N
N

N

HAL

open science

The Game of the Name in Cryptographic Tables
Roberto M. Amadio, Sanjiva Prasad

» To cite this version:

Roberto M. Amadio, Sanjiva Prasad. The Game of the Name in Cryptographic Tables. RR-3733,

INRIA. 1999. inria-00072932

HAL 1d: inria-00072932
https://inria.hal.science/inria-00072932
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00072932
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The game of the name in cryptographic tables

Roberto M. Amadio  Sanjiva Prasad

N° 3733
Juillet 1999

THEME 1

apport
derecherche







INRIA

SOPHIA ANTIPOLIS

The game of the name in cryptographic tables

Roberto M. Amadio  Sanjiva Prasad

Théme 1 — Réseaux et systémes
Projet Meije

Rapport de recherche n® 3733 — Juillet 1999 — 17 pages
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Le jeu du nom dans les tables cryptographiques

Résumé : Nous présentons un calcul avec passage de noms qui peut étre consideré comme
un m-calcul simplifié equipé avec une table cryptographique. Il s’agit d’une structure de don-
nées qui représente les relations entre les noms. Nous appliquons le calcul & la modelisation
et vérification de proprietés de securité et authenticité dans les protocoles cryptographiques
a clef symétrique. Suivant des approches classiques [8], nous formulons le probléme de
vérification comme une proprieté d’accessibilité et nous prouvons sa decidabilité en suppo-
sant un nombre fini de principaux et une borne sur les sortes des messages synthétisés par
I’attaquant.

Mots-clés : Protocoles cryptographiques, w-calcul, vérification.
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1 Introduction

Cryptographic protocols are commonly used to establish secure communication channels
between distributed principals. Cryptographic protocols seem good candidates for formal
verification and several frameworks have been proposed for making possible formal and
automatable analyses. We do not attempt to survey here all the various approaches, but
confine our remarks to some which assume ‘perfect encryption’ and model a protocol as a
collection of interacting processes competing against a hostile environment.

One class of approaches involves state exploration using model-checking techniques [11,
6, 13]. Lowe [11], Schneider [15] and several others have used CSP to specify authentica-
tion protocols, analysing them with the FDR model-checking tool. Other state exploration
approaches are based on logic programming techniques [12]. The main benefit of these ap-
proaches is their automation and efficacy in uncovering subtle bugs in protocols (e.g., Lowe’s
‘man-in-the-middle’ attack on the Needham-Schroeder symmetric key protocol). However,
their applicability is limited by the quickly growing size of the state space to be examined;
simplifying hypotheses on the behaviour of the environment necessary to bound the state
space may drastically curtail the ability to find errors.

A second class of approaches relies on general-purpose proof assistant tools. Paulson [14]
uses induction on traces to formally prove protocol correctness using Isabelle. Bolignano [4]
uses a state-based analysis of the protocols, proving invariant properties, with the proofs
subsequently mechanized in Coq. Although these approaches are not automatic, recent
work [10, 16] suggests that certain authentication protocols can be modelled in decidable
fragments of first-order logic.

In all the approaches mentioned above the attacker must be explicitly modelled. A more
recent trend has been the use of name-passing process calculi for studying cryptographic
authentication protocols. Abadi and Gordon have presented the spi-calculus [1], an exten-
sion of the m-calculus with cryptographic primitives (see [7] for a related approach using a
‘second-order’ calculus). Principals of a protocol are expressed in a w-calculus-like notation,
whereas the attacker is represented implicitly by the process calculus notion of ‘environ-
ment’. Security properties are modelled in terms of contextual equivalences, in contrast to
the previous approaches. The spi-calculus provides a precise notation with a formal opera-
tional semantics, particularly for expressing the generation of fresh names, for the scope of
names, and for identifying the different threads in a protocol and the order of events in each
thread. These features are important: in the various notations found in the literature, the
issues of name generation, scoping, data sorts, and synthesis capabilities of the adversary
were often treated in an ad hoc and/or approximate manner.

