Skip to main content

Analysis of Quantum Functions

(Preliminary Version)

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1738))

Abstract

Quantum functions are functions that are defined in terms of quantum mechanical computation. Besides quantum computable functions, we study quantum probability functions, which compute the acceptance probability of quantum computation. We also investigate quantum gap functions, which compute the gap between acceptance and rejection probabilities of quantum computation.

This work was partly supported by NSERC Fellowship and DIMACS Fellowship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Adleman, J. DeMarrais, and M. A. Huang, Quantum computability, SIAM J. Comput., 26 (1997), 1524–1540. 414, 415, 416

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Benioff, The computer as a Physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys., 22 (1980), 563–591. 407

    Article  MathSciNet  Google Scholar 

  3. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput., 26 (1997), 1510–1523. 410, 415, 415, 417, 418

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997), 1411–1473. 407, 408, 408, 408, 409, 411, 415

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Brassard, P. Høyer, and A. Tapp, Quantum counting, Proc. 25th International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science, Vol.1443, pp.820–831, 1998. 410

    Chapter  Google Scholar 

  6. D. Deutsch, Quantum theory, the Church-Turing principle, and the universal quantum computer, Proc. Roy. Soc. London, A, 400 (1985), 97–117. 407, 408

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Fenner, L. Fortnow, S. Kurtz, and L. Li, An oracle builder’s toolkit, Proc. 8th IEEE Conference on Structure in Complexity Theory, pp.120–131, 1993. 415

    Google Scholar 

  8. S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes, J. Comput. and System Sci., 48 (1994), 116–148. 408, 413, 415

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Fenner, F. Green, S. Homer, and R. Pruim, Determining acceptance possibility for a quantum computation is hard for PH, Proc. 6th Italian Conference on Theoretical Computer Science, World-Scientific, Singapore, pp.241–252, 1998. 412

    Google Scholar 

  10. R. Feynman, Simulating Physics with computers, Intern. J. Theoret. Phys., 21 (1982), 467–488. 407

    Article  MathSciNet  Google Scholar 

  11. L. Fortnow and J. Rogers, Complexity limitations on quantum computation, Proc. 13th IEEE Conference on Computational Complexity, pp.202–209, 1998. 414

    Google Scholar 

  12. L. Grover, A fast quantum mechanical algorithm for database search, Proc. 28th ACM Symposium on Theory of Computing, pp.212–219, 1996. 410

    Google Scholar 

  13. L. G. Valiant, The complexity of computing the permanent, Theor. Comput. Sci., 8 (1979), 410–421. 408

    Article  MATH  Google Scholar 

  14. T. Yamakami, A foundation of programming a multi-tape quantum Turing machine, Proc. 24th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol.1672, pp.430–441, 1999. See also LANL quant-ph/9906084. 408, 408, 408, 409, 411, 412, 413, 416

    Google Scholar 

  15. T. Yamakami and A. C. Yao, NQPℂ=co-C=P, to appear in Inform. Process. Lett. See also LANL quant-ph/9812032, 1998. 414

    Google Scholar 

  16. A. C. Yao, Quantum circuit complexity, Proc. 34th IEEE Symposium on Foundation of Computer Science, pp.352–361, 1993. 408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamakami, T. (1999). Analysis of Quantum Functions. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1999. Lecture Notes in Computer Science, vol 1738. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46691-6_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-46691-6_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66836-7

  • Online ISBN: 978-3-540-46691-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics