct edges incident on a same vertex
of a Manhattan Voronoi drawing of a graph is at most eight. Hence, the class
of Manhattan drawable trees is a contained in the class of those trees having
maximum vertex degree at most eight. However, there is a smaller upper bound
on the degree that the vertices of a Manhattan Voronoi drawable tree can have.
Namely, by analyzing the geometry of the edges incident on a same Voronoi
vertex it can be shown that there cannot be six or more edges incident on
the same vertex. Based on Figure 2(b) that shows an example of a Manhattan
Voronoi drawing of a tree with vertices of degree five, we can conclude the
following.

Theorem 6. A Manhattan Voronoi drawable tree cannot have vertices with six
or more incident edges. Also, there exist Manhattan Voronoi drawable trees that
have vertices with five incident edges.
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Not all trees having vertices of degree at most five are Manhattan Voro-
noi drawable. To prove this claim, we characterize those binary trees that are
Manhattan Voronoi drawable. We start by introducing some terminology.

Let T be binary a tree without vertices of degree two. T is a caterpillar if
each vertex of T is either a leaf or the neighbour of a leaf. Hence, a caterpillar
contains a path that connects two leaves plus an arbitrary number of side bran-
ches consisting of single edges. The path is called backbone of the caterpillar; the
branches are called legs of the caterpillar. Each branch shares a vertex with the
backbone. If the caterpillar is a single edge, then it coincides with its backbone
and there are no branches.

The class of binary trees that we are going to study consists of caterpillars
“joined” to some “skeleton”, which we define as follows. Let T be binary tree
without vertices of degree two. A spine of T is a subtree of T containing at least
two and at most most four leaves of T and containing all vertices and edges of
the paths between these leaves. We say that a caterpillar is attached to a spine
if one of the endpoints of its backbone is a non-leaf vertex of the spine.

Lemma 6. Any binary tree T that has no vertices of degree 2 and that consists of
an arbitrary number of caterpillars attached to a spine sp is Manhattan Voronoi
drawable.

Proof. We prove the lemma assuming that that sp has four leaves. If the spine
sp has fewer that 4 leaves, a similar reasoning can be used.

Notice that sp has two vertices v0 and v1 of degree 3 whose neighbours are
in sp. We explain how a set of sites P can be constructed such that the Voronoi
diagram of P in the Manhattan metric is isomorphic to T .

We distinguish two different cases. Case (a): if there are no vertices between
v0 and v1 then we start the construction as follows: sites p0 p1, p2 and p3 are
placed at points (0,4), (6,0), (0,-4) and (-6,0). Case (b): if there are vertices
between v0 and v1 then we start the construction as follows: sites p0 p1, p2, p3
and p4 are placed at points (-1,4), (1,4), (6,0), (0,-4) and (-6,0).

We now add sites such that the Voronoi diagram of these sites includes the
backbones of all caterpillars, but not yet the legs. This can be done by adding
sites on the lines y = 4 and y = −4: place an arbitrary number of sites at points
with x− coordinates between -5 and -2 and between 2 and 5. For case (b), we
can also place sites on the line y = 4 with x− coordinates between -1 and 1. It
can be verified that the Voronoi vertices of the sites p0, p1, p2, p3 and p4 do not
move (except for the Voronoi vertex of p0, p1 and p2), so the backbones of the
caterpillars are attached to the correct sections of the spine.

Finally, we add legs to the backbones of the caterpillars as follows. Suppose
that between sites q0 and q1 there is a caterpillar with k legs. Assume that q1 is
to the right of q0. Place k sites on the ray nw(q1), close enough to q1 to ensure
that NC[q0) remains empty. Notice that the new sites do not change the location
of any of the existing vertices in the Voronoi diagram of P , except the location
of the vertex corresponding to p0, p1 and p3 in case (b). It can be seen that the
new sites create the legs as required. Therefore, all trees that can be decomposed
into a spine and a set of caterpillars are Manhattan Voronoi drawable.
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Let P be a set of sites whose Voronoi diagram V or(P ) is a tree in the Man-
hattan metric. The proof of the following lemma is based on an analysis of the
properties of the cones defined by the sites in P .

Lemma 7. Any binary tree that is the Voronoi diagram of a set of sites under
the L1 metric is a tree T that has no vertices of degree two and consists of an
arbitrary number of caterpillars attached to a spine.

Lemmas 6 and 7 prove the following.

Theorem 7. A binary tree T is Manhattan Voronoi drawable if and only if it
has no vertices of degree 2 and consists of an arbitrary number of caterpillars
attached to a spine.
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