An FElog E Line Crossing Algorithm for Levelled
Graphs

Vance Waddle and Ashok Malhotra

IBM Thomas J. Watson Research Center,
P.O.Box 704
Yorktown Heights, NY 10598
{waddle,petsa}@us.ibm.com

Abstract. Counting the number of crossings between straightline seg-
ments is an important problem in several areas of Computer Science. It
is also a performance bottleneck for Sugiyama-style layout algorithms.
This paper describes an algorithm for leveled graphs, based on the clas-
sification of edges that is O(e log e) where e is the number of edges.
This improves on the best algorithm in the literature which is O(e!-%%°
log e) . The improved crossing algorithm enabled an implementation of a
Sugiyama-style algorithm to lay out graphs of tens of thousands of nodes
in a few seconds on current hardware.

1 Introduction

The design of algorithms to compute the intersections of straight line segments,
and counting their intersections, is a well known problem in computational geo-
metry. A classic use for these algorithms in computer graphics is to determine
a line’s intersection with a viewing area’s ”clipping” bounds. There can be e?
intersections on e line segments, so an algorithm that examines intersections is
O(e?).

A more recent area concerned with line intersections is graph layout for user
interfaces [4, 6, 12, 14]. These algorithms lay out a directed graph according
to various visual aesthetics to improve the graph’s readability as part of a user
interface displaying, for example, a flow-chart, a class hierarchy, or a database
schema. Two of the most common aesthetics are 1) leveled graph - display the
nodes in the graph in levels, where all the nodes on a level have the same vertical
coordinate and 2) reduce the number of edge intersections to make it easier
to visually follow the edges between nodes. The second aesthetic implies that
counting the number of line intersections is a fundamental operation in these
layout algorithms, since they must compare the number of edge intersections in
alternative layouts to determine the better layout. Worse, since Sugiyama-style
crossing reduction algorithms [14] are based on sorting, these algorithms could
be O(n log n) in the number of nodes, except for the intersection count. We
have discovered by experience that counting line intersections is a performance
bottleneck for the entire algorithm for large graphs.

J. Kratochvil (Ed.): GD’99, LNCS 1731, pp. 59-71, 1999.
© Springer-Verlag Berlin Heidelberg 1999

60 V. Waddle and A. Malhotra

Sugiyama-style crossing reduction algorithms perform well for ”small” graphs
of up to a few hundred nodes, even with a simple O(e?) algorithm for counting the
edge crossings. However, recent work [8, 10] has begun to consider the problem
of handling graphs of tens of thousands, or even hundreds of thousands of nodes.
Munzer [10] argues that more general, non-tree layout algorithms are too slow
to process this class of graphs.

In the remainder of the paper, we first discuss previous algorithms, and their
relationship to our work. We then describe the layout problems which motivate
our algorithm, and show how to compute the number of intersections in a leveled
graph by using the graph’s geometry. Next, we describe our line intersection
algorithm, and prove bounds on its worse case performance. We describe its
performance when implemented and run on a sequence of test cases and, finally,
give our conclusions.

2 Previous Work

The simplest algorithm for determining the number of intersections of a collec-
tion of line segments is to test each pair of line segments for intersection. Where
e is the number of line segments, this algorithm is O(e?). While there can be
e? intersections in the worst case, there are usually far fewer intersections than
this, leaving this algorithm a poor solution in practice. When implemented on a
leveled graph, only line segments between adjacent levels are tested for inters-
ection. This algorithm works better than might be expected for small graphs,
both because the intersection test is cheap (comparing the positions of the end
nodes), and because the nodes tend to be spread among the levels, which divides
the problem into smaller pieces.

The main cost of the simple crossing algorithm lies in repeatedly testing
segments for intersections as they occur in different segment pairs. Sweep algo-
rithms [1, 3] avoid re-examining edges by performing a single sweep across the
plane. Segments are tested for intersection only when they overlap the sweep
line. These algorithms list the intersections of straight line segments, and are
O(e log e + k), where e is the number of line segments and k the number of
intersections. They are O(e?) in the number of edges, since there can be that
many intersections in the worst case. The best reported algorithm for just coun-
ting intersections [2] is order O(e':%% log e) and is based on an algorithm for
partitioning the plane into regions by [5].

Graph layout algorithms only need a count of the number of intersections,
not a list of the intersecting line segments. Thus, they do not require examining
individual pairs of line segments to determine intersections. In leveled graphs,
the levels decompose the graph into disjoint regions (although not the regions
required by [2]), so the crossing algorithm does not require the overhead of
decomposing the graph into regions if it utilizes the level structure properly. By
using the geometry of a leveled graph to classify edges based on their relationship
to the current sweep position, we create a simple algorithm to compute the
number of line intersections that is O(e log e), where e is the number of edges.

An Flog E Line Crossing Algorithm for Levelled Graphs 61

3 Leveled Graphs and Layout

In this section we briefly describe leveled graphs and the relationship between
leveled graphs and the layout algorithms that create them that motivate our
intersection algorithm.

A leveled graph is a directed graph in which each node in the graph has been
assigned to a single level, an ordered set of nodes, from an ordered set of levels.
When the level is displayed horizontally, all the nodes in the level have the same
vertical coordinate. Further, the end nodes of each edge are placed on adjacent
levels in the graph, so that each edge spans a single level. If, after nodes are
assigned to levels, there are ”"long edges” for which the source and target end
nodes are not on adjacent levels, these edges are ”shortened” by adding ”virtual”
intermediate nodes so that each edge in the resulting graph spans a single pair
of adjacent levels. For a complete description of leveled graphs and their layout
algorithms, see [4].

Figure 1 shows an example leveled graph consisting of nodes A through H.
Node A is on the first (top) level, B and C on the second level, etc. (The graph
is displayed as it might be after the layout process is completed, and coordinates
have been assigned to all the nodes in the graph.) Virtual nodes have been
added between nodes A and D, and nodes C and F. Notice the paths for nodes
C and H, and D and G allow some freedom in their assignment to a level. We
emphasized this in the figure by placing C and H on the highest possible level,
and D and G on the lowest.

A)
© ®

BT

Figure 1. A leveled graph

Sugiyama-style layout algorithms [14] separate the layout problem into three
phases. The first phase produces a leveled graph in which each node is assigned
to a level, with child nodes appearing on a level beneath their parent. A typical
scheme to assign nodes to levels is to use a variation of a topological sort. Virtual
nodes are added to shorten long edges during this phase. This procedure only
partially constrains the assignment of nodes to levels. Some algorithms add ad-
ditional processing to improve the distribution of nodes to levels. For example,

62 V. Waddle and A. Malhotra

the DAG system [6] uses integer programming to reduce total edge lengths in
the graph.

The second phase re-arranges nodes within their assigned levels to reduce the
number of crossings. The algorithms [4] use heuristics, typically based on sorting,
to reduce the number of crossings, since it is known that minimizing intersections
is an NP complete problem [7]. It is during this phase that counting the number
of intersections becomes a critical problem. After crossings have been reduced
by the second phase, the nodes have a relative position within the level, but no
coordinates. The third phase is a positioning phase that assigns coordinates to
levels, and spaces the nodes within their levels.

4 Leveled Graphs and Intersections

In this section we describe how to efficiently compute the number of edge in-
tersections in a leveled graph. We show how to classify edges into types based
on the current sweep position and use the classification to compute the number
of edge intersections. We then prove that all intersections are captured by our
procedure.

Our algorithm makes a single sweep across a level, and uses the geometry of
a leveled graph to remove the test for intersection by classifying the edges into
types based on the position of their end-nodes with respect to the current sweep
position. The number of intersections is then computed using the geometry of
the leveled graph, and the position of the edge’s end nodes. It follows from the
geometry of the graph and the definition of the edge types that the edges of
certain types must intersect. We then prove that all intersections are counted at
some stage of the sweep via this classification.

Our discussion focuses on a pair of adjacent levels, since all intersections in a
leveled graph appear between adjacent levels. (Note: unlike the classical segment
crossing problem in computational geometry, edges with a common end node do
not count as an intersection). We assume that nodes are numbered on each level,
from left to right, starting with 1. We denote an edge e between a node a in the
top level and b in the bottom level as the tuple <a,b>. In the following, when
we compare nodes with arithmetic equalities and inequalities we are comparing
the nodes’ ordinal positions within the level. Also, note that since the algorithm
computes intersections by making a sweep (from left to right) of the nodes in
the pair of levels being examined, the sweep position is always a pair of nodes
<a,b> with equal positions, i.e., a = b.

Definition of edge types: An edge between nodes <P;, P;> is classified
as being a top level edge if P; < Pj, a bottom level edge if P; > P;, and pair edge
if P, = P;. If the current sweep position is S, each top-level and bottom-level
edge is further classified as

1) Right edge if P, = S, and P; < P;, or if P; = S, and P; < P,

2) Trailing edge if P; < S and S < Pj, orif P; < S and S < P,.

Note that an edge’s type is a function of the current sweep position, and
changes along with the sweep position.

An Flog E Line Crossing Algorithm for Levelled Graphs 63

We illustrate the edge types through the leveled graph shown in Figure 2.
Nodes in the top level are nodes a through e, and the bottom level nodes are u
through z. Suppose the sweep is at the pair of nodes <c,y>. Top level edges are:
<c,y> is the graph’s single pair edge, <c,v> and <c,u> are right edges, and
<a,v>, <a,u>, <b,v>, and <b,u> are trailing edges. Bottom level edges <y,d>
and <y,e> are right edges, and <z,d>, <z,e>, <z,d>, and <z,e> are trailing
edges.

Figure 2. Adjacent levels in graph.

Given the geometry, it is clear that top level trailing edges must cross with
bottom right edges, that top and bottom level right edges must cross, etc. The
number of these crossings can be calculated simply from knowing the numbers
of each type of edge. Let Ry be the number of top level right edges, Rp be the
number of bottom level right edges, P the number of pair edges, T'rr the number
of top trailing edges, etc., the number of crossings due to these sources is

Trr+ Rg +Trg * (Ry + P)+ Ry x Rp

We call these crossings alternate level crossings because they are produced
by edges from the top level intersecting with edges from the bottom level. Unfor-
tunately, there is an additional source of crossings shown in our example graph.
Right edges and trailing edges from the same level can intersect, as shown by
the intersection of <c,v> with <a,u> and <b,u>. We call these same level cros-
sings. These intersections are more difficult to determine than our edge types,
since not all right and trailing edges from the same level cross, e.g., <c,u> and
<a,u> do not cross.

By examining the geometry, we note that a same-level crossing occurs bet-
ween a right top level edge, <t1,b1>, and a top level trailing edge, <to,by>, iff
b1 < by . So the number of crossings due to a right edge <t¢1,b;> is the number
of trailing edges to the nodes at positions b; + 1 through by as7, where by asT
is the position of the last node on the bottom level. Similar considerations hold
for same-level crossings from the bottom level. Note that we count crossings
between pair edges and top trailing edges as same-level crossings.

If we let Samer and Samep be the number of top and bottom same level
crossings at a sweep position, then the number of crossings at a given sweep

64 V. Waddle and A. Malhotra
position is
Trr* Rg + Trg « (Ry + P) + Ry« Rg + Samer + Samep

This leaves us with two problems: 1) proving that the above expression covers
all the intersections, and 2) finding an efficient scheme for answering the range
query required to determine the number of same level intersections due to a
given right edge.

We prove that all intersections are captured by starting with an intersection
between two edges, and working backward to show at which stage of the sweep
it was considered, and which type of intersection under which it was classified.
The proof follows by simply elaborating the cases under the trichotomy law.

Proof: All intersections are captured either as an intersection between diffe-
rent edge types, or as a same-level intersection between a level’s right and trailing
edges. Consider an intersection between distinct edges el to nodes <a,b> and
e2 to nodes <c,d>.

— Cases for a < b: If a < b, then el is a top edge.

— ¢ > d : In this case, €2 is a bottom edge. If ¢ < a, then el and e2 do not
intersect. If ¢ > a and there is an intersection, then it must be that d < b.
If a = d then el and e2 intersect as right edges (covered); if a < d then
el is a top trailing edge and the intersection occurs when e2 is a bottom
right edge (covered); if a > d then el is right edge and the intersection
occurs when €2 is a trailing edge (covered).

— ¢ = d: Edge €2 is a pair edge. If a < ¢ and ¢ < b, then el is a trailing
edge, and intersects e2 when the sweep position is ¢ (covered). If a < ¢
or ¢ > b, there is no intersection.

