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Abstract. Hoare logic can be used to verify properties of deterministic
programs by deriving correctness formulae, also called Hoare triples. The
goal of this paper is to extend the Hoare logic to be able to deal with
probabilistic programs. To this end a generic non-uniform language Lpw
with a probabilistic choice operator is introduced and a denotational
semantics D is given for the language. A notion of probabilistic predicate
is defined to express claims about the state of a probabilistic program. To
reason about the probabilistic predicates a derivation system pH, similar
to that of standard Hoare logic, is given. The derivation system is shown
to be correct with respect to the semantics D. Some basic examples
illustrate the use of the system.

1 Introduction

Probability is introduced into the description of computer systems to model the
inherent probabilistic behaviour of processes like, for example, a faulty commu-
nication medium. Probability is also explicitly introduced to obtain randomized
algorithms to solve problems which can not be solved efficiently, or can not be
solved at all, by deterministic algorithms. With increasing complexity of com-
puter programs and systems, formal verification has become an important tool
in the design. The presence of probabilistic elements in a program usually makes
understanding and testing of the program more difficult. A way of formally ver-
ifying programs becomes even more important.

To formally verify a probabilistic program, the semantics of the program is
given. The mathematical model of the program that is obtained in this way can
be used to directly check properties of the program. In the probabilistic analyses
of the model, results from probability theory are used to obtain e.g. average
performance or bounds on error probabilities [18, 15]. Models that are often
used are Markov chains and Markov decision processes [11, 4] probabilistic input-
output automata [19, 20] and probabilistic transition systems [9, 8], sometimes
augmented with probabilistic bisimulation [14, 10, 2].

For some programs the construction of the mathematical model can already
be difficult. A systematic approach to simplify the program, or obtain properties
without having to actually calculate the semantics are useful. Approaches in this
area are probabilistic process algebra [2] and stochastic process algebra [6] where
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equivalences of programs can be checked syntactically by equational reasoning.
Another approach is to introduce a logic to reason about the probabilistic pro-
grams. Here the later approach is followed by extending Hoare logic as known
for deterministic programs to probabilistic programs. Other work on probabilis-
tic logic can be found in e.g. [13, 4, 16, 17, 6]. In [13] an algebraic version of
propositional dynamic logic is introduced. In [4] probabilities for temporal logic
formulae are calculated. In [16] a weakest precondition calculus based on ‘ex-
pectations’ is defined and in [17] a notion of probabilistic predicate transformer,
also used to find weakest preconditions, is given. Model checking is used in [1]
to check formulae in a probabilistic temporal logic.

Deterministic Hoare logic is a system to derive correctness formulae, also
called Hoare triples. A formula { p } s { q } states that the predicate p is a
sufficient precondition for the program s to guarantee that predicate q is true
after termination. An extensive treatment of Hoare logic can be found in [5].
What the values of the variables in a program, i.e. the (deterministic) state of
the program, will be, can not be fully determined if the program is probabilistic.
Only the probability of being in a certain state can be given. This gives the
notion of a probabilistic state. In a probabilistic state, a deterministic predicate
will no longer be true or false, it is true with a certain probability. This can be
dealt with by changing the interpretation of validity of a predicate to a function
to [0, 1] instead of to { true, false } as in [13, 16]. The approach chosen here
instead is to extend the syntax of predicates to allow making claims about the
probability that a certain deterministic predicate holds. The extended form of
predicates are called probabilistic predicates. A logic for probabilistic programs
should reason with these probabilistic predicates.

In section 2 some mathematical definitions are given. The syntax of the
non-uniform language Lpw is given in section 3 together with its semantics. In
section 4 probabilistic predicates are defined and a Hoare like logic is introduced
to reason about probabilistic predicates. The logic is shown to be correct with
respect to the denotational semantics. Some examples of the use of the logic are
given in section 5 and some concluding remarks are given in section 6.

2 Mathematical Preliminaries

A complete partially ordered set (cpo) is a set with partial order ≤ that has
a least element and for which each ascending chain has a least upper bound
within the set. An order on Y is extended point wise to functions from X to Y
(f, g : X → Y then f ≤ g if f(x) ≤ g(x) for all x ∈ X).

