Skip to main content

Recent Developments in the Theory of Arrangements of Surfaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1738))

Abstract

We review recent progress in the study of arrangements of surfaces in higher dimensions. This progress involves new and nearly tight bounds on the complexity of lower envelopes, single cells, zones, and other substructures in such arrangements, and the design of efficient algorithms (near optimal in the worst case) for constructing and manipulating these structures. We then present applications of the new results to a variety of problems in computational geometry and its applications, including motion planning, Voronoi diagrams, union of geometric objects, visibility, and geometric optimization.

Workon this paper has been supported by NSF Grant CCR-97-32101, by a grant from the U.S.-Israeli Binational Science Foundation, by the ESPRIT IV LTR project No. 21957 (CGAL), and by the Hermann Minkowski—MINERVA Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Agarwal, B. Aronov, S. Har-Peled and M. Sharir, Approximation and exact algorithms for minimum-width annuli and shells, Proc. 15th ACM Symp. on Computational Geometry (1999), 380–389. 16

    Google Scholar 

  2. P.K. Agarwal, B. Aronov and M. Sharir, Computing envelopes in four dimensions with applications, SIAM J. Comput. 26 (1997), 1714–1732. 3, 6, 6, 15, 16, 16

    Article  MATH  MathSciNet  Google Scholar 

  3. P.K. Agarwal, B. Aronov, M. Sharir and S. Suri, Selecting distances in the plane, Algorithmica 9 (1993), 495–514. 15

    Article  MATH  MathSciNet  Google Scholar 

  4. P.K. Agarwal, A. Efrat and M. Sharir, Vertical decompositions of shallow levels in arrangements and their applications, Proc. 11th ACM Symp. on Computational Geometry (1995), 39–50. Also to appear in SIAM J. Comput. 12, 16

    Google Scholar 

  5. P.K. Agarwal, A. Efrat, M. Sharir and S. Toledo, Computing a segment-center for a planar point set, J. Algorithms 15 (1993), 314–323. 15

    Article  MATH  MathSciNet  Google Scholar 

  6. P.K. Agarwal, L. Guibas, S. Har-Peled, A. Rabinovitch and M. Sharir, Computing exact and approximate shortest separating translations of convex polytopes in three dimensions, in preparation. 16

    Google Scholar 

  7. P.K. Agarwal, O. Schwarzkopf and M. Sharir, The overlay of lower envelopes in 3-space and its applications, Discrete Comput. Geom. 15 (1996), 1–13. 6, 6, 6, 7, 7, 12, 16, 16

    Article  MATH  MathSciNet  Google Scholar 

  8. P.K. Agarwal and M. Sharir, On the number of views of polyhedral terrains, Discrete Comput. Geom. 12 (1994), 177–182. 14

    Article  MATH  MathSciNet  Google Scholar 

  9. P.K. Agarwal and M. Sharir, Efficient algorithms for geometric optimization, ACM Computing Surveys 30 (1998), 412–458. 15

    Article  Google Scholar 

  10. P.K. Agarwal and M. Sharir, Efficient randomized algorithms for some geometric optimization problems, Discrete Comput. Geom. 16 (1996), 317–337. 3, 15, 15, 16, 16

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Agarwal and M. Sharir, Pipes, cigars and kreplach: The union of Minkowski sums in three dimensions, Proc. 15th ACM Symp. on Computational Geometry (1999), 143–153. 10

    Google Scholar 

  12. P. Agarwal, M. Sharir and P. Shor, Sharp upper and lower bounds for the length of general Davenport Schinzel sequences, J. Combin. Theory, Ser. A 52 (1989), 228–274. 4

    Article  MATH  MathSciNet  Google Scholar 

  13. P.K. Agarwal, M. Sharir and S. Toledo, New applications of parametric searching in computational geometry. J. Algorithms 17 (1994), 292–318. 16, 16

    Article  MathSciNet  Google Scholar 

  14. B. Aronov, M. Pellegrini and M. Sharir, On the zone of a surface in a hyperplane arrangement, Discrete Comput. Geom. 9 (1993), 177–186. 8

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Aronov, personal communication, 1995. 10, 10

    Google Scholar 

  16. B. Aronov and M. Sharir, The union of convex polyhedra in three dimensions, Proc. 34th IEEE Symp. on Foundations of Computer Science (1993), 518–527. 10, 18

    Google Scholar 

  17. B. Aronov and M. Sharir, Castles in the air revisited, Discrete Comput. Geom. 12 (1994), 119–150. 7, 7, 8

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Aronov and M. Sharir, On translational motion planning of a convex polyhedron in 3-space, SIAM J. Comput. 26 (1997), 1785–1803. 10, 10

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Aronov, M. Sharir and B. Tagansky, The union of convex polyhedra in three dimensions, SIAM J. Comput. 26 (1997), 1670–1688 (a revised version of [16]). 10

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Aurenhammer, Voronoi diagrams-A survey of a fundamental geometric data structure, ACM Computing Surveys 23 (1991), 346–405. 2

    Article  Google Scholar 

  21. S. Basu, On the combinatorial and topological complexity of a single cell, Proc. 39th Annu. IEEE Sympos. Found. Comput. Sci., 1998, 606–616. 7, 7, 8, 8

    Google Scholar 

  22. J.D. Boissonnat and K. Dobrindt, Randomized construction of the upper envelope of triangles in IR3, Proc. 4th Canadian Conf. on Computational Geometry (1992), 311–315. 6

    Google Scholar 

  23. J.D. Boissonnat and K. Dobrindt, On-line randomized construction of the upper envelope of triangles and surface patches in IR3, Comp. Geom. Theory Appls. 5 (1996), 303–320. 6

    MATH  MathSciNet  Google Scholar 

  24. J.D. Boissonnat, M. Sharir, B. Tagansky and M. Yvinec, Voronoi diagrams in higher dimensions under certain polyhedral distance functions, Discrete Comput. Geom. 19 (1998), 485–519. 9, 9, 11

    Article  MATH  MathSciNet  Google Scholar 

  25. K.W. Bowyer and C.R. Dyer, Aspect graphs: An introduction and survey of recent results, Int. J. of Imaging Systems and Technology 2 (1990), 315–328. 13

    Article  Google Scholar 

  26. B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, A singly exponential strati-fication scheme for real semi-algebraic varieties and its applications, Proc. 16th Int. Colloq. on Automata, Languages and Programming (1989), 179–193. 12

    Google Scholar 

  27. B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, Diameter, width, closest line pair, and parametric searching, Discrete Comput. Geom. 10 (1993), 183–196. 3, 15

    Article  MATH  MathSciNet  Google Scholar 

  28. L.P. Chew, Near-quadratic bounds for the L1 Voronoi diagram of moving points, Proc. 5th Canadian Conf. on Computational Geometry (1993), 364–369. 9

    Google Scholar 

  29. L.P. Chew, K. Kedem, M. Sharir, B. Tagansky and E. Welzl, Voronoi diagrams of lines in three dimensions under polyhedral convex distance functions, J. Algorithms 29 (1998), 238–255. 9

    Article  MATH  MathSciNet  Google Scholar 

  30. K.L. Clarkson, New applications of random sampling in computational geometry, Discrete Comput. Geom. 2 (1987), 195–222. 11

    Article  MATH  MathSciNet  Google Scholar 

  31. K.L. Clarkson and P.W. Shor, Applications of random sampling in computational geometry, II, Discrete Comput. Geom. 4 (1989), 387–421.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. de Berg, personal communication, 1993. 14

    Google Scholar 

  33. M. de Berg, K. Dobrindt and O. Schwarzkopf, On lazy randomized incremental construction, Discrete Comput. Geom. 14 (1995), 261–286. 6

    Article  MATH  MathSciNet  Google Scholar 

  34. M. de Berg, L. Guibas and D. Halperin, Vertical decomposition for triangles in 3-space, Discrete Comput. Geom. 15 (1996), 35–61. 13

    Article  MATH  MathSciNet  Google Scholar 

  35. M. de Berg, D. Halperin, M. Overmars and M. van Kreveld, Sparse arrangements and the number of views of polyhedral scenes, Internat. J. Comput. Geom. Appl. 7 (1997), 175–195. 14, 15

    Article  MathSciNet  Google Scholar 

  36. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg 1987. 1, 2, 3, 5, 8, 8

    MATH  Google Scholar 

  37. H. Edelsbrunner, The upper envelope of piecewise linear functions: Tight complexity bounds in higher dimensions, Discrete Comput. Geom. 4 (1989), 337–343. 5

    Article  MATH  MathSciNet  Google Scholar 

  38. H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel and M. Sharir, Arrangements of curves in the plane: topology, combinatorics, and algorithms, Theoret. Comput. Sci. 92 (1992), 319–336. 8

    Article  MATH  MathSciNet  Google Scholar 

  39. H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Comput. Geom. 1 (1986), 25–44. 2

    Article  MATH  MathSciNet  Google Scholar 

  40. H. Edelsbrunner, R. Seidel and M. Sharir, On the zone theorem for hyperplane arrangements, SIAM J. Comput. 22 (1993), 418–429. 8

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Efrat and M. Sharir, A near-linear algorithm for the planar segment center problem, Discrete Comput. Geom. 16 (1996), 239–257. 15

    Article  MATH  MathSciNet  Google Scholar 

  42. J.-J. Fu and R.C.T. Lee, Voronoi diagrams of moving points in the plane, Internat. J. Comput. Geom. Appl. 1 (1994), 23–32. 9

    Article  MathSciNet  Google Scholar 

  43. L. Guibas, D. Halperin, J. Matoušek and M. Sharir, On vertical decomposition of arrangements of hyperplanes in four dimensions, Discrete Comput. Geom. 14 (1995), 113–122. 12

    Article  MATH  MathSciNet  Google Scholar 

  44. L. Guibas, J. Mitchell and T. Roos, Voronoi diagrams of moving points in the plane, Proc. 17th Internat. Workshop Graph-Theoret. Concepts Computer Science, Lecture Notes in Comp. Sci., vol. 570, Springer-Verlag, pp. 113–125. 9

    Google Scholar 

  45. L. Guibas and M. Sharir, Combinatorics and algorithms of arrangements, in New Trends in Discrete and Computational Geometry, (J. Pach, Ed.), Springer-Verlag, 1993, 9–36. 4

    Google Scholar 

  46. L. Guibas, M. Sharir and S. Sifrony, On the general motion planning problem with two degrees of freedom, Discrete Comput. Geom. 4 (1989), 491–521. 7

    Article  MATH  MathSciNet  Google Scholar 

  47. D. Halperin, On the complexity of a single cell in certain arrangements of surfaces in 3-space, Discrete Comput. Geom. 11 (1994), 1–33. 7

    Article  MATH  MathSciNet  Google Scholar 

  48. D. Halperin and M. Sharir, Near-quadratic bounds for the motion planning problem for a polygon in a polygonal environment, Discrete Comput. Geom. 16 (1996), 121–134. 7, 7

    Article  MATH  MathSciNet  Google Scholar 

  49. D. Halperin and M. Sharir, New bounds for lower envelopes in three dimensions with applications to visibility of terrains, Discrete Comput. Geom. 12 (1994), 313–326. 5, 13, 14, 14

    Article  MATH  MathSciNet  Google Scholar 

  50. D. Halperin and M. Sharir, Almost tight upper bounds for the single cell and zone problems in three dimensions, Discrete Comput. Geom. 14 (1995), 285–410. 7, 7, 7, 8

    Article  Google Scholar 

  51. D. Halperin, Arrangements, in Handbook of Discrete and Computational Geometry (J.E. Goodman and J. O’Rourke, Editors), CRC Press, Boca Raton, FL, 1997, 389–412. 4

    Google Scholar 

  52. D. Halperin and M. Sharir, Arrangements and their applications in robotics: Recent developments, Proc. Workshop on Algorithmic Foundations of Robotics (K. Goldberg et al., Editors), A. K. Peters, Boston, MA, 1995, 495–511. 4

    Google Scholar 

  53. D. Halperin and C.-K. Yap, Complexity of translating a box in polyhedral 3-space, Proc. 9th Annu. ACM Sympos. Comput. Geom. 1993, 29–37. 10

    Google Scholar 

  54. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica 6 (1986), 151–177. 4, 4, 5

    Article  MATH  MathSciNet  Google Scholar 

  55. D. Haussler and E. Welzl, ε-nets and simplex range queries, Discrete Comput. Geom. 2 (1987), 127–151. 11

    Article  MATH  MathSciNet  Google Scholar 

  56. J. Heintz, T. Recio and M.F. Roy, Algorithms in real algebraic geometry and applications to computational geometry, in Discrete and Computational Geometry: Papers from DIMACS Special Year, (J. Goodman, R. Pollack, and W. Steiger, Eds.), American Mathematical Society, Providence, RI, 137–163. 4

    Google Scholar 

  57. K. Kedem and M. Sharir, An efficient motion planning algorithm for a convex rigid polygonal object in 2-dimensional polygonal space, Discrete Comput. Geom. 5 (1990), 43–75. 15

    Article  MATH  MathSciNet  Google Scholar 

  58. K. Kedem, M. Sharir and S. Toledo, On critical orientations in the Kedem-Sharir motion planning algorithm, Discrete Comput. Geom. 17 (1997), 227–239. 15

    Article  MATH  MathSciNet  Google Scholar 

  59. J. Komlós, J. Pach and G. Woeginger, Almost tight bound on epsilon-nets, Discrete Comput. Geom. 7 (1992), 163–173. 11

    Article  MATH  MathSciNet  Google Scholar 

  60. D. Leven and M. Sharir, Intersection and proximity problems and Voronoi diagrams, in Advances in Robotics, Vol. I, (J. Schwartz and C. Yap, Eds.), 1987, 187–228. 2

    Google Scholar 

  61. J. Matoušek, Approximations and optimal geometric divide-and-conquer, J. Comput. Syst. Sci. 50 (1995), 203–208. 11

    Article  Google Scholar 

  62. P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture, Lecture Notes Ser. 3, Cambridge University Press, Cambridge, England, 1971. 5

    MATH  Google Scholar 

  63. N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. ACM 30, 852–865. 15

    Google Scholar 

  64. B. Mishra, Computational real algebraic geometry, in Handbook of Discrete and Computational Geometry (J.E. Goodman and J. O’Rourke, Eds.), CRC Press LLC, Boca Raton, FL, 1997, 537–556. 4

    Google Scholar 

  65. J. Pach and M. Sharir, The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates: Combinatorial analysis, Discrete Comput. Geom. 4 (1989), 291–309. 5

    Article  MATH  MathSciNet  Google Scholar 

  66. M. Pellegrini, On lines missing polyhedral sets in 3-space, Proc. 9th ACM Symp. on Computational Geometry (1993), 19–28. 14

    Google Scholar 

  67. H. Plantinga and C. Dyer, Visibility, occlusion, and the aspect graph, Internat. J. Computer Vision, 5 (1990), 137–160. 14, 15

    Article  Google Scholar 

  68. F. Preparata and M. Shamos, Computational Gemetry: An Introduction, Springer-Verlag, Heidelberg, 1985. 2

    Google Scholar 

  69. J.T. Schwartz and M. Sharir, On the Piano Movers’ problem: II. General techniques for computing topological properties of real algebraic manifolds, Advances in Appl. Math. 4 (1983), 298–351. 4

    Article  MATH  MathSciNet  Google Scholar 

  70. O. Schwarzkopf and M. Sharir, Vertical decomposition of a single cell in a 3-dimensional arrangement of surfaces, Discrete Comput. Geom. 18 (1997), 269–288. 7, 12, 13

    Article  MATH  MathSciNet  Google Scholar 

  71. M. Sharir, On k-sets in arrangements of curves and surfaces, Discrete Comput. Geom. 6 (1991), 593–613.

    Article  MATH  MathSciNet  Google Scholar 

  72. M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete Comput. Geom. 12 (1994), 327–345. 5, 6, 9

    Article  MATH  MathSciNet  Google Scholar 

  73. M. Sharir, Arrangements in higher dimensions: Voronoi diagrams, motion planning, and other applications, Proc. Workshop on Algorithms and Data Structures, Ottawa, Canada, August, 1995, Lecture Notes in Computer Science, Vol. 955, Springer-Verlag, 109–121. 4

    Google Scholar 

  74. M. Sharir, Arrangements of surfaces in higher dimensions, in Advances in Discrete and Computational Geometry (Proc. 1996 AMS Mt. Holyoke Summer Research Conference, B. Chazelle, J.E. Goodman and R. Pollack, Eds.) Contemporary Mathematics No. 223, American Mathematical Society, 1999, 335–353. 4

    Google Scholar 

  75. M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, New York, 1995. 4, 4, 5

    MATH  Google Scholar 

  76. M. Sharir and S. Toledo, Extremal polygon containment problems, Comput. Geom. Theory Appls. 4 (1994), 99–118. 15

    MATH  MathSciNet  Google Scholar 

  77. B. Tagansky, A new technique for analyzing substructures in arrangements, Discrete Comput. Geom. 16 (1996), 455–479. 7, 8, 13, 13

    Article  MATH  MathSciNet  Google Scholar 

  78. B. Tagansky, The Complexity of Substructures in Arrangements of Surfaces, Ph.D. Dissertation, Tel Aviv University, July 1996. 9

    Google Scholar 

  79. P.M. Vaidya, Geometry helps in matching, SIAM J. Comput. 18 (1989), 1201–1225. 16

    Article  MATH  MathSciNet  Google Scholar 

  80. A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzel sequences by segments, Discrete Comput. Geom. 3 (1988), 15–47. 5

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sharir, M. (1999). Recent Developments in the Theory of Arrangements of Surfaces. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1999. Lecture Notes in Computer Science, vol 1738. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46691-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46691-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66836-7

  • Online ISBN: 978-3-540-46691-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics