
A switching closure test to analyze cryptosystems
(Extended abstract)

Hikaru Morita Kazuo Ohta Shoji Miyaguchi
N T T Laboratories

N I T R&D Center (Room 309A), 1-2356 Take Yokosuka Kanagawa 238-03 Japan
Phone: +8 1-468-59-25 14 FAX: +8 1-468-59-3858 E-mail: morita@sucaba.ntt.jp

Abstract
The closure test MCT (meet-in-the-middle closure test) was introduced to analyze the
algebraic properties of cryptosystems [KaRiSh]. Since MCT needs a large amount of
memory, it is hard to implement with an ordinary meet-in-the-middle method. As a feasible
version of MCT, this paper presents a switching closure test S C T which based on a new
memoryless meet-in-the-middle method. To achieve the rnemoryless method, appropriate
techniques, such as expansion of cycling detection methods for one function into a method
for two funcaons and an efficient intersection search method that uses only a small amount
of memory, are used in an extremely effective manner.

1. Introduction
There are two approaches in cryptography to analyzing the security levels of cryptosystems.
The first is to develop unique attacks for each cryptosystem. This utilizes the idiosyncrasies
of each cryptosystem. The second approach is to analyze cryptosystems to find their
features such as algebraic or statistical structures; the cryptosystems are regarded as
black-box functions. The latter appruach is important because you can accumulate knowledge
of cryptosystems with a common framework.

Even if you find the statistical structure of a cryptosystem, you do not automatically
know of a useful method to attack the cryptosystem. To find the algebraic structure of
cryptosystems in general, Kaliski et al. [KaRiSh] proposed two closure tests: CCT (cycling
closure test) and MCT (meet-in-the-middle closure test). These tests can detect features
such as algebraic closure. Moreover, Kaliski et al. also proposed two cryptattack methods
based on the algebraic features. CCT experiments performed by Kaliski et al. detected that
DES is not closed.

Generally, both CCT and MCT can determine if a cryptosystem is closed or not. If
a cryptosystem is closed, they give the same results "Fail", which means the cryptosystem
might be brcakable. However, i f a cryptosystem is not closed, you cannot be sure that they
will give the same results "Pass" because it isn't known whether CCT and MCT can detect
the same dgeoraic structure or not. Our interest was that MCT might prove to be a fertile
avenue for cryptographic research. MCT offers the possibility of extracting information
from a not-closed cryptosystem that would ailow the cryptosystem to be broken. Moreover,
a cryptosystem may fail under MCT even if it passes CCT.

J. Feigenbaum (Ed.): Advances in Cryptology - CRYPT0 '91, LNCS 576, pp. 183-193, 1992
0 Spnnger-Verlag Berlin Heidelberg 1992

184

CCT needs (operation) time of O(m) and a small amount of (memory) space
where IKI is the size of key space K of the cryptosystem. However, MCT needs space
and time of O(m). No feasible method to achieve the meet-in-the-middle strategy, which
MCT uses, has been proposed because the strategy needs a lot of memory.

In this paper, we present a switching closure test (S o as a feasible version of
MCT by using a memoryless method. Up to now, though the memoryless method has
been applied to collision search [QuDe], this paper applies it for the first time to a closure
test for cryptosystems. Section 2 gives the background of our research. Section 3 shows
the procedures of S n . Section 4 describes a feasibility study that confirms Sm performance.
The paper is concluded in Section 5.

2. Background
2.1 What is a closure structure?
The below explanation of closure structure follows [KaRiSh].

Let us denote a cryptosystem Il = (K , M , C , E) , where K , M, C are key space,
message space, and ciphertext space, respectively and E:K x M -+ C is a transformation
such that, for k E K , the mapping E, = E(k , .) is invertible.
[Definition 11
n = (K , M , C , E) is closed if and only if its set of encryption transformations, (E,lk E K }
is closed under functional composition, i.e., for every two keys i, j E K there exists a key
k E K such that E,Ei = Ek .

Kaliski et al. presented two closure tests, MCT and CCT, for determining if a
cryptosystem is closed or not. If the cryptosystem passes either test, then it is not closed
with high probability. Though CCT was implemented in [KaRiSh], no feasible method has
been presented to achieve MCT, because it uses O(m) operation time and O (m)
memory space.