The support of a function f : X → [0, 1] is defined as the x ∈ X for which
f(x) 6= 0. The set of all functions from X to [0, 1] with countable support is
denoted by X →cs [0, 1]. Given a function f : X →cs [0, 1] and a set Y ⊆ X
the sum

∑
f [Y ] =

∑
y∈Y f(y) is well-defined (allowing the value ∞). The set

of (pseudo) probabilistic measures M(X) on a set X is defined as the subset of
functions in X →cs [0, 1] with sum at most 1.

M(X) = { f ∈ X →cs [0, 1] | ∑f [X ] ≤ 1 } .
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For a measure f ∈ M(X), f(x) (for x ∈ X) is interpreted as the probability
that x occurs. The set M(X) is a cpo, with minimal element 0, the function that
assigns 0 to each element of X . For each ascending sequence in M(X) the limit
exists within M(X) and corresponds to the least upper bound of the sequence.

For element x ∈ X and y ∈ Y and a function f : X → Y , f [x/y], called a
variant of f , is defined by

f [x/y](x′) =
{
y if x = x′

f(x′) otherwise.

3 Syntax and Semantics of Lpw

The language Lpw is a basic programming language with an extra operator used
to denote probabilistic choice. A typical variable is denoted by v, the set of all
variables by Var. The types of the variables are not made explicit. Instead a
set of values Val is fixed as the range for all variables. (The examples deviate
from this assumption and use integer and boolean variables.) Types can easily
be added at the cost of complicating notation with less important details.

Definition 1. The statements in Lpw, ranged over by s, are given by:

s ::= skip | v := e | s; s | s⊕r s | if c then s else s fi | while c do s od ,

where c ∈ BC is a boolean condition, e ∈ Exp is an expression over values in
Var and variables in Var and r is a ratio in the open interval (0, 1).

The statements are interpreted as follows. The statement s⊕r s
′ makes a prob-

abilistic choice. With probability r the statement s will be executed, and s′

will be executed with probability 1 − r. The other constructs of Lpw are well
known. The skip statement does nothing. Assignment v := e assigns the value
of the expression e to the variable v. Sequential composition s; s′ is executed by
first executing s, then executing s′. The if c then s else s′ fi statement executes
s if the condition c holds, and otherwise s′. Finally, while c do s od repeatedly
executes s until condition c no longer holds.

The internal details of the boolean conditions (BC) and expressions (Exp)
are abstracted away from. Instead of defining an explicit syntax for the boolean
conditions and the expressions, it is assumed that given the value of the variables,
they can be evaluated. This is made more precise below.

For a deterministic program, the state of the computation is given by the
value of the variables. The state space S for a deterministic program consists of
S = Var → Val. For a probabilistic program, the values of the variables are no
longer determined. For example, after executing x := 0⊕ 1

2
x := 1, the value of x

could be zero but it could also be one. Instead of giving the value of a variable, a
distribution over possible variables should be given. A first idea may be to take
as a state space Var →M(Val). This does give, for each variable v, the chance
that v takes a certain value but it does not describe the possible dependencies
between the variables.
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Consider the following example. In the left situation, a fair coin is thrown and
a second coin is put beside it with the same side up. In the right situation, two
fair coins are thrown. The two situations are indistinguishable if the dependency
between the two coins is not known; the probability of heads or tails is 1

2 for
both coins in both situations. The difference between the situations is important
e.g. if the next step is comparing the coins. In the first situation the coins are
always equal, In the second situation they are equal with probability 1

2 only.

coin 1
heads tails

heads 1
2

0
coin 2

tails 0 1
2

coin 1
heads tails

heads 1
4

1
4coin 2

tails 1
4

1
4

The more general state space Π = M(Var → Val) is required. In θ ∈ Π , instead
of giving the distributions for the variables separately, the probability of being
in a certain deterministic state is given. The chance that a variable v takes value
w can be found by summing the probabilities of all states which assign w to v.

Definition 2.

(a) The set of deterministic states S, ranged over by σ, is given by S = Var→Val.
(b) The evaluation functions V :Exp→S→Val and B :BC→S→{true, false} are

the functions that compute the value of expressions and boolean conditions.
(c) The set of (pseudo) probabilistic states Π, ranged over by θ, is given by

Π = M(S).
(d) On Π the following operations are defined:

θ1 ⊕r θ2 = r · θ1 + (1− r) · θ2,
c?θ(σ) =

{
θ(σ) if c true in σ i.e. B(c)(σ) = true,
0 otherwise,

θ[v/V(e)](σ) =
∑

θ[{σ′ | σ′[v/V(e)(σ′)] = σ }] .

where + is standard addition of functions and r· is scalar multiplication.