Unfortunately, the addition of the cryptographic primitives to the w-calculus considerably
complicates reasoning about the behaviour of processes. Although there have been some
attempts to simplify this reasoning (see [2, 9, 5]), the developed theory has not yet led to
automatic or semi-automatic verification methods.

In this paper, we describe an approach that combines the analyses found in the model-
checking and theorem-proving approaches with the benefits of using a process notation. Fo-
cussing on symmetric shared-key cryptosystems, we propose a name-passing calculus based
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4 Roberto M. Amadio  Sanjiva Prasad

on a variety of m-calculus and use it for modelling and verifying secrecy and authenticity
properties in cryptographic protocols. Our approach departs from that of Abadi and Gordon
in three major ways.

First, we insist on considering every transmissible value as a name, thus eliminating com-
plications to the theory arising from structured values. We keep track of the relationships
amongst names (what name is a ciphertext of what plaintext) by means of a cryptographic
table. Secondly, we model secrecy and authenticity properties as reachability properties that
are largely insensitive to the ordering of the actions and to their branching structure. Intu-
itively, we designate configurations reached after a successful attack as erroneous. Protocol
verification then involves showing invariance of the property that such error configurations
are not reachable. Thirdly, we eliminate named communication channels and, as in e.g., [4],
let all communications between principals and the environment transit on a public medium.

This paper is organized as follows. In section 2, we define a simple name-passing cal-
culus equipped with a cryptographic table, present some derived operators, and relate our
formalism to the w-calculus. In section 3, we apply the calculus for modelling a concrete
example: the Yahalom protocol. Finally, in section 4 relying on simple rewriting techniques
we show that the reachability problem is decidable assuming finite principals and bounds
on the sorts of the messages synthesized by the attacker.

2 The calculus

We define a process calculus enriched with a ‘cryptographic table’ to model and analyse
symmetric key cryptographic protocols. We use a,b, ... for names and a, b, ... for vectors
of names. N denotes the set of names. The principals’ behaviour as well as secrecy and
authenticity properties are represented as processes.

Definition 2.1 (processes) A process (typically p,q) is defined by the following grammar:

pu= 0|err|ap|?ap]|(va)p|la="0p,q|p|q|A(a)
|let a = {b}. in p|case {b}.=ainp.

As usual, 0 is the terminated process; err is a distinguished ‘error’ process; la.p sends a to
the environment and becomes p; a.p receives a name from the environment, binds it to a
and becomes p; (va) p creates a new restricted name a and becomes p; [a = b]p, ¢ tests the
equality of a and b and accordingly executes p or ¢; p | ¢ is the parallel composition of p
and ¢; A(a) is a recursively defined process; let a = {b}. in p defines a to be the encryption
of b with key ¢ in p; finally case {b}. = a in p defines b to be the decryption of a with key
¢ in p. The input and restriction operators act as name binders. Moreover, a is bound in
let @ = {b}. in p and the names b are bound in case {b}. = a in p. We denote with fn(p)
the set of names free in p. We assume that for every process identifier A(a) there is a unique
recursive equation A(a) = p such that fn(p) C {a}.

Let T be a relation in (|J,~, N¥) x N x N. We write a € n(T) if the name a occurs in a
tuple of the relation 7. We write (b, c,a) € T as {b}, = a € T. This notation is supposed

INRIA



The game of the name in cryptographic tables 5

to suggest that c¢ is a key, b is a tuple of plaintext, and a is the corresponding ciphertext.
The relation T induces an order <7 on n(T") which we define as the least transitive relation
such that: {b1,...,bp}c=a €T = by,...,by,c<ra.

Definition 2.2 (cryptographic table) A cryptographic table T is a relation in (s, N*)x
N x N which satisfies the following properties: -

T is finite.

<7 1s acyclic.

{b}c=a€T and{b},=d' €T =a=d (single valued)
{b}c=a€T and {b'}o =a€T =b=>b andc=c (injectivity) .

We introduce a notion of sort for the names in a cryptographic table.

Definition 2.3 (sorts) The collection of sorts Srt is the least set that contains the ground
sort 0 and such that (s1,...,8,) € Srt if s; € Srt fori=1,...,n withn > 2.

Every name occurring in a cryptographic table can be assigned a unique sort as follows.
Definition 2.4 (sorting) Let T' be a cryptographic table. We define a function srtr :
n(T) — Srt as follows:

srir(a) = 0 if a is minimal in <p
7 (s1yevvv8n) if {01y sbn 1o, =a €T and srtp(b;) =sii=1,...,n .

Definition 2.5 (configuration) A configuration r is a triple (v{a}) (p | T) where {a} is
a set of restricted names, p is a process, and T is a cryptographic table.

We write r = v/ if r and 7’ are identical configurations up to a-renaming of bound names
and associativity-commutativity of parallel composition.

In figure 1, we define a reduction relation on configurations. The first five rules describe
the computation performed by the principals or by ‘observer processes’ needed in the ver-
ification of secrecy or authenticity properties.Rules (out) and (in) concern the sending of
a name to the environment and the reception of a name from the environment. Rules (v),
(m), and (rec) describe internal computation performed by the principals: generation of new
names, conditional, and unfolding of recursive definitions. The cryptographic table plays a
role in the next three rules. In particular, it allows sharing of information between prin-
cipals and environments. The rules (let') and (let?) compute the ciphertext a’ associated
with {b}. in T while adding {b}. = o’ to T if it is not already there. The rule (case) tries
to decode the ciphertext a with key ¢. In the rule (case), a deadlock occurs (specified by
the absence of a transition) if either the vectors b and b’ do not have the same length or an
incorrect key is used for decoding.

Finally, the last three rules (let}), (let?), and (case.) describe the encoding/synthesis and
decoding/analysis performed by the environment: in the rule (let!) the environment learns
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(out)  (v{a})(la.p|q|T)— (v{aP\a) (p[¢|T)
(in)  ({a})(Pap|q|T)— (v{a})(b/alp|q|T) ifb¢{a}
() (v{a}) ((va)p| ¢ |T) = (W{atu{a})(plq[T) a¢ fr(q)Un(T)

) b o=tmp a7 - { (D@ T e

(rec)  (v{a}) (A(b) [ ¢|T) — (v{a}) ([b/elp | ¢ | T) if A(c) =p

(let')  ({a})(leta={b}.inp|q|T)— (v{a})(la'/alp|q|T)
if{b}.=d' €T

(let?)  (v{a})(leta={b}.inp|q|T)— (v{a}U{a'})(ld'/alp|q|TU{{b}e =a'})
if Aad' ({b}.=10a' €T) and ¢’ is fresh.

(case) (v{a})(case {b}.=ainp|q|T)— (v{a})([b'/blp|q|T)
if {b}e=aeT

(lete)  ({a,a}) (0| T U{{b}. =a}) — (v{a}) (p | T U{{b}. = a})
if {b,c}n{a,a} =0 and a ¢ {a}

(letz)  (v{a}) (@ |T) — (v{a}) (p | T U {{b}c = a})
if {b,c}n{a} =0, Aa ({b}.=a €T), and a is fresh

(casec) (v{a}) (p| T U {{b}c = a}) = (v{a}\{b}) (p | T U {{b}. = a})
if {a,c}n{a} =0 and {b}n{a} #0

Figure 1: Reduction rules
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The game of the name in cryptographic tables 7

a private name by encoding, in the rule (let?) the environment creates a new ciphertext,
and in the rule (case.) the environment learns new names by decoding.

We write r —g ' to make explicit the reduction rule R being applied. We note that
encoding a new tuple (plaintext,key) generates a new ciphertext. It follows that the acyclicity
and injective function properties of the cryptographic table are preserved by reduction.

Lemma 2.6 The set of configurations is closed under reduction.

Definition 2.7 (error) A configuration with error is a configuration having the shape:
(v{a}) (err | p|T).

We write 7 | err if 7 is a configuration with error (read r commits on err) and r |, err
if r —=* v and 7' | err. Note that configurations with errors are closed under reduction.
In general, we are interested in deciding whether r |, err, that is, whether r can reach a
configuration with error.

