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Abstract. Let G be a degree-3 planar biconnected graph with n verti-
ces. Let Opt(G) be the minimum number of bends in any orthogonal pla-
nar drawing of G. We show that G admits a planar orthogonal drawing D
with at most Opt(G)+3 bends that can constructed in O(n2) time. The
fastest known algorithm for constructing a bend-minimum drawing of G
has time-complexity O(n5 log n) and therefore, we present a significantly
faster algorithm that constructs almost bend-optimal drawings.

1 Introduction

An orthogonal drawing of a graph maps its vertices to points in the plane and its
edges to a sequence of alternating horizontal and vertical line segments. A planar
drawing is one with no edge-crossings. Orthogonal drawings have applications
in a variety of fields such as Databases, Software Engineering, and VLSI design.

Bend-minimization is an important aesthetic criteria for orthogonal drawings.
Several heuristics for bend-minimization are available. (see for example [7,4]).
Garg and Tamassia [2] have shown that the bend-minimization for general
planar graphs is NP -hard. Tamassia [6] has given an O(n2 log n) time bend-
minimization algorithm for embedded planar graphs. Later, Garg and Tamas-
sia [3] improved the time-complexity of the algorithm to O(n1.75 log n). Di Bat-
tista, Liotta, and Vargiu [1] have given an O(n3) algorithm for constructing
bend-minimum planar orthogonal drawings of series-parallel graphs.

In this paper, we study the problem of constructing bend-minimum planar
orthogonal drawings of degree-3 planar graphs. Previously, Rahman, Nakano,
and Nishizeki [5] have given a linear time algorithm for constructing a bend-
minimum drawing of a triconnected cubic (each vertex has degree exactly 3)
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plane graph. Di Battista et. al. [1] have given an O(n5 log n) time algorithm for
constructing bend minimum planar drawing of a degree-3 planar graph.

Our main result is as follows: Let G be a degree-3 planar biconnected graph
with n vertices. Let Opt(G) be the minimum number of bends in any orthogonal
planar drawing of G. We show that G admits a planar orthogonal drawing D with
at most Opt(G)+3 bends that can constructed in O(n2) time. The fastest known
algorithm (of [1]) for constructing a bend-minimum drawing of G has time-
complexity O(n5 log n) and therefore, we present a significantly faster algorithm
that constructs almost bend-optimal drawings.

Let G be a planar connected graph. The degree of a vertex of G is equal to
the number of edges incident on it. The degree of G is equal to the maximum
degree of a vertex of G. A split pair of G is either a pair of adjacent vertices of
a a pair of vertices whose removal divides G into two or more connected graphs.

2 Spirality and Polar Drawings

Let G be a degree-3 planar connected graph. A drawing D of G is a mapping of
its vertices to points in the plane and its edges to a set of alternating horizontal
and vertical line-segments connecting its end vertices such that no two edges
intersect each other. A bend B of an edge e of G in D is the common end
point of two consecutive line-segments of e such that the angle between the line
segments is not equal to 180◦.

Let D be a drawing of G. Let f be a face of D. Let l1 and l2 be two line-
segments that appear consecutively in a clockwise traversal of the line-segments
of f . Let v be a vertex or bend of f such that l1 and l2 are incident on v. Let θ
be the counterclockwise angle between l1 and l2. We say that v makes an angle
θ in f . Let deg(f, θ) denote the total number of vertices and bends that make
an angle θ in f (those vertices that make angle θ more than once, for different
pairs of consecutive line segments incident on them, will also get counted more
than once). The following lemma can be derived easily from the results of [6]:

Lemma 1. [6] Let D be a drawing of a planar connected graph G. Let f be an
internal face of D. Then, deg(f, 270◦, D) − deg(f, 90◦, D) + 2deg(f, 360◦) = −4.

Let G be a connected planar graph with two distinguished vertices u, and
v with degree at most 2, called its poles. A polar drawing of G is one in which
both u and v are on its external face (see Figure 1). Let D be a polar drawing of
G with external face f . f consists of two subpaths p1 and p2 connecting u and
v, which are called its contour paths. Let deg(p1, θ) denotes the total number
of vertices and bends of p1, except u and v, that make an angle θ in f . The
spirality of p1 in D is equal to deg(p1, 270◦) − deg(p1, 90◦). 1 We likewise define
the spirality of p2 in D. The spirality of D is defined as equal to the minimum
of the spiralities of p1 and p2.

1 our definition of spirality is slightly different from that of [1].
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D is a diagonal drawing of G if either G consists only of one vertex (in which
case u = v), or each pole of G with degree 2 makes a 270◦ angle in f , and the
spirality of both the contour paths of f is 1. (see Figure 1(a)).

D is a side-on drawing of G if G consists of at least two vertices, each pole
of G with degree 2 makes a 270◦ angle in f , the spirality of one contour path
of f is 0 and the spirality of the other contour path of f is either 0, 1, or 2 (see
Figure 1(b)). A bend-minimum side-on drawing of G is one with the fewest bends
amongst all the side-on drawings of G. We define the bend-minimum diagonal
and bend-minimum polar drawings likewise. Notice that a side-on drawing has
spirality 0 and a diagonal drawing has spirality 1.
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p2
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u
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u
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Fig. 1. Polar Drawings of a graph G with poles u and v: (a) A diagonal drawing
D1 of G; (b) A side-on drawing D2 of G. p1 and p2 are the contour paths of
the external face of D1 and D2. (c) A schematic representation of a diagonal
drawing with poles u and v. (d) A schematic representation of a side-on drawing
with poles u and v

Lemma 2. Let G be a degree-3 connected planar graph with poles u and v. Then,

– G admits either a diagonal or a side-on drawing that has the minimum num-
ber of bends among all the polar drawings of G, and

– if G does not admit a side-on drawing that has the minimum number of
bends among all the polar drawings of G, then G also does not admit any
polar drawing with spirality less than 0 that has the minimum number of
bends among all the polar drawings of G.

3 Drawing Triconnected Cubic Plane Graphs with
Minimum Bends

Rahman, Nakano, and Nishizeki [5] have given a linear time algorithm for con-
structing a bend-minimum drawing of a triconnected cubic plane graph. As we
will see later, we use this algorithm for drawing an R node.

A cubic graph is one where each vertex has degree exactly 3. A plane graph
is one with a fixed embedding and a fixed external face. A drawing of a plane
graph is one that preserves the embedding and external face of the graph. Let
G be a cubic triconnected plane graph. Let C0(G) denote the external face of
G. Let G′ be a plane graph obtained from G by inserting four dummy vertices,
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called its corner vertices, in C0(G). We define a k-legged cycle, descendent cycle,
child cycle, corner cycle, and genealogical tree of G, and G′ as in [5]. Similarly,
we define a leg-vertex, the contour paths, and red and green paths of a 3-legged
cycles as in [5]. C0(G′) consists of four contour paths, each connecting two corner
vertices that are adjacent in a counterclockwise traversal of C0(G′). Let C be a
3-legged cycle of G. C consists of 3 contour paths that connect two leg-vertices
that are adjacent in a counterclockwise traversal of C. Let G(C) denote the plane
subgraph of G inside (and including) C. (See [5] for details). A feasible drawing
D of G′ is one such that D has the minimum number of bends among all the
drawings of G′, each corner-vertex of G′ makes 270◦ angle in C0(G′), and the
spirality of each contour path of C0(G′) is 0.

Let C be a 3-legged descendent cycle of G′. Let p be a contour path of C. A
feasible drawing D of G(C) with respect to p is one such that D has the minimum
number of bends among all the drawings of G(C), each leg-vertex of C makes
270◦ angle in the external face of D, the spirality of the two contour paths of C
other than p is 0, and the spirality of p is 1.

Notice that [5] gives stronger definitions of feasible drawings, but for our
purposes, the above definitions are sufficient. A rectangular drawing D is one in
which each edge is drawn as a single line-segment and each face is drawn as a
rectangle. D has exactly four vertices, called its corners, that make 270◦ angles
in its external face.

We describe below a small variation of the algorithm of [5], which we call
Algorithm LinearDraw(G), that constructs a bend-minimum drawing D of a
cubic triconnected plane graph G in linear time:

Algorithm LinearDraw(G):

1. Find as many as and up to 4 independent corner cycles L1, L2, . . . , Lk (where
k ≤ 4) of G. For each Li, insert one dummy vertex li in an edge common to
C0(G) and a green path of Ci. Let G∗ be the plane graph thus obtained. If k
is less than 4, then insert 4−k more dummy vertices l′1,

′
2 , . . . , l′4−k in to the

edges of C0(G∗) such that overall, at most two dummy vertices get inserted
in to the same edge of C0(G). Let G′ be the plane graph thus obtained. G′

has four corner vertices l1, . . . , lk, l′1, . . . , l′4−k.
2. Let C1, C2, . . . , Cm be the child cycles of G′. Collapse each Ci into a super

node S(Ci). Let Let G′′ be the plane graph with no 3-legged cycles thus
obtained.

3. Construct a rectangular drawing D(G′′) of G′′ with the corner vertices of
G′′ (i.e., vertices l1, . . . , lk, l′1, . . . , l′4−k) as its corners.

4. For each Ci, invoke Algorithm FeasibleDraw(Ci, p), where p is a green
path of Ci, to construct a feasible drawing D(Ci) with respect to p of G(Ci).

5. Patch each D(Ci) into drawing D(G′′) at S(Ci) without introducing any
additional bends to get a drawing D(G′) of G′.

6. In D(G′), replace vertices l1, . . . , lk, l′1, . . . , l′4−k by bends to obtain a bend-
minimum drawing D of G.

Given a 3-legged cycle C with leg-vertices a, b, and c, and a green path p
of C, Algorithm FeasibleDraw(C, p) constructs a feasible drawing of C with
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respect to p. It is implemented similar to Algorithm LinearDraw, except that
in the Step 1, we insert exactly one dummy vertex d, and designate a, b, c and d
as the corner vertices of the graph G′(C) thus obtained. The vertex d is inserted
in an edge of p.

Lemma 3. Let H be a cubic triconnected plane graph. Let e = (u, v) be a di-
stinguished edge of G on its external face, called its reference edge. Let G be
a plane graph with poles u and v, and external face C0(G), obtained from H
by removing e and inserting one or more degree-2 vertices in some edges of H.
Suppose n is the number of vertices in G. Then, we can construct in O(n) time,
a bend-minimum diagonal or side-on drawing D of G, where D is a diagonal
drawing if and only if G does not admit a side-on drawing with less than or
equal number of bends than D.

Sketch of Proof:. We construct D using Algorithm LinearDraw(G) after ma-
king two modifications in it:

1. If a 3-legged cycle C contains a degree-2 vertex z, then z can be designated a
corner vertex of C. This obviates the need to insert a new dummy vertex in
an edge of C in Step 1 of Algorithm FeasibleDraw. We, therefore, change
the definition of a green path of a 3-legged cycle C as follows:
– If C does not contain any child cyle, or no child cycle of C has a green

path that has an edge in common with C, then
• if none of the three contour paths contain a degree-2 vertex, then all

the three contour paths are categorized as green paths, otherwise
• a contour path of C is categorized as a green path if and only it

contains a degree-2 vertex,
– if C contains at least one child cycle that has a green path that has an

edge in common with C, then a contour path of C is categorized as a
green path if and only if either it has an edge in common with a green
path of a child cycle, or it contains a degree-2 vertex.

Correspondingly, in Step 1 of Algorithm FeasibleDraw (C, p) if p con-
tains a degree-2 vertex z, then we designate z as a corner vertex instead of
inserting a new dummy vertex d in an edge of p. Since d, if inserted, would
have appeared as a bend in the final drawing, designating z as a corner vertex
instead of inserting d saves us one bend. Using a similar proof of [5], it can
be shown that Algorithm FeasibleDraw (C, p) will construct a feasible
drawing of C with respect to p in linear time.

2. We change Step 1 of Algorithm LinearDraw as follows: We can designate
u and v as two corner vertices of G′. We still need to designate two more
corner vertices for G′. Let us denote these corner vertices by a1 and a2. Let
p1 and p2 be the two subpaths of C0(G) with end points u and v. We say
that the corner vertex aj , where 1 ≤ j ≤ 2, gets assigned to path pi, , where
1 ≤ i ≤ 2, if we designate as aj , either a degree-2 vertex of pi, or a dummy
vertex that we insert into an edge of pi during the execution of Step 1. In a
side-on drawing of G with poles u and v, both a1 and a2 get assigned to the
same path, either p1 or p2, and in a diagonal drawing, one each is assigned
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to p1 and p2. To determine the path to which we should assign each aj , for
each pi, we count how many degree-2 vertices (excluding u and v) are there
in p and how many corner cycles have a green path that has at least one
edge in common with pi (here we extend the definition of a corner cycle to
include 2-legged cycles of C. Notice that, since H is triconnected, it can be
shown that such cycles contain either u or v.) . Based on the counts, we
assign each aj to a pi such that we get either a bend-minimum side-on or
a bend-minimum diagonal drawing D of G, where D is a diagonal drawing
if and only if G does not admit a side-on drawing with less than or equal
number of bends than D. Details will be given in the full paper.

4 SPQR Tree

Let G be a planar biconnected graph. Let e = (s, t) be an edge of G. An SPQR
decomposition of G with reference edge e is its recursive decomposition into
components of four types: S, P , Q, and R, where the initial decomposition
divides G at the split pair {s, t}. Each SPQR decomposition corresponds to an
SPQR decomposition tree τ . τ consists of four types of nodes- S, P , Q, and
R, which correspond to the S, P , Q and R components, respectively, of the
decomposition. We can always always orient the edges of τ such that the root of
τ is a Q node that corresponds to the edge e. Each node of τ corresponds to a
subgraph of G, called its pertinent graph. In particular, the pertinent graph of a
Q node consists of a single edge of G. The pertinent graph of each node X of τ
has two distinguished vertices called its poles. Notice that the poles of both the
root of τ and its child are s and t. Also associated with each node X of τ is a
graph, called its skeleton, and denoted as skel(X). The skeleton of an R node is
a triconnected graph, of a P node is a bundle of parallel edges, of an S node is
a chain of edges, and of a Q node is a single edge. See [1] for details.

Let X be an S node of τ . Let u and v be the parent split vertices of X. We
can order the children of X as C1, C2, . . . , Ck−1, Ck, where the child component
C1 is incident on u, child component C2 shares a vertex with C1, C3 shares a
vertex with C4, and so on, and finally, Ck shares a vertex with Ck−1 and also, Ck

is incident on v. We call C1 and Ck the extreme children of X, and the ordering
C1, C2, . . . , Ck−1, Ck a canonical ordering of the children of X.

Let G be a biconnected degree 3 planar graph. Let τ be an SPQR decompo-
sition tree of G with reference edge e. Let X be a node of τ . The following facts
can be easily derived from the fact that each vertex of G has degree at most 3:

Fact 1 If X be an S node of τ . Let C1, C2, . . . , Ck−1, Ck is a canonical ordering
of the children of X. We have that, if Ci is a non-Q node, then Ci−1 and Ci+1
are Q nodes. In other words, for each non-Q child of X, the children of X before
and after it in the canonical ordering are Q nodes, i.e., correspond to single edges
of G. More over, if the parent of X is not the root of τ , then both C1 and Ck are
Q nodes, i.e., correspond to single edges of G. Also, we can always construct a τ
such that each Ci is either a P node, Q node, or an R node.
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Fact 2 Each P -node of τ has exactly two children which are either S or Q nodes.

Fact 3 Each child of an R-node of τ is either an S node or a Q node.

We define the core graph and pole of a node X of τ as follows: If X is a P
node, Q node, R node, or an S node whose parent is the root of τ , then its core
graph is the same as its pertinent graph, and the pole of its core graph is the
same as the pole of its pertinent graph.

If X is an S node whose parent is not the root of τ , then let C1, C2, . . . , Ck−1, Ck

be a canonical ordering of the children of X. Let u and v be the poles of the
pertinent graph of X. From Fact 1, C1 and Ck are Q-nodes, i.e., they correspond
to single edges of G. Suppose C1 and Ck correspond to edges (u, a) and (b, v),
respectively, of G. Let H(Ci) denote the core graph of Ci. Since each Ci is a P ,
Q, or R node, H(Ci) is the same as the pertinent graph of Ci. The core graph
H of X is defined as the subgraph of the pertinent graph of H that consists of
the graphs H(C2), H(C3), . . . , H(Ck−1), i.e., H = H(C2)

⋃
H(C3)

⋃
H(Ck−1).

In other words, the core graph of X is the graph obtained by removing edges
(u, a) and (b, v) from the pertinent graph of X. Vertices a and b are designated
the poles of H.

The poles of X are the same as the poles of its core graph.

Lemma 4. Let G be a degree-3 planar graph. Let τ be an SPQR tree of G that
corresponds to an SPQR decomposition of G with a reference edge e. Let X be a
non-root node of τ , whose pertinent graph has n vertices. Then, we can construct
in O(n) time, a bend-minimum polar drawing D of the core graph H of X such
that:

1. if X is an S node whose core graph consists of at least two vertices,or is a
Q node, then D is a side-on drawing,

2. if X is an S node whose core graph consists of exactly one vertex, then D is
a diagonal drawing,

3. if X is a P , or an R node, then D is either a diagonal or a side-on drawing,
and

4. D is a diagonal drawing if and only if H does not admit a side-on drawing
with less than or equal number of bends than D.

Sketch of Proof:. Our proof is constructive. Starting with the leaves of τ , for
each node X of τ , we construct a side-on or diagonal drawing of the core graph
of X with properties as given in the statement of the lemma.

Let X be a non-root node of τ . Let H be the core graph of X. Let u and v
be the poles of X. Let D(X) denotes the drawing—side-on or diagonal—of H
constructed by our proof. We consider the following cases:

– X is a Q node: Then, H is a single edge t = (u, v). We draw t as a single
line-segment.

– X is an S node: We have two subcases:
• H consists of a single vertex a = u = v: Then, we draw a as a point,

which by the definition of a diagonal drawing, is a diagonal drawing.
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• H consists of more than one vertex: Let C1, C2, . . . , Ck−1, Ck be a cano-
nical ordering of the children of X. Recall that if the parent of S is not the
root of τ , then H = H(C2)

⋃
H(C3)

⋃
H(Ck−1), where H(Ci) is the core

graph of Ci. We have three cases, depending on whether both D(C2) and
D(Ck−1) are side-on drawings, or are both diagonal drawings, or one is a
side-on and the other is a diagonal drawing. As shown in Figure 2, in all
three cases, by simply stacking the drawings D(C2), D(C3), . . . , D(Ck−1)
one above the other in that order, we can construct a side-on drawing
D(X). Since each D(Ci) is a bend-minimum polar drawing of H(Ci),
and we do not insert any new bends while stacking them, it follows that
D(X) is a bend-minimum polar drawing of H. If the parent of S is the
root of τ , then we can construct D(X) in a similar fashion by vertically
stacking drawings D(C1), D(C2), . . . , D(Ck).

X

C1 C2 C7 C8

D(C2)

D(C3)

D(C4)

D(C5)

D(C6)

D(C7)

u

v

D(C2)

D(C3)

D(C4)

D(C5)

D(C6)

D(C7) D(C7)

D(C6)

D(C6)

D(C4)

D(C3)

D(C2)

(a)

(b) (c) (d)

v v

u u

Fig. 2. Constructing D(X) when X is an S node such that the parent of
X is not the root node: (a) An S node X with 8 children C1, C2, . . . , C8 of
which only C2, C4 and C7 are non-Q nodes; (b,c,d) Constructing D(X) from
D(C2), D(C3), . . . , D(C7): (b) When D(C2) is a side-on and D(C7) is a diago-
nal drawing; (c) When both D(C2) and D(C7) are diagonal drawings; (d) When
both D(C2) and D(C7) are side-on drawings. Vertices u and v are the poles of
X.

– X is a P node: From Fact 2, X has two children C1 and C2, and they are
either S or Q nodes. We have two subcases:

• C2 is a Q node: Let H(C1) be the core graph of C1. Suppose C2 corre-
sponds to a single edge t = (u, v) of G. If D(C1) is a side-on drawing, then
we can construct D(X) from D(C1) and D(C2) as shown in Figure 3(a)
without adding any new bends. Since, D(C1) is a bend-minimum po-
lar drawing of H(C1), it follows that D(X) is also bend-minimum polar
drawing of the core graph of X. If D(C2) is a diagonal-drawing, then
we can construct D(X) from D(C1) and D(C2) as shown in Figure 3(b)
by adding one more bend. To show that D(X) is also a bend-minimum
polar drawing of H, consider a bend-minimum polar drawing D of H
(also see Figure 3(c)). D contains a polar subdrawing D′ of the core
graph of C1. Since D(C1) is a bend-minimum polar drawing, D′ has at
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least as many bends as D(C1). Hence, if any of the edges (a, u), (b, v)
and t have a bend in D, then we are done, otherwise, consider the face
f of D that contains the edges (a, u), (b, v), and t, where a and b are the
poles of H(C1) (see Figure 3(c)). f also contains a contour path p1 of
the external face of D′. From Lemma 1, it follows that if face f does not
have any bend in edges (a, u), (b, v), or t, then p1 must have spirality at
most 0, and hence D′ must have spirality at most 0. However, then, since
Lemma 4(4) holds for D(C1), it follows from Lemma 2 that D′ has at
least one bend more than D(C1). That is, D has at least as many bends
as D(X), and therefore D(X) is also a bend-minimum polar drawing.

u

v
a

b

D(C1)

t

(a)
v

t

v

tf

a
(c)

D(C1)

(b)

u ub b

p1

a D’

Fig. 3. Constructing D(X) for a P node X with children C1 and C2, where C2
corresponds to a single edge t = (u, v): (a) When D(C1) is a side-on drawing, (b)
When D(C1) is a diagonal drawing. In both cases, D(X) is a side-on drawing;
(c) Proof of the bend-optimality of D(X). a and b are the poles of C1, and u
and v are poles of X.

• C2 is not a Q node: If both D(C1) and D(C2) are side-on drawings, than
we construct a bend-minimum side-on drawing D(X) as shown in Fi-
gure 4(a). If at least one of D(C1) and D(C2) is a diagonal drawing, then
we can construct a diagonal drawing D(X) as shown in Figure 4(b,c).
In both the cases, we do not add any bends, and hence, D(X) is bend-
minimum side-on or diagonal drawing. Using a reasoning similar to one
for the previous case, where C2 is a Q node, we can show that when D(X)
is a diagonal drawing, then X does not admit any side-on drawing with
less than or equal number of bends than D(X).

– X is a R node: Let r be the reference edge of skel(X). From Fact 3, each
child of X is either an S node or a Q node. We first remove r from skel(X).
Next, for each edge k of skel(X) that corresponds to an S child of X whose
core graph consists of at least two vertices, we insert two dummy vertices
in k. Also, for each edge k of skel(X) that corresponds to an S child of X
whose core graph consists of exactly one vertex, we insert one dummy vertex
in k. Let L be the graph thus obtained. We designate u and v as the poles of
L. We construct a bend-minimum side-on or diagonal drawing D of L using
Lemma 3. From D, we construct D(X) without adding any new bends as
follows: Let k be an edge of skel(X) that corresponds to an S child C of X.
let H(C) be the core graph of C. We have two cases:
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ub

D(C1)
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D(C2)
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D(C1)

D(C2)

D(C1)
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v

a D(C2)
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u
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Fig. 4. Constructing D(X) for a P node with children C1 and C2, neither
of which is a Q node: (a) When both D(C1) and D(C2) are side-on drawings;
(b) When both D(C1) and D(C2) are diagonal drawings; (c) When D(C1) is a
diagonal drawing and D(C2) is a side-on drawing. a and b are the poles of C1,
a′ and b′ are the poles of C2, and u and v are the poles of X.

• H(C) consists of a single vertex z: Let a be the dummy vertex introduced
in k to obtain L from skel(X). We simply replace a by z.

• H(C) consists of at least two vertices: Let a and b be the dummy verti-
ces introduced in k to obtain L from skel(X). Since D(C) is a side-on
drawing (because C is an S node) irrespective of the angles made by a
and b in their incident faces in D, we can replace a and b and the edge
(a, b) by D(C) without adding any new bends.

Lemma 5. Let G be a biconnected degree-3 planar graph with n vertices. Let
e = (u, v) be an edge of G. Let M be the minimum number of bends in any
drawing of G with e on the external face. Then, we can construct in O(n) time,
a drawing D of G with e on the external face such that D has at most M + 3
bends.

Sketch of Proof:. Let τ be an SPQR decomposition tree of G with reference edge
e. As mentioned earlier in Section 4, the root X of τ is a Q node that corresponds
to e. Let C be the child of X with core graph H(C). u and v are the poles of
H(C). Let D(C) be the bend-minimum polar drawing of H(C) constructed using
Lemma 4. As shown in Figure 5, from D(C), we can construct a drawing D of G
with e on external face by adding at most 3 more bends irrespective of whether
D(C) is side-on or diagonal. Since a bend-minimum drawing of G with e on
external face contains a polar drawing of H(C) as a subdrawing, and D(C) is
bend-minimum polar drawing of H(C), it follows that D has at most M + 3
bends. Since, from Lemma 4, D(C) can be constructed in O(n) time, it follows
that D can also be constructed in O(n) time.

5 Main Theorem

Theorem 1. Let G be a biconnected degree-3 planar graph with n vertices. Let
Opt(G) be the minimum number of bends in any drawing of G. Then, we can
construct in O(n2) time, a drawing D of G such that D has at most Opt(G) + 3
bends.
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Fig. 5. Proof of Lemma 5: Constructing a drawing for the root node X from
D(C), where C is the child of X: (a) when C is a side-on drawing, and (b) when
C is a diagonal drawing. e is the reference edge.

Sketch of Proof:. For each edge e of G, we construct a drawing using Lemma 5
that has e on the external face. The drawing with minimum number of bends
among these drawings will have at most Opt(G) + 3 bends. Since G has O(n)
edges, and constructing each drawing takes 0(n), the total running time is O(n2).
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