Note that θ ∈ Π is a function from S to [0, 1]. The value θ(σ) returned by θ is
the probability of being in the deterministic state σ.

The functions V and B are assumed given. The syntactic details of expressions
and conditions as well as the precise definitions of these functions are abstracted
away from. In a probabilistic state the values of the variables are, in general, not
known and the value of expressions and conditions can not be found. Evaluation
of expressions and conditions can only be done in a deterministic state. To find
the probability of being in a state σ if in θ the expression e is assigned to variable
v, the probabilities of all states σ′ that yield σ after changing the value for v to
that of e (evaluated in σ′) have to be added.

The denotational semantics D for Lpw gives, for each statement s, and state
θ, the state D(s)(θ) resulting from executing s starting in state θ.
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Definition 3.

(a) The higher-order operator Ψ〈c,s〉 : (Π → Π) → (Π → Π) is given by

Ψ〈c,s〉(ψ)(θ) = ψ(D(s)(c?θ)) + ¬c?θ.
(b) The denotational semantics D : Lpw → (Π → Π) is given by

D(skip)(θ) = θ

D(v := e)(θ) = θ[v/V(e)]
D(s; s′)(θ) = D(s′)(D(s)(θ))

D(s⊕r s
′)(θ) = D(s)(θ) ⊕r D(s′)(θ)

D(if c then s else s′ fi)(θ) = D(s)(c?θ) +D(s′)(¬c?θ)
D(while c do s od) = the least fixed point of Ψ〈c,s〉 .

For a while statement while c do s od, one would like to use the familiar un-
folding to if c then s; while c do s od else skip fi. This can not be done directly,
as the second statement is more complex than the first. Instead we can use the
fact that D(while c do s od) is a fixed point of the higher-order operator Ψ〈c,s〉
to show that

D(while c do s od)(θ) = Ψ〈c,s〉(D(while c do s od))(θ)
= D(while c do s od)(D(s)(c?θ)) + ¬c?θ
= D(if c then s; while c do s od else skip fi)(θ) .

Note that the total probability of D(while c do s od)(θ) may be less than that
of θ. The ‘missing’ probability is the probability of non-termination.

The least fixed point of Ψ〈c,s〉 can be contructed explicitly.

Definition 4. For a statement s define s0 = s and sn+1 = s; sn. The functions
if n
〈c,s〉 and L〈c,s〉 from probabilistic states to probabilistic states are given by

if n
〈c,s〉(θ) = D((if c then s else skip fi)n)(θ)

L〈c,s〉(θ) = lim
n→∞ ¬c?if n

〈c,s〉(θ).

Lemma 1. The least fixed point of Ψ〈c,s〉 is given by L〈c,s〉.

The function if n
〈c,s〉 is merely a shorthand notation. The function L〈c,s〉 charac-

terizes the least fixed point of Ψ〈c,s〉 and is thus equal to D(while c do s od).

4 Probabilistic Predicates and Hoare Logic

The deterministic predicates used with deterministic Hoare logic are first order
predicate formulae. Here dp is used to denote a deterministic predicate. The
usual notions of fulfillment, σ |= dp i.e. dp holds in σ, and substitution, dp[v/e],
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for deterministic predicates are assumed to be known. An important property
of substitution is that σ |= dp[v/e] exactly when σ[v/V(e)(σ)] |= dp. (Replacing
the variable by an expression in the predicate is the opposite of assigning the
value of the expression to the variable in the state.)

A deterministic Hoare triple, or correctness formula, { dp } s { dp’ } , de-
scribes that dp is a pre condition and dp’ is a post condition of program s. The
Hoare triple is said to be correct if execution s in any state that satisfies dp
will lead to a state satisfying dp’. To extend the Hoare triples to probabilistic
programs, a notion of probabilistic predicate has to be introduced. One option
is to use the same predicates as for deterministic programs but to change the
interpretation of a predicate. A deterministic predicate can be seen as a function
from states to { 0, 1 }, returning 1 if the state satisfies the predicate and 0 oth-
erwise. The predicates can be made probabilistic by making them into functions
to [0, 1], returning the probability that the predicate is satisfied in a probabilistic
state (See e.g. [13, 17]). This approach, however, does not allow making claims
about the probability within the predicate itself, only the value of the predicate
gives information about the probabilities. A property like “dp holds with proba-
bility ce” can not be expressed as a predicate. Also the normal logical operators
like ∧ have to be extended to work on [0, 1].

In this paper probabilistic predicates can only have a truth value i.e. true
or false. Probabilistic predicates are predicates in the usual sense, but with an
extended syntax to express claims about probabilities. The construct P(dp) ≺ ce,
for ≺∈ {<,≤,=,≥, > }, is the basis for probabilistic predicates. Here dp is any
deterministic predicate and ce is an expression, not using program variables,
evaluating to a number in [0, 1]. The predicate P(dp) = ce holds in a state θ
if the chance in θ of being in a deterministic state that satisfies dp is equal to
ce. Similar for the other choices for ≺. Probabilistic predicates can be combined
by the logical operators from predicate logic. For example, assuming that Val =
{ 1, 2, . . . }, ∀i : P(v = i) = 1

2

i is a valid predicate stating that v has a geometric
distribution. The expression 1

2

i uses the logical variable i, but does not depend
on program variables like v. Furthermore for probabilitic predicates p and p′,
p+p′, r ·p and c?p are also probabilistic predicates. Their interpretation is given
below.

Definition 5.

(a) A probabilistic predicate is a basic probabilistic predicate of the form P(dp) ≺
ce (≺∈ {<,≤,=,≥, > }) or a composition of probabilistic predicates with one
of the logic operators ¬, ∨, ∧, ⇒, ∃, ∀, or one of the operators +, r·, c?.
Probabilistic predicates are ranged over by p and q. The following shorthand
notations are also used

p⊕r p
′ = r · p+ (1 − r) · p′,

[dp] = P(dp) = 1,
not c = P(c) = 0 .
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(b) The probabilistic predicates are interpreted as follows.
θ |= P(dp) ≺ ce when

∑
σ|=dp θ(σ) ≺ ce,

θ |= p1 + p2 when there exists θ1, θ2 with θ = θ1+θ2, θ1 |= p1 and θ2 |= p2,
θ |= r · p when there exists θ′ such that θ = r · θ′ and θ′ |= p,
θ |= c?p when there exists θ′ for which θ = c?θ′ and θ′ |= p.
For the logical connectives the interpretation is as usual.

(c) Substitution on probabilistic predicates [v/e] is passed down through all con-
structs until a deterministic predicate is reached.

(P(dp) ≺ ce)[v/e] = P(dp[v/e]) ≺ ce,

(p op p′)[v/e] = p[v/e] op p′[v/e] op ∈ {∧,∨,⇒,+,⊕r },
(op p)[v/e] = op (p[v/e]) op ∈ {¬, ∃, ∀, r · }
(c?p)[v/e] = c[v/e]?(p[v/e]) .

Note that the extension of deterministic predicates to [0,1]-valued functions is
more or less incorporated within the probabilistic predicates as used in this
paper. To check the probability of a certain deterministic predicate dp in state
θ, look for which r the predicate P(dp) = r is true in θ instead of checking the
value of dp in θ is r.

When reasoning about probabilistic predicates, caution is advised. Some
equivalences which may seem true at first sight do not hold. The most important
of these is that in general p ⊕r p = p. Take for example P(x = 1) = 1 ∨ P(x =
2) = 1 for p and a state satisfying P(x = 1) = 1

2 + P(x = 2) = 1
2 will satisfy

p⊕ 1
2
p but not p. Other examples are p = ∃i : q[i] and p = ∀i : (q[i] ∨ q′[i]). The

equivalence does hold for the basic predicates P(dp) ≺ r and if the equivalence
holds when p = q and when p = q′ then it also holds for p = q ∧ q′.
Using probabilistic predicates the Hoare-triples as introduced for deterministic
programs can be extended to probabilistic programs. Hoare triple { p } s { q }
indicates that p is a pre condition and q is a post condition for the probabilistic
program s. The Hoare triple is said to hold, denoted by |= { p } s { q } , if the
pre condition p guarantees that post condition q holds after execution of s.

|= { p } s { q } if ∀θ ∈ Π : θ |= p⇒ D(s)(θ) |= q.

For example |= { p } skip { p } and |= {P(x = 0) = 1} x := x+1 {P(x = 1) = 1}.
To prove the validity of Hoare triples, a derivation system called pH is intro-

duced. The derivation system consists of the axioms and rules as given below.

{ p } skip { p } (Skip)
{ p } s { q } { p } s′ { q′ }
{ p } s⊕c s′ { q ⊕c q′ } (Prob)

{ p[v/e] } v := e { p } (Assign)
{ c?p } s { q } { ¬c?p } s′ { q′ }
{ p } if c then s else s′ fi { q + q′ } (If)

{ p } s { p′ } { p′ } s′ { q }
{ p } s; s′ { q } (Seq)

p invariant for 〈c, s〉
{ p } while c do s od { p ∧ not c } (While)
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{ p[j] } s { q } j /∈ p, q

{ ∃i : p[i] } s { q } (Exists)
p′ ⇒ p { p } s { q } q ⇒ q′

{ p′ } s { q′ } (Imp)

{ p } s { q[j] } j /∈ p, q

{ p } s { ∀i : q[i] } (Forall)
{ p } s { q } { p′ } s { q }

{ p ∨ p′ } s { q } (Or)

The rules (Skip), (Assign), (Seq) and (Cons) are as within standard Hoare
logic but now dealing with probabilistic predicates. The rules (If) and (While)
have changed and the rules (Prob), (Or), (Exists) and (Forall) are new.

For p to hold after the execution of skip, it should hold before the execution
since skip does nothing. The predicate p holds after an assignment v := e exactly
when p with e substituted for v holds before the assignment, as the effect of the
assignment is exactly replacing v with the value of e. The rule (Seq) states that
p is a sufficient pre condition for q to hold after execution of s; s′ if there exists
an intermediate predicate p′ which holds after the execution of s and which
implies that q holds after the execution of s′. The rule (Cons) states that the
pre condition may be strengthened and the post condition may be weakened.

The rule (Prob) states that the result of executing s⊕r s
′ is obtained by com-

bining the results obtained by executing s and s′ with the appropriate probabil-
ities. The necessity for the (Or), (Exists) and (Forall) rules becomes clear when
one recalls that p⊕rp 6→ p. Proving correctness of { p∨q } skip⊕r skip { p∨q } is,
in general, not possible without the (Or)-rule. Similar examples show the need
for the (Exists) and (Forall) rule. Note the similarity with the natural deduction
rules for ∨ and ∃ elimination and ∀ introduction.

The rule (If) has changed with respect to the (If) rule of standard Hoare logic.
In a probabilistic state the value of the boolean condition c is not determined.
Therefore the probabilistic state is split into two parts, a part in which c is
true and a part in which c is false. After splitting the state, the effect of the
corresponding statement, either s or s′, can be found after which the parts are
recombined using the + operator.

To use the (While) rule, an invariant p should be found. For p to be an invari-
ant, it should satisfy { p } if c then s else skip fi { p } . This condition is sufficient
to obtain partial correctness. If the program s terminates and { p } s { q } can
be derived from pH, then |= { p } s { q } . A probabilistic program is said to
terminate, if the program is sure to terminate when all probabilistic choices are
interpreted as non-deterministic choices, i.e if the program terminates for all pos-
sible outcomes of the probabilistic choices. Partial correctness, however, is not
sufficient for probabilistic programs. Many probabilistic programs do not satisfy
the termination condition, they may for instance only terminate with a certain
probability. (Note that, even if that probability is one, the termination condition
need not be satisfied.) To derive valid Hoare triples for programs that need not
terminate, a form of total correctness is required. This requires somehow adding
termination conditions to the rules. To obtain total correctness we strengthen
the notion of invariant by imposing the extra condition of 〈c, s〉-closedness.
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Definition 6.

(a) For a predicate p the n-step termination ratio, denoted by rn
〈c,s〉, is the proba-

bility that, starting from a state satisfying p, the while loop “while c do s od”
terminates within n steps.

rθn
〈c,s〉 =

∑¬c?if n
〈c,s〉(θ)[S ]

rn
〈c,s〉 = inf{ rθn

〈c,s〉 | θ |= p } .

(b) A sequence of states (θn)n∈N is called a 〈c, s〉-sequence if (¬c?θn)n∈N is an
ascending sequence with

∑¬c?θn[S] ≥ rn
〈c,s〉.

(c) A predicate p is called 〈c, s〉-closed if each 〈c, s〉-sequence within p has a limit
(least upper bound) within p.

p invariant for 〈c, s〉 when
{ p } if c then s else skip fi { p } and p is 〈c, s〉-closed.

Note that for a loop while c do s od that terminates every p automatically sat-
isfies 〈c, s〉-closedness. Therefore, for a terminating program, there is no need to
check any 〈c, s〉-closedness conditions.

A Hoare triple { p } s { q } is said to be derivable from the system pH,
denoted by ` { p } s { q } , if there exists a proof tree for { p } s { q } in pH. The
derivation system is correct, i.e. only valid Hoare triples can be derived from pH.

Lemma 2. The derivation system pH is correct, i.e. for all predicates p and q
and statements s, ` { p } s { q } implies |= { p } s { q } .

Proof. It is sufficient to show that if θ |= p and ` { p } s { q } then D(s)(θ) ∈ q.
This is shown by induction on the depth of the derivation tree for { p } s { q } ,
by looking at the last rule used. A few cases are given below.

• If the rule (Exists) was used and θ |= ∃i : p[i] then there is an i0 for which
θ |= p[i0]. By induction |= { p[j] } s { q } which gives, by substituting the value
i0 for the free variable j { p[i0] } s { q } . But then D(s)(θ) |= q.

• Known from the non-probabilistic case is that σ[v/V(e)(σ)] |= dp exactly when
σ |= dp[v/e]. By induction on the structure of the probabilistic predicate p this
extends to θ[v/V(e)] |= p exactly when θ |= p[v/e]. Correctness of the (Assign)
rule follows directly.

• If rule (Prob) is used to derive ` { p } s ⊕r s
′ { q ⊕ q′ } from ` { p } s { q }

and ` { p } s′ { q′ } then by induction |= { p } s { q } and |= { p } s′ { q′ } .
This means that if θ |= p then D(s)(θ) |= q and D(s′)(θ) |= q′. But then
D(s⊕ s′)(θ) = D(s)(θ)⊕rD(s′)(θ) |= q⊕r q

′. The case for rule (If) is similar.
• Assume rule (While) is used with statement s, condition c and invariant p.

Clearly D(while c do s od)(θ) |= not c and |= { p } if c then s else skip fi { p }
can be used repeatedly to gives that if θ |= p then (if n

〈c,s〉(θ))n∈N is a 〈c, s〉
sequence. By 〈c, s〉-closedness D(while c do s od)(θ) = L〈c,s〉 |= p.
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5 Examples

The picture below gives an example of a proof tree in the system pH. For larger
programs, instead of giving the proof tree, a proof outline is used. In a proof
outline the rules (Imp) and (Seq) are implicitly used by writing predicates be-
tween the statements and some basic steps are skipped. A predicates between
the statements give conditions that the intermediate states in the computation
must satisfy.

{ [x + 1 = 2] } x := x + 1 { [x = 2] }
(Assign)

{ [x + 2 = 3] } x := x + 2 { [x = 3] }
(Assign)

{ [x = 1] } x := x + 1 { [x = 2] }
(Imp)

{ [x = 1] } x := x + 2 { [x = 3] }
(Imp)

{ [x = 1] } x := x + 1⊕ 1
2

x := x + 2 { [x = 2]⊕ 1
2

[x := 3] }
(Prob)

{ [x = 1] } x := x + 1⊕ 1
2

x := x + 2 {P(x = 2) = 1
2
∧ P(x = 3) = 1

2
}
(Imp)

The following program adds an array of numbers, but some elements may in-
advertently get skipped. A lower bound on the probability that the answer will
still be correct is derived. An n-ary version of ∨ is used as a shorthand.

int ss[1 . . . N ], r, k;

{ [true] }⇒ {P(0 = 0, 1 = 1) = 1 }
t = 0; k = 1;

{P(t = 0, k = 1) = 1 } ⇒
{P(k = N + 1, t =

PN
i=1 ss[i]) ≥ rN ∨ ∨N

n=0P(k = n, t =
Pk−1

i=1 ss[i]) ≥ rn−1 }
while (k ≤ N) do

{ ∨N
n=0P(k = n, t =

Pk−1
i=1 ss[i]) ≥ rn−1 } ⇒

{∨N
n=0P(k = n, t + ss[k] =

Pk
i=1 ss[i]) ≥ rn−1 }

t := t + ss[k]⊕r skip;

{ ∨N
n=0P(k = n, t =

Pk
i=1 ss[i]) ≥ rn−1 ⊕r true } ⇒

{∨N+1
m=1P(k + 1 = m, t =

Pk
i=1 ss[i]) ≥ rm−1 }

k := k + 1

{ ∨N+1
m=1P(k = m, t =

Pk−1
i=1 ss[i]) ≥ rm−1 }

od

{∨N+1
n=0 P(k = n, t =

Pk−1
i=1 ss[i]) ≥ rn−1 } ∧ not (k ≤ N) ⇒

{P(t =
PN

i=1 ss[i]) ≥ rN }
In the following example, a coin is tossed until heads is thrown. The number of
required throws is shown to be geometrically distributed. For ease of notation
the following shorthand notations are used.

p = q∞ ∨ ∃i : q[i]

q∞ = ∀j > 0 : P(x = j, done = true) = 1
2

j

q[i] = P(x = i, done = false) = 1
2

i ∧ ∀j∈{1, . . . , i} : P(x = j, done = true) = 1
2

j
.
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Then, assuming p is an invariant:

{ [true] }
bool done = false; int n = 0;
{P(n = 1, done = false) = 1 }⇒ { p }
while not done do x := x + 1; done = true⊕ 1

2
skip od

{ p ∧ done }⇒ {∀n > 0 : P(x = n) = 1
2

n }

To show that p is an invariant proof the rule (Or) is used to split the proof into
two parts, the first of which is trivial. For the second part the rule (Exists) is
used to give:

{ q[k] }
while not done do

{ (not done)?q[k] } ⇒ {P(x = i, done = false) = 1
2

i }
x := x + 1;

{P(x = i + 1, done = false) = 1
2

i }
done = true⊕ 1

2
skip

{P(x = i + 1, done = false) = 1
2

i+1
+ P(x = i + 1, done = true) = 1

2

i+1 }
od

{P(x = i + 1, done = false) = 1
2

i+1
+ P(x = i + 1, done = true) = 1

2

i+1
+

∀j ∈ { 1, . . . , i }: P(x = j, done = true) = 1
2

j} ⇒ { q[j + 1] } ⇒ { p }.

The requirement that p is 〈not done, x := x+ 1; done = true⊕ 1
2
skip〉-closed is

easy to check but requires the presence of the q∞ term.

6 Conclusions and Further Work

The main result of this paper is the introduction of a Hoare like logic, called
pH, for reasoning about probabilistic programs. The programs are written in a
language Lpw and their meaning is given by the denotational semantics D.

The probabilistic predicates used in the logic retain their usual truth value
interpretation, i.e. they can be interpreted as true or false. Deterministic predi-
cates can be extended to arithmetical functions yielding the probability that the
predicate holds as done in e.g. [13] and [17]. This extension is incorporated by
using the notation P(dp) to refer to exactly that, the chance that deterministic
predicate dp holds. The chance of dp holding can then be exactly expressed or
lower and/or upper bounds can be given within a probabilistic predicate. The
main advantage of keeping the interpretation as truth values is that the logical
operators do not have to be extended.

The logic pH is show correct with respect to the semantics D. For an (earlier)
infinite version of the logic a completeness result exists. For the current logic
the question of completeness is still open. Especially the expressiveness of the
probabilistic predicates has to studied further.

To be able to describe distributed randomized algorithms, it would also be
interesting to extend the language and the logic with parallelism. However, verifi-
cation of concurrent systems in general and extending Hoare logic to concurrent
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systems in specific (see e.g. [3, 7]) is already difficult in the non-probabilistic
case.

To make the logic practically useful, the process of checking the derivation of
a Hoare-triple should be automated. Some work has been done to embed the logic
in the proof verification system PVS. (See e.g. [12] on non-probabilistic Hoare
logic in PVS.) The system PVS can then be used both to check the applications
of the rules and to check the derivation of the implications between predicates
required for the (Imp) rule. By modeling probabilistic states, PVS could perhaps
also be used to verify the correctness of the logic, however this would require a
lot of work on modeling infinite sums.
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