MCT is based on the following property which is satisfied by closed cryptosystems.
[Property 11
Let Il = (K , M,C, E) satisfy M = C , the number of {Eklk E K} be m, and k E K be any
key. If n = (K , M , M , E) is closed, then there are exactly m pairs of keys (i, j) such that
E,E, = Ek .

2.2 Meet-in-the-middle closure test (MCT) [KaRiSh]
MCT works as follows: given n = (K , M , M , E) , pick any key k E K and search for keys
a,b E K such that Ek = E,E,. To search for them, you use a standard "meet-in-the-middle"
strategy. The MCT procedure is shown in Fig. 2.1.

Suppose that a pair (p , c) is given where c = E k (p) . If ll is closed, then property 1
above means that there are rn pairs (i, j) among all m2 key pairs satisfying EjE, = Ek -

185

rn
rn

Therefore, the probability of a match between { E , (p) } and [E;'(c)] is qr, 2. where r, is

the number of elements of { E , (p) } and r, is the number of elements of [E;'(c)]. If n is

closed, m = O(lKI), and r,r2 = O(rn), then we can find a pair (i , j) such that EfE, = E, with
high probability.

If there is no match in MCT under the condition r,rz = O(rn), you can conclude that
the cryptosystem is not closed with confidence. Note that MCT requires r, operations of
E , (p) , r, operations of E;'(c) and at least r, or r, memory space. If r, =rz, which is
optimal from the standpoint of operation number, r, = r2 = O(&).

input: a cryptosystem n= (K , M , M , E) and integer control parameters 5, r2, 1.

Step 1. Pick k E K andp,,p,;--,p, E M at random.
For 1 = 1 to f , compute c, = E(k , 0,).
Let p = p1 and c = c,.

Step 2. For i = 1 to ti a n d j = 1 to rz, select ax,b, E K at random

andcornputex, =E(u , ,p) andy, = E-'(b,,c).

Step 3. Sort triples (xt,a,,"A') for 1 I I

and (y,,b,,"B") for 1 I j I r, on the first components.

Step 4. For each "match" x, = yf with 1 I 1 < r, and 1 I j I r,,

if Ek = Eb Ea , then return ("Match found').

(To test if E, = E, E,, , stanstically venfy that c,, = E(b,,E(u,,p,)) for all 15 h 21.1
I '

Step 5. return("No match found").

Fig. 2.1 Meet-in-the-middle closure test (MCT) procedure

2.3 Related Work
The meet-in-the-middle strategy is effective in cryptography [DiHe, QuDel.

In [DiHe], this strategy is used to find a key pair (k,,k) from a pair (p , c) in the
double-encryption cryptosystem, where c = E (k , , E (& , p)) . If an exhaustive key search is

used, O(IKr) operations are needed. If a meet-in-the-middle strategy is applied, only
O(lK1) operations and O(lK1) memory space are required.

Quiquateret al. developed the meet-in-the-middle technique with O(m) operations
without memory. The technique was applied to find collisions of hash functions [QuDel .

Collision is not a problem for a hash function since collision is only based on the
hash-function's randomness. On the other hand, if a pair of keys (4,s) is found for a
cryptosystem by using MCT, it implies that the cryptosystem is vulnerable.

186

3. Switching closure test (SCT) procedure
This section introduces the memoryless procedure needed to make the ordinary meet-in-
thc-middle method feasible and shows how to apply the procedure to a closure test.

3.1 Memoryless meet-in-the-middle procedure
We propose the memoryless meet-in-the-middle procedure in Fig. 3.1. In the procedure,
the penod-length search requirerl by Steps 2 and 6, is given in Paragraph (1). The intersection-
point search of Steps 3 and 7 is described in Paragraph (2). If the random function h is
defined as shown in Paragraph (3). the intersection-point search can be expanded into the
collision-point search for a meet-in-the-middle method

input: a function h (x) switchingf(x) or g (x) and an integer control parameter t .

Step 1. Pick x t ' E M for i = 1,2,-.-,r at random.
Step 2. i = 1.

