
Latour — A Tree Visualisation System

Ivan Herman1, Guy Melançon1, Maurice M. de Ruiter1, and Maylis Delest2

1 Centrum voor Wiskunde en Informatica, P.O. Box 94079
1090 GB Amsterdam, The Netherlands

{Ivan.Herman,Guy.Melancon, Behr.de.Ruiter}@cwi.nl
2 LaBRI, Université Bordeaux I

351, cours de la Libération, 33405 Talence Cedex, France
Maylis.Delest@labri.u-bordeaux.fr

Abstract. This paper presents some of the most important features of
a tree visualisation system called Latour, developed for the purposes of
information visualisation. This system includes a number of interesting
and unique characteristics, for example the provision for visual cues ba-
sed on complexity metrics on graphs, which represent general principles
that, in our view, graph based information visualisation systems should
generally offer.

1 Introduction

Information visualisation is one of the relatively new areas of research and deve-
lopment in computer science; its fundamental goal, i.e., the ability to visualise
and to navigate in large, abstract datastructures, is often regarded as one of
the crucial tasks in bringing computers closer to the general public [2]. Visua-
lising graphs plays a very special role in this area, because they can often be
used to visualise abstract datastructures. Practical examples include hyperme-
dia structures (like the Web), database query results, or organisational charts
of companies. Systems to visualise large graphs have come to the fore in the
last years; the NicheWorks system of Wills [17], the fsviz system of Carrière and
Kazman [3], or daVinci of the University of Bremen [6] are just some typical ex-
amples. These systems usually draw on the rich research heritage in the graph
drawing community which, over the years, has explored some of the mathema-
tical problems related to graph drawings [1]. Putting these research results into
practice is not a simple task, however. Practical issues raised by, for example,
the large size of graphs in information visualisation, the need for navigation
and interaction, user interface and ergonomic issues, etc., create new challenges,
or cast a new light on well–accepted practices [13]. Consequently, none of the
current graph drawing systems could claim to be complete; experiences with
these systems are still to be gathered to gain a better understanding of the kind
of drawing and navigation facilities which are necessary for a really successful
system.

The goal of this paper is to contribute to this “gathering”. It describes an
application framework called Latour, whose goal is to incorporate interactive

J. Kratochv́ıl (Ed.): GD’99, LNCS 1731, pp. 392–399, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Latour — A Tree Visualisation System 393

graph (primarily tree) visualisation and navigation techniques into other appli-
cations. At present, Latour is used or tested as a toolkit to visualise, and to
interact with, various application data, for example internal data structures of
programs, deployment results of large Petri nets, evolution of genetic algorithms,
etc.

While developing this framework, some of the practical problems required
more concentrated research efforts, which also led to interesting and general
results [8,9,12]. The goal of this paper is to describe a number of issues which,
albeit not deserving separate articles by themselves, together constitute a body of
experiences which we felt is worth sharing with the R&D community. A technical
report available online [10] contains further details which, because of lack of
place, could not be included in the present paper.

2 Graph/Tree Layout

In spite of all the results on graph drawing [1], it is not simple to choose a
specific algorithm for information visualisation. Information visualisation, which
is inherently interactive, raises a number of issues that are not necessarily covered
by the classical research. Apart from obvious problems such as speed (in the case
of a graph with 3–4000 nodes, the display of the graph should not take more
than a second), there remain two important aspects:

– Predictability. Two different runs of the algorithm, involving the same or
similar graphs, should not lead to radically different visual representation.
This is very important if the graph is interactively changed, for example
by (temporarily) hiding some nodes or making them visible again. Great
care should be taken on which layout algorithm is chosen. For example,
a number of graph layout algorithms use optimisation techniques; if the
graph changes, a new local minimum may lead to a dramatically different
visual representation, which is unacceptable for interactive use. (The term
“preserving the mental model” is also used to describe this requirement,
see [11].)

– Navigation on large or unusual graphs. Practical applications lead to thou-
sands, or possibly tens of thousands of nodes. To cope with such numbers,
navigation tools, search facilities, hierarchical views, etc., are necessary. The
implementation of such tools may also require the usage of suboptimal layout
algorithms.

The bulk of the Latour system concentrates on trees, where the usual layout
algorithms are quite predictable and fast. It was not the goal of Latour to develop
new layout algorithms; instead, the goal was to concentrate on the issues raised
by data exploration and interaction. Three different tree layout algorithms have
been implemented. Various user communities have their own traditions, habits,
or requirements, and an application framework cannot impose one single view
on its users. In what follows, a short overview of these views will be given.



394 I. Herman et al.

2.1 Hierarchical View

The hierarchical view of the tree is based on the well–known algorithm of Rein-
gold and Tilford [14] revisited by Walker [16]. The layout algorithm is simple, fast,
and completely predictable. Various variants exist: grid–based, left–to–right or
top–down, etc. All these variations are mathematically identical and implemen-
ters may be tempted to include arbitrarily one of these variations only. This
would be a mistake: one should recognise that the way of looking at trees may
depend on the application areas. For example, the top–down grid view is the
widespread way of looking at family trees, whereas biological evolution schemas
often use a left–to–right grid. The conclusion is simple, albeit important: give
the user the choice; he/she should be able to choose among the different views.

2.2 Radial View

The radial view is based on an algorithm described in Eades [5] (see also [1]).

This algorithm recursively places the children of a subtree into circular wedges;

Fig. 1: Radial view without
convexity check

the central angle of these wedges are proportional to
the width of the respective subtrees, i.e., the number
of leaves. If this was the only layout rule, additional
edge intersections would occur if the angle on the
node became too large; to avoid this, a “convexity
constraint” is introduced which, essentially, forces
the wedge to remain convex. This type of view is
favoured, for example, by some web site viewers,
which do not want to overemphasise the role of a
root.

The algorithm is very simple, but it is not optimal in using the available
space. We spent some time in trying to optimise the algorithm. The idea was
to use the statistical distribution of the width of a subtree at a node, which can
be approximated with a normal distribution (see [4]). The improvements were
not significant, however; this turned out to be the consequence of the convexity
constraint whose effect seems to dominate other optimisation attempts. A possi-
bility to overcome this problem is to simply drop the convexity check. Although
this is not mathematically correct, the occurrence of extra intersections is not
very frequent after all. It is not necessary to look for a mathematically perfect
algorithm for a graph layout; the mathematical “faults” may not be significant in
practice. Problems with navigation, zooming, etc. (see the next section) should
become predominant in that case, and it is not really worth to optimise the
layout any further. For the sake of completeness, we decided to include both the
optimal (i.e., with convexity check) and the, shall we say, sub–optimal radial
layout algorithm into Latour. See [10] for a comparison of both layouts including
figures.



Latour — A Tree Visualisation System 395

2.3 Balloon View
The request for a “balloon” view (see Fig. 2) came from an application dealing

with the retrieval of keywords and their relations from a database. The notion of a

Fig. 2: Balloon view

“root” is temporary for such application: the
user should be able to move from one node
to the other interactively, and the tree on the
screen should reflect the relationships using
this temporary focus. The balloon view seems
to fulfil this need. The detailed explanation of
the algorithm would go beyond the scope of
this paper [12]. Other placement algorithms
could also be used [3].

3 Interaction and Navigation

Information visualisation is an inherently interactive application; the user has
to move around in information space, explore details, hide unnecessary parts of
a tree, etc. Obviously, a good system must offer a whole range of tools in order
to make the exploration of a graph easy, or indeed possible.

3.1 Zoom, Pan, Fish–Eye

Some of the techniques, implemented in Latour are now standard: zoom, pan,
and geometric fish–eye [15]. As much as possible, the factors controlling these
effects (e.g., the distortion factor of the fish–eye view) are settable interactively
by the end–user.

The fish–eye view has one drawback, though, which implementers should be
aware of. The essence of a fish–eye view is to distort the position of each node,
using a concave function applied on the distance between the focal point and the
node’s position. If the distortion were to be applied faithfully, the edges connec-
ting the nodes should be distorted into general curves. Usual graphics systems do
not offer the necessary facilities to draw these curves easily. The implementer’s
only choice is to approximate these curves with dense polylines. This leads to
a prohibitively large amount of calculation and makes the responsiveness of the
system sink to an unacceptably low level. The only viable solution is to apply
the fish–eye distortion on the nodes only, and to connect them by straight–line
edges. The consequence of this inexact solution is that new edge intersections
might occur. Though inelegant, this brute force approach did not prove to be
disturbing in practice.

3.2 Complexity Visual Cues

The well–known problem in using zoom and pan is that the user looses the
“context”. This is why fish–eye view is used: it provides a “focus+context” view



396 I. Herman et al.

of the tree. However, when the tree is large, zoom and pan cannot be avoided
and other techniques become necessary, too. A unique feature of Latour is a
technique to provide visual cues based on the structural complexity of the tree.
This technique works as follows.

A metric value is calculated for each node of the tree. This metric should
represent the complexity of the subtree stemming at the node. Several different
metric functions are possible and, ultimately, the choice among these should be
application dependent. Examples for such metric include the width of the sub-
tree (i.e., the number of leaves), the sum of the lengths of all paths between the
node and the leaves of the subtree, the so–called Strahler numbers [8], or the
“degree of interest” function used by Furnas [7]. Using these metric values, and

Fig. 3: Visual Cues

visual tools like colour saturation, linewidth, etc,
Latour can highlight the “backbone” of a tree, i.e.,
those edges which hold larger, more complex sub-
trees. The effect is clearly visible on Fig. 3. Without
the backbone the user would barely know where to
move with the pan, if complex areas are searched.
The backbone on the figure clearly shows, for ex-
ample, that one of the edges going toward the left
leads to a complex portion of the tree, whereas the
other ones are probably less interesting.

Another possible usage of the metric numbers is presented on Fig. 4: this is
the so–called schematic view of a tree. Based on the complexity metrics of the
nodes, Latour displays only those nodes whose metric value is greater than a spe-
cific cut–off, yielding what we have called the skeleton of the tree. All other nodes
are encapsulated in triangular shapes, whose size and geometry is proportional
to the hidden portion of the tree. The result is a better overall view of the tree

Fig. 4: Schematic view of a tree

which, combined with other naviga-
tion techniques, provides a powerful
interactive tool. It is worth noting
that, although all our examples so
far were for trees, the visual cue tech-
niques based on a complexity metric
represent a general principle which
can be applied for more general gra-
phs, too; the interested reader should
refer to [9].

3.3 Animation

Latour is an interactive system; the user navigates in different portions of the
tree, zooms, pans, etc. Some of these actions result in an immediate, real–time
feedback (for example, zoom), some other actions may lead to a more radical
reorganisation of the screen (for example, folding a subtree into a node, or unfol-
ding a folded subtree). Latour animates all possible changes from one view to the



Latour — A Tree Visualisation System 397

other, avoiding any radical changes as far as possible. Although originally only
included in Latour to reduce possible ergonomic problems, this basic animation
feature turned out to be a very useful tool for various applications exploring a
sequence of trees, instead of a single one. This is the case, for example, of the
application exploring genetic algorithms, or the traces of parallel program runs.
Therefore, the input possibilities of Latour have been extended: it can not only
accept the description of a single tree, but also a “generation” of trees, i.e., a
basic tree plus a sequence of difference trees. This sequence of trees can then be
visualised systematically with again a graceful animation at each change.

4 Beyond Trees

Latour is primarily a tree visualisation tool but, obviously, applications may
want to handle more general structures, too. We have added some extensions to
Latour which are worth mentioning here.

4.1 Packed Forests

Packed forests are special data structures. The need for these data structures has
arisen through an application concerned with the visualisation of the internal
data structures of compilers, but has proven to be useful in general, too.

Instead of giving an abstract definition, the concept is presented through
an example. For a compiler, the standard internal representation of a string is
a list. The leaves of the list represent the individual characters of the string,
and intermediate nodes are used to build up a list structure. Such list can be
represented as a simple tree, like the left–hand one in Fig. 5. However, such a
representation may be too “verbose”. An expert in compiler technology knows
the internal representation for a string and does not necessarily need the full list

L

L

EH

O

OLLEH

Fig. 5: A packed forest

version of the relevant portion of the graph;
the tree on the right–hand side of Fig. 5 is
enough to convey all the necessary informa-
tion. What the user wants is to be able to in-
teractively “switch” between different repre-
sentations. Latour has the possibility to store,
internally, a set of such alternatives for each

node, and offers interactive means to switch among those.

Packed forests turned out to be extremely useful in practice. As a slightly
extreme example, some of the demonstration graphs used by our compiler buil-
der partner is, initially, a tree consisting of 2–3 nodes only. However, when the
same graph has all its most complex alternatives extended, it turns into a tree
of about 100 nodes. Similar data structures are used routinely in computational
linguistics; the concept of “level of details”, of an utmost importance in vir-
tual reality scenes, is another example which can be represented through these



398 I. Herman et al.

structures. Packed forests provide a very efficient way of imposing a manageable
hierarchy on the visualised data structures.

4.2 Dag’s

Dag’s (Directed Acyclic Graphs) represent the next logical step when trying to
generalise from trees. This is achieved by a simple extension of Latour, which
allows the storage of additional links for each node of the underlying tree. This
means that a spanning tree is provided, and Latour uses its tree–related structure
to visualise the dag by simply adding the additional links to the tree picture.
The spanning tree may have two origins: either the application generates it, or
the spanning is tree is calculated for the dag.

Requesting the application to generate a spanning tree is not such a strong
requirement. A number of applications have an inherent tree structure in the
data, and visualising this tree, with the additional edges added to the tree,
yields a natural representation of the dag.

Fig. 6 shows an example where a spanning tree is used to visualise a dag. The
interesting feature in this case is that the spanning tree consists of three branches
and most of the “non–tree” edges are used to connect nodes in different branches.
We can refer to such graphs as “multipartite” trees. Similar, but bipartite trees

Fig. 6: A tree with added links

occur when describing virtual reality scenes,
for example (where one branch describe an
object hierarchy, the other the real instances).
These “multipartite” graphs occur frequently
in applications, and constitute a set of ex-
amples where the simple extension of Latour
works out very well in practice. Automatic ge-
neration of spanning trees raises a number of
issues not developed here. For further details

see [10].

5 Conclusions

The implementation of Latour has resulted in a very flexible system, which is well
adaptable to various user communities. It concentrates on interaction and visual
feed–back, rather than complicated layout algorithms, which makes it one of its
strengths. It has also taught us some important lessons: that a proper balance
has to be found between the mathematical correctness and the requirements of
navigation and interaction, that the end–user has to have a maximal control over
the appearance and the attributes of the visual representation, we learned about
the importance of metric functions on graphs in general. In developing a more
general graph–based information visualisation framework these experiences will
become of an utmost importance.



Latour — A Tree Visualisation System 399

References

1. Battista, G. di, Eades, P., Tamassia, R., Tollis, I.G.: Graph drawing: algorithms
for the visualisation of graphs. Prentice Hall (1999).

2. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds): Readings in Information
Visualization. Morgan Kaufmann Publishers (1999).

3. J. Carrière, J., Kazman, R.: Interacting with huge trees: beyond cone trees. In:
Proceedings IEEE Information Visualisation ’95, IEEE CS Press (1995), 74–81.

4. Drmota, M.: Systems of functional equations. In: J. Random Structures and Al-
gorithms, 10(1–2), (1997), 103–124.

5. Eades, P.: Drawing free trees. In: Bulletin of the Institute for Combinatorics and
its Applications, 5, (1992), 10–36.

6. Fröhlich, M., Werner, M.: Demonstration of the interactive graph visualization
system daVinci. In: Proceedings of DIMACS Workshop on Graph Drawing ’94,
Springer–Verlag, (1995).

7. Furnas, G.W.: Generalized fisheye views. In: Human Factors in Computing Sy-
stems, CHI’95 Conference Proceedings, ACM Press (1995), 16–23.

8. Herman, I., Delest, M., Melançon, G.: Tree visualisation and navigation clues for
information visualisation. In: Computer Graphics Forum, 17(2), (1998), 153–165.

9. Herman, I., Marshall, S.M., Melançon, G., Duke, D.J., Delest, M., Domenger, J.–
P.: Skeletal images as visual cues for graph visualisation. In: Data Visualization
’99, Proceedings of the Joint Eurographics IEEE TCVG Symposium on Visualiza-
tion, Springer–Verlag, (1999), 13–22.

10. Herman, I., Melançon, G., Ruiter, M.M. de, Delest, M.: La-
tour — a tree visualisation system. Reports of the Centre
for Mathematics and Computer Sciences (CWI), INS–R9904,
http://www.cwi.nl/InfoVisu/papers/LatourOverview.pdf, (1999).

11. Misue, K.,Eades, P., Lai W., Sugiyama, K.: Layout adjustment and the mental
map. In: Journal of Visual Languages and Computing, 6, (1995), 183–210.

12. Melançon, G., Herman, I.: Circular drawing of rooted trees. Reports of
the Centre for Mathematics and Computer Sciences (CWI), INS–R9817,
http://www.cwi.nl/InfoVisu/papers/circular.pdf, (1998).

13. Purchase, H.: Which Aesthetic has the Greatest Effect on Human Understanding?
In: Proceedings of the Symposium on Graph Drawing GD’97, Springer–Verlag
(1998), 248–261.

14. Reingold, E.M., Tilford, J.S.: Tidier drawing of trees. In: IEEE Transactions on
Software Engineering, SE–7(2), (1981), 223–228.

15. Sarkar, M., Brown, M.H.: Graphical fisheye views. In: Communication of the
ACM, 37(12), (1994), 73–84.

16. Walker II, J.Q.: A node–positioning algorithm for general trees. In: Software —
Practice and Experience, 20(7), (1990), 685–705.

17. Wills, G.J.: Niche Works — interactive visualization of very large graphs. In:
Proceedings of the Symposium on Graph Drawing GD’97, Springer–Verlag (1998),
403–415.


	Introduction
	Graph/Tree Layout
	Hierarchical View
	Radial View
	Balloon View

	Interaction and Navigation
	Zoom, Pan, Fish--Eye
	Complexity Visual Cues
	Animation

	Beyond Trees
	Packed Forests
	Dag's

	Conclusions