— ¢ < d: Edge €2 is a top edge, and any intersection occurs as a same level
intersection between el and e2. For an intersection to occur, either a < ¢
and b >dora>cand b<d. If a <candb>d, then el is a trailing
edge, and intersects with e2 when ¢ becomes the sweep position, with
€2 a right edge (covered). Similarly, if @ > ¢ and b < d, then el is a
right edge when a becomes the sweep position, and e2 is a trailing edge
(covered).

— Cases for a = b: If a = b, then el is a pair edge.

— ¢ > d: e2 is a bottom edge. If ¢ < a, or b < d, there is no intersection. If
¢ > a and d < b, then el intersects e2 when the sweep position is a, and
e2 is a trailing edge (covered).

— ¢ = d: Edge el = €2, and since they were assumed to be distinct edges,
this does not occur.

—c<d:If ¢ > aord>b, there is no intersection. If ¢ < a, then e2
intersects el as a trailing edge (covered).

— Cases for a > b. Here, el is a bottom edge.

— ¢ > d: e2 is also a bottom edge. The cases here are the same as when

a < b and ¢ < d, and both were top edges.

An Flog E Line Crossing Algorithm for Levelled Graphs 65

— c=d: e2is apair edge. If a > cor b > d, there is no intersection. If a < ¢,
and b > d, then the edges intersect with el a trailing edge (covered).
— ¢ < d: e2 is now a top edge, and the cases follow similarly to when the
roles of el and e2 were reversed (when a < b and ¢ > d).
End proof.

We introduce a structure we call an accumulator tree to efficiently compute
the number of trailing edges to a range of nodes. There are two trees, one for the
top level and one for the bottom level. Each leaf in the binary tree is the current
count of trailing edges into a node of the given level. Non-leaf nodes contain the
sum of the counts in their children. The number of trailing edges to a range of
nodes N; . Npasr is computed by walking up the tree from N;, and summing
the counts of the left subtrees into the path from the node to tree’s root, and
subtracting it from the value in the tree’s root. In effect, we keep a sum of all
the ranges in the tree, and then subtract out the portions in which we are not
interested.

The accumulator tree is implemented by mapping it into an array, with the
tree’s root node at position 1, its left and right children at positions 2 and 3, etc.
[9]. Thus, if the sequence of positions from a leaf node to the root is Py . P,
then if P; is odd, we add the value of the entry in the tree for P;_;. Figure 3
illustrates this for a level with 8 nodes, and shows the path through the tree to
query the count into nodes at positions 6 through 8. The bracketed number is
the position of a node in the array, and the unbracketed number is the position
number of the node within the level. The square nodes are the path from node
6 (at entry ”[13]”) to the root node, and the nodes with a dot (nodes at ”[2]”
and ”[12]”) are nodes whose counts are summed to remove from the root node

(1]

at "[1]”.
2] 3]
[4] Cg [’}D >Aé]k<
O

L[8] 2,91 3,[10] 4,[11] 5,[12] 6,[13] 7,[14] &,[15]

Figure 3. Accumulator tree.

The three operations of interest on the accumulator tree are: 1) CountEdges -
compute the number of edges in a range of nodes (our range query), 2) AddEdges
- add an edge to the tree, and 3) RemoveEdge - remove an edge from the tree.

66 V. Waddle and A. Malhotra

We give below the procedure for CountEdges. The argument Tree gives the array
implementing the accumulator tree, and n is the end node for the edge being
counted. AddEdge adds one to each node on a path from from a leaf node to
the root node. RemoveEdge is identical to AddEdge, except it decrements the
count by one. ”Base” is the amount added to map the node at position 1 into
its position in the tree’s array.

CountEdges(Tree, n, last) {
if (n == last)

return O;
Pos = n + Base + 1;
Sum = 0;

while(Pos >= 1) {
if (0dd(Pos))
Sum = Sum + Tree[Pos - 1]
Pos = Pos / 2;
}

return(Tree[1] - Sum);

Notice that Tree[l] is the sum of all the trailing edges for the current sweep
position.

5 The LevelCross Algorithm

We can now give our algorithm to count crossings in a leveled graph, which we
call the LevelCross algorithm. In the following, ” AccL” and ”AccM” are the
arrays for the accumulator trees for levels L and M. ”Count” is the number of
crossings, ”Pair” the number of pair edges, and ”Same” the number of same
level edges. Rt and Rb are the number of right-top and right-bottom edges,
respectively, and Trt and Trb the number of trailing top and bottom edges. The
predicate ”IsPair(e)” is true iff e is a pair edge, and the predicate "Right(e)” is
true iff e is a right edge.

For each level in the graph, the algorithm makes a sweep over the level,
counting the edges of each type, based on the current sweep position. After the
number of edge intersections is computed for the sweep position, the accumulator
trees and counts are updated to reflect the change to the next sweep position.

LevelCross:

Count = 0;

for each level L of nodes {L, ..., Lx}

X with a successor level M of nodes {Mj, ..., M}

initialize trees AccL and AccM, for levels L and M, respectively, to 0
for I =1 to min(K,J) // sweep position is < Ly, My >

Pair = Rt = Rb = Same = 0;

for each edge e = < Ly, z > from L; // Count top edges

An Flog E Line Crossing Algorithm for Levelled Graphs 67

if (Right(e)) {
Rt =Rt +1

} else if (IsPair(e)) {
Pair = Pair + 1

}

Same = Same + CountEdges(AccM, x, J)
}
Trt = AccL[1]
Trb = AccM[1]
for each edge e = < z, M; > from M; // Count bottom edges
if (Right(e))
Rb=Rb +1
Same = Same + CountEdges(AccL, x, K)
¥

}
Count = Count + Trt*Rb + Trb*(Rt + Pair) + Rt*Rb + Same

Move Sweep Position:

1) Remove trailing edges to L; and M; from their respective trees.
2) Right edges from L; become trailing edges in bottom tree
(and are added to the tree), and similarly for right
edges from M7 in top tree.
¥
}
The intersection counting algorithm runs in O(e log e) time:
Proof:
The number of nodes on a level ranges between 1 and e, so each pass through a
level’s accumulator tree requires log e time, so within a loop over edges it requi-
res Ofe log e). Based on simply the number of loops over edges, the algorithm
might appear to run in time 6e log e. However, it really requires only 3e log e
since each edge is traversed once, as either a top or bottom edge. Further, the
”sweep” loop over the nodes in a level does not contribute another multiple of
7e” to the running time. This is because the nodes ”partition” the edges in the
sense that an edge is only examined via its end nodes, so edges are not repea-
tedly examined for each node. In effect, the nodes are used as a mechanism to
iterate over the edges.
Thus, the algorithm’s running time is O(e log e).
End Proof.

6 Implementation Results

This section describes the performance measured when the LevelCross algo-
rithm was implemented as part of the layout code in the NARC (Nodes and
ARC) graph toolkit, which is an internal IBM tool that provides a high-level
service to display, layout, and edit graphs as part of a user interface. LevelCross

68 V. Waddle and A. Malhotra

was implemented to replace the previous intersection counting algorithm in
NARC’s Sugiyama-style layout algorithm. It replaced the naive algorithm of
simply sweeping over the nodes in the level and counting the crossings. The
measurements were done on a 200 MHz Pentium Pro running OS/2 Warp (4.0).
Notice that this is a much harsher test than just the performance of the in-
tersection algorithm. The intersection algorithm must both be faster than the
simpler algorithm, and counting intersections must be a bottleneck to the entire
layout process. Otherwise, improvements due to the intersection algorithm will
be hidden by the time required to perform the rest of the layout algorithm.

We devised an algorithm for generating random leveled graphs to produce
the graphs used as input data. This allowed us to create graphs with controlled
sizes and properties on demand. Briefly, the input to the algorithm consists of
a set of input "tiles” (subgraphs), a desired graph size (number of nodes), the
desired aspect ratio (number of levels divided by number of nodes per level), and
the specification of ”generators” to randomly select properties such as in-degree
and the length of edges used to connect nodes. The nodes in each tile have a
pre-computed level structure, and the tile has a set of its nodes on its top level
designated as input nodes, and a set of nodes on its bottom level as output
nodes. Each row of tiles is filled by creating instances of randomly selected tiles
until the row had the desired width. The input nodes in each tile are connected
to a randomly selected <tile, output node> pair from a preceding row of tiles.

We measured the execution time in milliseconds of the layout algorithm with
the naive, ”Simple” O(e?) crossing algorithm, and for the LevelCross algorithm
on two series of randomly generated graphs. In each series of graphs, the number
of target nodes in each graph were doubled from the previous graph. In the first
series (shown in Table 1), the graphs were generated from a library of tiles in
which each tile had 4 levels, and the in-edges were connected to a previous row
selected from a uniformly distributed range of 1 to 4. (A ”1” connects to a tile
in the previous row, ”2” the row before that, etc. This process creates long edges
acording to the chosen distribution.)

As shown in Table 1, the graphs ranged in size from 168 nodes and 281 edges
to 40,444 nodes and 74,189 edges in the input graph. The columns ” Lay nodes”
and ”Lay edges” give the internal size of the graph after long edges have been
replaced by a sequence of edges to virtual nodes, and the ”density” columns
give the ratio of edges/nodes for their respective columns. Initially, the layout
times are the same for both crossing algorithms, but diverge with increasing
graph sizes. (A 40K node graph was as large as the 64 Meg. memory on our test
machine could handle.) On all but the last graph, the crossing reduction phase
accounted for between 92 and 95 percent of the total layout time when using the
simple algoritm, and accounted for 77 percent of the total layout time when level
cross was implemented. In the last graph, the cost of creating the level structure
and long edges increased by an order of magnitude. Since the number of nodes
and edges only doubled, we assume this is due to exhausting memory.

To explore the effect of increased edge density, we generated a second series
of graphs based on tiles with two levels, raised the in-degree of the nodes, and
prevented generation of long edges, with the results shown in Table 2. (Both

An Flog E Line Crossing Algorithm for Levelled Graphs 69

Table 1

In Nodes|In edges|Lay nodes|Lay edges| In Lay | Simple |LevelCross
density|density|time(ms)| time(ms)

168 281 261 374 1.67 | 1.43 16 16
341 569 640 868 1.67 | 1.36 47 39
680 1,193 1,509 2,002 1.75 | 1.34 148 109
1,297 2,314 3,340 3,341 1.78 1.3 414 250
2,611 4,710 7,857 9,956 1.8 1.27 1,383 625

5121 | 9,350 | 16,945 | 21,174 | 1.83 | 1.25 | 3,961 1,344
10,174 | 18,713 | 33,065 | 41,064 | 1.79 | 1.24 | 10,039 | 2,672
20,117 | 37,001 | 69,654 | 86,538 | 1.84 | 1.24 | 29,219 | 5,914
40,444 | 74,189 | 139,220 | 172,965 | 1.83 | 1.24 | 69,024 | 15,563

Table 2

In Nodes|In edges|Density| Simple |LevelCross
time(ms)| time(ms)

157 499 | 3.18 23 16
312 | 1,145 | 3.27 31 23
633 | 2,191 | 3.46 94 54
1,275 | 4,387 | 3.4 218 109
2,524 | 8,869 | 3.51 734 274
5,076 | 18,138 | 3.57 | 2,000 586

10,044 | 35,485 | 3.53 | 5,375 1,242
20,003 | 71,885 | 3.59 | 15,000 | 2,477
40,081 | 143,806 3.59 | 42,063 | 5,632

long edges and tiles with more levels limit the edge density.) Since these graphs
have no long edges, there are the same number of edges in the layout as in the
input graph, and we omit separate columns for the layout graph. If we compare
the results inTable 2 with those in Table 1, the simple algorithm degrades faster
with a higher edge density. For example, for the last graph in Table 2, the layout
with the simple algorithm takes over 7 times as long as LevelCross, where it only
took 4.4 times as long for 40K node input graph in Table 1. The times are longer
in Table 1 because the size of the layout graph is larger due to long edges.
These results show that the line crossing algorithm is a performance bott-
leneck for Sugiyama-style layout algorithms for large graphs, and our algorithm
substantially improves its performance. Beyond this, we feel there are some les-
sons beyond a better crossing algorithm. First, Sugiyama-style algorithms are
fast enough to lay out graphs of tens, or even hundreds of thousands of nodes.
The 200 MHz Pentium Pro machine is now several years old, and ran out of me-
mory, or we could have experimented with larger graphs. Thus, it is not necessary
to restrict the layout algorithm to a spanning tree as was done in [Munzer] to
handle very large graphs. Second, we found to our surprise that graphs of tens
of thousands of nodes were "readable” on a 1600 by 1200 pixel display in the

70 V. Waddle and A. Malhotra

sense we could still see individual nodes and edges. The commonly held ”folk
theorem” seems to be that it is pointless to display graphs of more than a few
hundred nodes without (possibly heavy) filtering, because they would be com-
pletely unreadable. In fact, we discovered that if the graph is not too dense,
and the nodes not distributed too unevenly on the screen, very large graphs can
be viewed with current technology. Further, display technology is improving, as
exemplified by IBM’s recent announcement [13] of a prototype LCD display with
a resolution of 2048 by 2560 pixels. This display has almost 3 times the number
of pixels in our display, and could usefully display even larger graphs.