Search period - length il for sequence S") started from x t) .
(where S'" = {xt;",x~",...})

Step 3. Search for an intersection point in the sequenceS'".

Step 4. If the intersection point found is the collision point inS"' wheref(x) and g (y) meet

then retum(x,y).

Step 5. i = i + l .

Step 6. Search period - length A for the sequence S'" started from x:)

and check that the new sequence S(i) meets the previous sequnces

(s"',s'Z',S'"; .., s('-I)l*
Step 7. Search for a new intersection point in S") or between S(') and S"' (1 I j 5 i - 1).

If the intersection point found is the collision point in S(i) or between S(il and S"'

wheref(x) and g(y) meet, then return(x,y).
Step 8. Go to Step 5.

Fig. 3.1 Memoryless meet-in-the-middle procedure

(1) Period-length search [Kn, SeSzYa]
If the random function h generates values x , the "Birthday Paradox" states that the random
sequence S = (xo ,xI , - . .> has a period whose length is O(m), where xi+] = h (x i) and 1x1
shows the size of X space. When the sequence {xo,xl,---} is plotted on directed graphs, it
can be drawn as shown in Fig.3.2 (a).

(a) Original sequence (b) Two sequences
contains Point I meet at Point I1

Fig. 3.2 Sequences on directed graphs

Methods to find period-length A have been developed in the design of a random
generator [Kn, SeSzYa]. The methods compare two values xi and x j (i # j) to determine
xi = xA+, . We based our memoryless meet-in-the-middle procedure on these methods.

(2) Intersection search
There are two kind of intersection points as shown in Fig.3.2. Point I is represented by

3l = + p 1) 7 X A + p = h(XA+p-l)>

where xN = xL+# , x,,-~ f

Point I is shown as the junction between a loop and a leader in Fig.3.2 (a). Point I1 in
Fig.3.2 (b) is represented by x:') = h (x / :) and x y = h(xj f :) where x:') = xy) and

x!!\ # xj?, where the superscripts distinguish values of Sequences S'" and S"). To find
Point 11, sequences starting from two different initial values x t) and x g) are needed. It is
known that graphs of the random function It tend to have one giant loop (or component)
and 3 few large leaders (or trees) plod].

In brief, to find Point I, after the period-length A is determined, pairs, (x o , x A) ,
(xI , .xA+,) , -.-, (x i , x I + ,) are compareduntil x, = xl+,, is found. However, this procedure
is inefficient because you need p comparisons and 2p operations of the function h.
Therefore, to overcome this inefficiency, we have developed techniques that require only
O(log,(p)) operations. The techniques will be presented in the full paper version. The
same approach is used to find Point 11.

188

(3) Switching function

Fig. 3.3 Block diagram of h(n) function
To find the match between f (x) and g (x) functions as the collision of the meet-in-the-middle
procedure, let's define h (x) as a switching-type function of f (x) or g (x) condidonally
defined as

f (x) if c f (x) is true,
g (x) if c f (x) is false,

h (x) =
. -

where c f (x) is a conditional function which generates m e or false with 50-% probability
for each value x .

The intersection points found in Paragraph (2) are expected to contain collision
points between f and f with 25 %, between g and g with 25 70, and between f and g
with 50 %. The intersection points between f and g mean the collision points between
two different functions f and g. Consequendy, the meet-in-the-middle procedure succeeds
for two different functions.

3.2 Closure test for cryptography functions
(1) How to apply to a closure test
The SCT procedure is presented in Fig. 3.4. If S C T detects an x and y pair that
satisfies E (x , p) = E-'(y,c) for any (p , c) , the cryptosystem fails in SCI' . On the other
hand, if S C T doesn't detect any x and y pair several times, the cryptosystem passes.

189

input: functionsf(x) 1 E (x , p) and g (x) = E-'(x,c) and integer control parameter 1,f.
Step 1. PickkEKandp,,p, ,-- . ,p, ~ M a t r s n d o m .

For i = 1 to I , compute ci = E (k , p ,) .

Set p = p1 ,c = c,.

Step 2. Call Memoryless Meet -in - the - middle procedure (f,g,t),

then get (x , y) at the collision point.