The process calculus presented differs from the w-calculus in two main respects: (i) We
let all communications go through a unique (unnamed) channel that connects the principals
to the environment. (ii) We add cryptographic primitives, which affect the contents of the
cryptographic table.

In principle, we can code this process calculus in a variety of m-calculus. This amounts
to: (i) Decorating all input-output actions with fresh global channels — thus replacing
b.p with @b.p and likewise ?b.p with a(b).p, where a is a fresh name. (ii) Representing
the cryptographic table as a process that receives messages on a global channel, say c.
The coding and decoding operations are represented as remote procedure calls from the
principals and the environment to the cryptographic process. To make sure that messages
are not intercepted, we assume that the cryptographic process is the unique receiver on the
channel ¢ (syntactic conditions that guarantee this property are presented in [3]).

We refrain from going into this development because it seems much more effective, both
in the mathematical development and in the practical applications, to expose directly the
structure of the cryptographic table rather than hiding it behind a process algebraic veil.

Finally, we remark that the reduction rules in figure 1 can be easily turned into a labelled
transition system whose actions (internal reduction, input, free and bound output) are
inherited from the 7-calculus. We can then rely on the m-calculus notion of bisimulation to
reason about the equivalence of configurations. Thus our approach does not preclude the
expression of security properties based on process equivalence [1].

Some syntactic sugar We now describe how several concepts may be encoded in the
core calculus given above. We first describe several abbreviations that improve readability.
We then describe annotations with which we decorate the protocols when analyzing their
secrecy and integrity properties. We sometimes use multiple abbreviations if the order of
expanding them out is apparent from the context.
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8 Roberto M. Amadio  Sanjiva Prasad

Sending or receiving a tuple of names can be encoded in the calculus with monadic
communication by considering tuples as ciphertexts encoded with a distinguished globally-
known key g:

(b).p =leta= {E}g inlap ?(b).p =Ta.case {5}51 =ainp.

A ciphertext {I_;}C may appear as a component of the output tuple, or as a value in a match,
in an encoding or as a parameter. In all these cases it is intended that {b}. stands for the
name q resulting from the encoding let a = {b}. in ... For instance:

(O, {b}e,...)p =let b= {b}. in I(¥,b,...).p

[a= {b}clp,g =letb= {IZ,}C in [a= b]p,(i

let b= {b/,{b}c,...}erinp =leta={b}.inletb={V,a,...}o inp
Ad, {b}e,...) =let a = {b}. in A(d,a,...) .

In a filtered input, we check that the input has a component that is equal to a certain value
(marked as b) or that has a certain shape, e.g. {b}., and we stop otherwise.

(,0,...
( ,{g}c,...).p E?(b_7,b,.,.).case {I;}c =binp.

As in the filtered input, we check that the decryption of the ciphertext yields a certain
component.

yer)D =?(V,c,...).[c = b]p,0

<<y

?
?

case {57,9,...}6 =ainp = case {b_7,x,...}c =ain [z =b]p,0
case {0/, {C}4,...}o =a' inp =case {IV,a,...}o =a' incase {Fta=ainp.

We mark the generation of a name ¢ intended to remain secret in a protocol configuration
with the annotation (va)®®“p. We can easily program an observer W (a) such that if the
environment ever discovers the name a, then an error configuration is reachable:

W(a) =?a'[a = a']err,0 (secrecy observer). (1)
Secrecy annotations are then translated as follows:
(va)***p=(va)(p| W(a)) (secrecy annotation). (2)

In order to program an observer for authenticity properties we need a limited form of private
channel. Fortunately, a private key a already allows the encoding of a private use-at-most-
once channel a as follows:

abp ={b}ap a).p =2b}ap .

We note that this encoding does not work for arbitrary (multiple-use) channels, since the
environment may replay messages, and without mechanisms like time-stamping, it would
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The game of the name in cryptographic tables 9

not be possible to differentiate replayed messages from genuine fresh messages. However,
the encoding can be generalized to a bounded use channel, if each message instance contains
distinguished components that uniquely index each distinct use of the channel.