Finally, we feel the entire area of graph drawing would benefit from the de-
velopment of algorithms to generate graphs on demand for testing layout algo-
rithms. While it is always better to have real-life examples rich with interesting
semantics, these graphs are often valuable because they are rare. They may also
not have the desired size or other properties needed to exercise a particular as-
pect of a layout algorithm. We found it very convenient to generate graphs by
specifying some descriptive parameters, and believe this is a promising area for
future research.

7 Conclusions

We have described an O(e log e) algorithm for counting the number of edge
crossings in a leveled graph, and verified its performance by implementation. We
have also shown that the line crossing algorithm can be a performance bottleneck
in Sugiyama-style algorithms, and the new algorithm significantly improves their
performance. The algorithm achieves its performance by taking advantage of the
geometry of leveled graphs to classify the edges in the graph into types based
their relationship to the current sweep position, and from a scheme to efficiently
compute range queries on the end nodes of edges.

References

1. Bentley, J.L. and Ottman, T. Algorithms for reporting and counting geometric
intersections, IEEE Trans. Comput. C-28, (1979), pp 643-647.

2. Chagzelle, B. Reporting and Counting Segment Intersections, Journal of Computer
and System Sciences, Vol. 32, pp. 156-182, 1986.

3. Chagzelle, B., and Edelsbrunner, H. An Optimal Algorithm for Intersecting Line
Segments in the Plane, JACM, 39(1), pp. 1-54, Jan 1992.

4. Di Battista, G., Eades, P., Tamassia, R., and Tollis, I.G. Graph Drawing: Algo-
rithms for the Visualization of Graphs, Prentice Hall, 1999.

5. Edelsbrunner, H., and Welzl, E. Halfplanar Range Search in Linear Space and
O(n%%5) Query Time,” Tech. Univ. Graz, 1IG Report 111, 1983.

6. Gansner, E. R., North, S. C., and Ko, K. P. DAG: A program that draws directed
graphs, Software Practice and Ezperience, 18(11), pp. 1047-1062, Nov 1988.

7. Garey, M. R., and Johnson, D.S. Crossing number is NP-Complete, SIAM Journal
on Algebraic and Discrete Methods, 4, 3 (September 1983), pp. 312-316.

10.

11.

12.

13.

14.

An Flog E Line Crossing Algorithm for Levelled Graphs 71

Huang, M. L., Eades, P., and Wang, J., On-line Animated Visualization of Huge
Graphs using a Modified Spring Algorithm, Journal of Visual Languages and Com-
puting, Vol 9., pp. 623-645 (1998).

Knuth, D. E.; The Art of Computer Programming, Vol. 1: Fundamental Algorithms,
Second Ed., pp. 400-401, Addison-Wesley, 1973.

Munzer, T., Exploring Large Graphs in 3D Hyperbolic Space, IEEE Computer
Graphics and Applications, Vol. 18 No. 4, 1998.

Preparata, F. P., and Shamos, M. 1., Computational geometry - An introduction.
Springer-Verlag, New York, 1985.

Rowe, L., et. al., A Browser for Directed Graphs, Software Practice and Experience,
Vol. 17(1), pp. 61-76, Jan. 1987.

Schleupen, K., P. Alt, et. al., ”High Information Content Color 16.3 inch Desktop
AMLCD with 15.7 Million a-Si:H TFTs,” Asia Display '98, Digest, Seoul Korea,
(1998) pp. 187-191.

Sugiyama, K., Tagawa, S., and M. Toda, Methods for Visual Understanding of
Hierarchical Structures, IEEE Transactions on Systems, Man, and Cybernetics,
Vol. SMC-11, No. 2. Feb. 1981.

	Introduction
	Previous Work
	Leveled Graphs and Layout
	Leveled Graphs and Intersections
	The LevelCross Algorithm
	Implementation Results
	Conclusions