To specify authenticity properties we mark certain send and receive actions in the princi-
pals with authenticity annotations. The idea is as follows: let us assume that after executing
its part of the protocol, principal y receives a message (f',t',m’), where f’,t' name the pur-
ported sender and receiver of the message. Suppose y believes that this message is authentic,
i.e., has been sent to it (thus, ¢ = y) by the principal £ whom it has presumably authen-
ticated. An all-knowing ‘session’ judge can detect an authenticity flaw if this particular
message had not actually been sent by x. The judge only rules on messages purportedly
sent by z — if y presumes to have authenticated another principal, the judge reports no er-
ror. Following this intuition, we introduce authenticity annotations auth o( ), auth_i(_)
which represent, respectively, & registering a message with a judge process prior to sending
a message to y, and y claiming authenticity of the message received.

auth_o((x,y,m)). n)j(o, (z,y,m),n).;' (n).p

LY
?

wuth i((agom)p =70 (ngm), Vo
Ty = 5 ot L= a7 (m) (4 = e 0)
T () = j(d, (. t';m"), ).ld =il(Im' = m]0, err), I’z (m)

Here we assume two distinguished names o and i, which indicate whether the authenticity of
a message is being registered or claimed. Communication with the judge is over restricted
channels 7, j' to disallow the environment from making bogus assertions of authenticity. We
will require the channel j appears in the principals to which z,y are instanced, and j' only
in the principal corresponding to z. Note that although j is used twice, the different uses
are distinguishable by the names o and i, and so replays can be recognized.

Relying on these encodings we translate authenticity annotations as follows:

- - - -

(Bt p = aquth o(B).\B).p  2b)*r.p =7(b).auth_i(b).p

We observe that in an authenticated output, the principal receives an acknowledgement from
the judge process on channel j' before actually outputting the message.

3 Modelling cryptographic protocols

We now illustrate how a protocol specified informally in a notation common in the security
community can be transformed into an annotated process in the enriched notation of §2.
We consider a symmetric key protocol due to Yahalom. This protocol concerns principals
a, b, and a trusted server c¢ running in a possibly hostile environment that can intercept
all communications. Initially, principal o and principal b each share a symmetric secret key
with ¢. At the end of the protocol, principals a, b (and ¢) share a third symmetric secret
key, a ‘session key’, which can be used by principals ¢ and b to exchange information. A
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10 Roberto M. Amadio  Sanjiva Prasad

particular run of the protocol is informally described by the following list of events:

event 1 a—b: a,b, n,

event 2 b—c: b, {%"avnb}kbc

event 3 c—a: a,{b,kab,Na, b}k, {0, Kab i,
event 4 a—b: b,{a,kab}r,, {"b}te,

event 5 a—b: a,b,{d}r, post— protocol
event 5 b—a: b,a,{d}r, alt —post— protocol .

Principal a sends a clear-text message containing a nonce challenge to b. Instead of respond-
ing directly to a, b generates a new nonce ny, its response to a’s challenge, which, added to
components of the original message, is sent encrypted to c. Server c creates a secret key kqp,
which is placed in two separately encrypted message pieces that are sent to a: the first part,
readable by a, contains a’s original challenge, b’s retort n, and the shared secret kq;. The
other part, not readable by a but by b, contains the same shared secret and a’s identity; it
is forwarded by a in event 4 to b, together with b’s challenge encrypted with this new shared
secret. For parametricity in the modelling, we have explicitly added redundant information
in some of the messages — b in event 1, g in event 3, and b in event 4. We have also shown
(two possibilities of) the first post-protocol message in which datum d is sent encrypted
using the new session key kqp-

The secrecy property we would like to verify is that the keys kq., ki, and k,p remain
secret. The authenticity property that we would like to verify is that the message successfully
received by b at the second part of event 5 (alternatively 5') of the protocol is ‘authentic’,
i.e., it is equal to the message emitted by a in the first part of the same event. Following
event 3, principal a will believe it is interacting with principal b if the third element of the
message component encrypted with k.. is the same as the nonce n, that it had generated
in event 1. Following event 4, principal b will believe it has authenticated and established a
secure channel with principal a, provided the nonce n; encrypted with the received key kqp
is equal to the nonce generated at event 2.

We will model a system q(a,b,c) consisting of principals a, b and ¢, which are assumed
to follow the protocol honestly. Our goal is to verify that a session between a and b cannot
be attacked by showing that the system ¢(a,b,c) can never evolve into a configuration with
error.

From the message sequence chart above we can extract the sequence of events where a
principal acts as a sender or a receiver, as well as the name generation, cryptographic and
matching operations that it performs.

Let pq, Py, and p. be the processes corresponding to instances of principals a,b,c involved
in one protocol session. The process p,, for the first alternative of the first post-protocol

INRIA



The game of the name in cryptographic tables 11

event, is then specified as follows:

event 1 (vn,) (!(a,b, Ng)-
event 3 7 bk,
event 4 (b, y,{ )

event 5 !(a,b, {d}r)**".0) .

The behaviours associated with principals b and ¢ are defined in a similar way.

pp = ?(d,bn').

vn b, {a',n',np},,
((bvb{); (k/}{kh » T ) b}k ) De _?(b {a’ n17n2}kb{‘)
case {:nb}kf = &' in (Vkap)™ Ha, {b, kab, n1, M2}k o s {5 Kab iy, )0

2a. b {z})™.0)
The process we consider for analysis is:

q(a,b,¢) = (vkac)™ (vkoc)™ (v5) (v5") (Pa | o | pe | Jap | 0)

where @) is the empty cryptographic table. Keys k.. and ki, being long-term secrets, we
restrict these names at the top-level. To indicate that the authenticity judge is observing a
session involving a and b, we place a judge process J, 5 in parallel with the principals and
restrict the names j, j'. What we have presented is only illustrative: we also have to consider
a similar process with event 5’ instead of event 5, and with the judge J,.. In general, to
consider the protocol operating in more complicated scenarios, we can emend ¢ by enriching
the contexts in which the principals are placed.

4 Reachability

In the previous sections, we expressed secrecy and authenticity properties as reachability
properties. We now present some results on the problem of determining whether a configu-
ration can reach one with error.

Definition 4.1 (substitution) A name substitution o is a function on names that is the
identity almost everywhere.

Definition 4.2 (injective renaming) Let v and r' be configurations. We write r = r' if
there is an injective substitution o such that or =1'.

We study reachability modulo injective renaming.

Lemma 4.3 (1) The relation = is reflexive, symmetric, and transitive.
(2) Ifr =7 thenr | err iff r' | err.

(3) Ifr=r" andr —gry then3r] ' —gr] and ry =r].
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12 Roberto M. Amadio  Sanjiva Prasad

We consider rewriting modulo injective renaming.

Lemma 4.4 Let 7 be a configuration. Then the set {r' | r —r 1'} where R is not (let?) is
finite modulo injective renaming.

Lemma 4.5 Letr = (v{a}) (p | T) be a configuration. Given a sort s, the set of configura-
tions to which r may reduce by (letg), while introducing a name of sort s in the cryptographic
table, is finite modulo injective renaming.

Therefore, if we can bound the sorts in the cryptographic table then the reduction relation
defined in figure 1 is finitely branching modulo injective renaming.

A second important result is that all reduction rules except input are strongly confluent
modulo injective renaming.

Lemma 4.6 Let r be a configuration and suppose r —g, r1 and r — g, T2 where Ry is not
the input rule. Then

ry,ry (1 _’(1]%’11 T, T2 —%z rhy, and r] =rh)
where R) in not the input rule and —%1 indicates reduction in 0 or 1 steps.
The rule (letﬁ) can be postponed except in certain particular cases.
Lemma 4.7 Suppose r is a configuration and
r=a)(p|T) =z r' = wa)(p|TU{{b}.=d}) g 1"

where {b}. = a' is the tuple introduced by the first reduction. Then in the following cases
the first reduction (leti) can be postponed or eliminated:

(1) If R = (in) and the name taken in input is not o’ then

Il ~

dry,7o (7" in T1 7 e12 1“2) and r’ =7y .

(2) If R = (let?) and 7" = (va)(p | TU {{b}. = d/,{b1}., = a,}) where {b1}., = a}
is the tuple introduced by the second reduction and this tuple does not depend on a’, i.e.,
a' ¢ {by,c1}. Then the two (let?) reductions can be permuted:

r— (va)(p| TU{{b1}e, =ar}) = r".
(3) If R = (let1) and we have

r" =(va)®"|let a={b}.inp' |TU{{b}.=d'}) —iet,
"o =(va) (" | [a'/a]p’ | TU{{b}.=4d'}).

r
Then the (let?) reduction can be eliminated as follows:
T =2 (va,d’) ([d'/alp’ | p" | TU{{b}c = a'}) = v

(4) In all other cases: 371,15 (1 =R T1 — 2 T2) and " Z 7y

INRIA
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Next we introduce a measure d(s) of a sort s which will provide an upper bound on the
number of (let?) reductions that might be needed for the synthesis of a name.

Definition 4.8 (sort measure) We define a measure d on sorts as follows:
d(0)=0 d(s1,...,8n)=14+d(s1)+...+d(sn) .

Lemma 4.9 Suppose 11 — 2 -+ =2 Tntl —in Tni2 Where the name received in input

in the last reduction has sort s and n > d(s). Then at least n — d(s) (let?) reductions can
be postponed modulo injective renaming, i.e.

— ! ! ! !
rn=nr _)letg e _’letf rd(s)-l—l —>in Td(s)-|—2 _)letg e _>let§ Thio
!
and 1,10 ZToqa.

PROOFHINT. We apply lemma 4.7(1) to shift the input reduction to the left till the point
where the (let?) reduction introduces a tuple {b}. = a and a is the name of sort s taken in
input. The construction of the name a needs at most d(s) (let?) reductions. All the other
(let?) reductions can be moved to the right of the input by iterated application of the lemma
4.7(1-2). QED

To summarize, (leti) reductions can be postponed except when they are needed in the
construction of a name to be input. In this case, the number of needed (let?) reductions is
bounded by d(s) if s is the sort of the input name.

Next, let us concentrate on the reachability problem in the case where all principals are
finite processes (in practical applications this is often the case). We note that the secrecy
and authenticity annotations compile to finite processes.

Definition 4.10 (configuration measure) We define the measure of a configuration r =
(v{a}) (p | T) as the pair (|p|, |a|) where |p| is the size of the process and |a| is the cardinality

of {a}.

Lemma 4.11 (1) Rules (out), (in), (v), (m), (let'), (let?), and (case) decrease the size of
the process |p|.

(2) Rules (letl) and (case.) decrease the size of the restricted names |a| while leaving
unchanged the size of the processes.

(3) Rule (let?) leaves the measure (|p|,|a|) unchanged.

(4) Ifr =2 7" and " | err thenr | err.

In the following, we concentrate on the issue of deciding reachability of a configuration with
error assuming that for every input we can compute a finite and complete set of sorts which
is defined as follows.
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1. Perform in an arbitrary order the reductions different from (letZ) and (in).

2. Analyse the current configuration:

(a) err has been reached: stop and report that err is reachable.

(b) err has not been reached and no (in) reductions are possible: backtrack if possible, otherwise
report that err is not reachable and stop.

(c) Otherwise:
i. Non-deterministically select an input action and compute a finite complete set of sorts for
it, say {s1,...,sn}.
ii. Non-deterministically perform a sequence of (let?) reductions of length at most
maz{d(s1),...,d(sn)}.
iii. Non-deterministically select an input for the input action. Goto step 1.

Figure 2: Complete strategy for checking error reachability

Definition 4.12 (complete set of sorts) Given a configuration r = (va)(Ta.p | ¢ | T)
we say that a set of sorts S is complete for the input Ta.p if whenever there is a reduction
sequence starting from r leading to err and whose first reduction is performed by Ta.p, there
s a reduction sequence leading to err where the name taken in input has a sort in S.

Example 4.13 The problem of determining tight bounds on a complete set of sorts is not
trivial. Consider p = (vk) (?a.M{a}tr |?{{c}w }rerr). It is easily checked that the set {0} is
not complete for the input ?a.!{a}r, but the set {(0,0)} is.

If a finite complete set of sorts can be computed then the strategy in figure 2 decides
if r can reach err. We remark that sort constraints are usually assumed in the verification
methods described, e.g., in [11, 14].

Theorem 4.14 Starting from a configuration r the strategy in figure 2 terminates and it
will report an error iff r |, err.

PROOFHINT. Concerning termination, we note that we can perform the loop from step 1 to
step 2(c)(#1) a finite number of times since at every iteration we perform at least one input
action and this decreases the well-founded measure of definition 4.10. We will argue next
that the non-deterministic choices in steps (i), (%), and (%ii) are finitely branching (modulo
injective renaming). This entails the termination of the strategy.

(=) The strategy examines a subset of the reachable configurations and therefore it is
obviously sound.

(<) Let r be the initial configuration. The rewriting in step 1 terminates in a configuration
r’ by lemma 4.11. By iterated application of lemma 4.6 and lemma 4.3, if r |, err then
r' | err.

In step 2(b), if we have not reached err then we can safely claim by lemma 4.11(4) that
err is not reachable.

INRIA
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In step 2(c)(éi), we know, by lemma 4.9, that if there is a sequence that leads to error
then there is a sequence that leads to error whose initial sequence of (let?) is bounded by
the sorts’ measure. By lemma 4.5, there is a finite number of sequences of (let?) reductions
of a given length (modulo injective renaming). Thus there are a finite number of cases to
consider.

In step 2(c)(444), we apply again lemma 4.4 to conclude that there are a finite number of
cases to consider modulo injective renaming. QED

It is not difficult to generate effectively a positive boolean combination of equational
constraints on sorts which determines the general shape of the input variables. As above, we
consider configurations r = (va) (p | T') such that p does not contain recursive definitions.
Let p1,...,p, be the list of all sequential threads resulting from the interleaving of the
actions in p. We remark that to determine whether r |, err it is sufficient to check whether
34 (va)(pi | T) |« err. Therefore, without loss of generality, we consider processes that
do not contain parallel composition. We also assume that all bound names in r are distinct
and different from the free names. To every name a we associate a distinct sort variable s,
ranging over Srt. We define a function E from configurations to constraints as follows:

E(r) = NA{so=srtr(a)]|ae€n(T)}IA
A{sa =0]a € (fa(r) U {a})\n(T)}A
E(p)

where E(p) is inductively defined on the structure of the sequential thread p as follows:

E(0) = false E([a =b]p,q) = ((sa = s5) A E(p)) V E(q)
E(err) = true E((va)p) = (sa = 0) A E(p)
E(la.p) = E(p)  E(let a ={b}. in p) = (sa = (sb,sc)) A E(p)
E(?a.p) = E(p)  E(case {b}. =a in p) = (sa = (sb,sc)) A E(p)
With every run which reaches err, say r —* 7' | err we associate an assignment p =
(8¢; = 81) A=+ A(Sc, = 8p) where ¢1,...,c, are the input variables which are actually
instantiated in the run and s1,..., s, are the corresponding sorts of the names provided by

the environment. The assignment p satisfies the constraints E(r).

Proposition 4.15 Ifr —* 7' | err and p is the corresponding assignment of input variables
then E(r) A p is consistent.

PROOFHINT. By induction on the length of the reduction r —* 7’. QED

For instance, in example 4.13, we can deduce that the sort of the input on the right hand
side must have the shape ((s,0),0). Of course, there are infinitely many sorts of this shape
and therefore proposition 4.15 does not provide a finite complete set of sorts. It remains to
be seen whether symbolic representations of the configurations can yield stronger decidability
results.
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