Step 3. If Ek = EYE,. then return ("Match found")

(TO test if E, = E ~ E ~ , statistically verify c, = ~ (y , ~ (x , p ,)) for all 12 /I 5 [.I
Step 4. return("No match found").

Fig. 3.4 Switching closure test (SCT) procedure

Since we want to find key pairs (k,,k) instead of the real secret key k for any
plaintext and ciphertext pair (p , c) where c = E (4 , E(k , ,p)) and c = E (k , p) , a meet-in-the-
middle method is used to find pairs of x and y which make E (x , p) = E-l(y,c). In the
S C T procedure in Fig. 3.4, S C T verifies that E (x , p) = E-'(y ,c) for any (p ,c) . To simplify
the explanation, we omit functions FE and FD from Fig. 3.4. More precisely, the f and g
functions are defined as shown in Fig. 3.5.

Fig. 3.5 Definitions o f f and g

(2) Strategies & probability to detect closure structure
We have devised two strategies to increase the intersection points in SCT after the first
period-length and intersection-point searches. In Strategy #1, an intersection search is
carried out from another s t m point for the same plaintext and ciphertext pair. Strategy #2 is
to carry out an intersection search for another plaintext and ciphertext pair. Therefore,
Strategy #2 employs both period-length and intersection searches and always finds the
Point I in Fig. 3.2.

If a cryptosystem is closed, their probability of success can be assessed from the
analysis given in Section 2.2. If, finally, '1 values of f and r2 values of g have been
generated by the h function, their probability is approximately given by

190

1 - exp(-2)
where there m m kinds of independent transformations. In Strategy #1, if 6' values of f
and r,' values of g newly appear, its probability becomes

because Strategy # I replaces 5 and r, with (r, +J') and (rz +r2'), respectively. On the
other hand, in Strategy #2. if r,' and r,' values also newly appear, its probability becomes

m
because the first and second searches are independent.

Strategy #2 needs more operations than #l. Strategy #1 has a higher probability of
success than #2 if 6' and r,' have the same values for both strategies. However, Strategy
#2 can be efficiently implemented on parallel processing hardware. Therefore, Strategy #2
is better for hardware implementations.

4. Feasibility study
This section explains the SCI"s detectability of closure property for both symmemc and
asymmemc ciphers. Moreover, we will show that S C T yields a known-plaintext attack
against closed cryptosystems. In the case of a symmetric cipher, if you find the key p a
(4,h) from (p,c) using S C T , wherec = E (k , p) and E, = Ek2 Eh , then you can decipher

any ciphertext c' by E - ' (k , , E - ' (~ , c ')) without a secret key k . However, is it impossible
to attack asymmemc cryptosystems using SCT"? In Section 4.2 we attack a small model of
an RSA cryptosystem.

4.1 Caesar cipher as symmetric cipher
The definition of the Caesar cipher is given as shown;

E (k , p) = p + kmodn,

E- ' (k , c)= c-kmodn.

f (x) = p + x m o d n ,

g (x) =c-xmodn ,

c f (x) = (true i fx is "odd', false if x is "even").

We define functions, f , g , cf, respectively as;

At first, (p , c) = (5,2), and n = 11 are given. Though a secret key k = 8 is kept
secret, Fig. 4.1 is drawn by SCT. If you start from xg) = 1 or xf) = 0 , you find a b p
with A = 3 or A = 2 without the collision point. If you start from xf' = 4, you find a loop
with A = 4 with the collision pointf(9) = g(10). Since you can verify f(9) = g(10) for dl
other plaintext and ciphertext pairs (p , c) = (6,3),(7,4),(8,5),..., the Caesar cipher fails in
S CT.

191

The Caesar cipher is shown to be broken in SCT because plaintext values p 'can be
calculated from ciphertext values c ' b y using p '= E-'(9,E-'(l0,ct)).

8

5

7

==---&- ; function f
r - h ; function g

Caesar cipher in n=77

Fig. 4.1 Caesar cipher

4.2 RSA cryptosystem as asymmetric cipher
This section presents a feasibility study for a small version of RSA [RiShAd]. In this
model, the relation of parameters is:

~ (k , , p) = $0 modn,

E-'(k,,c) = c'd rnocin

(k,k, =lmodL,n=pq.L=LCM(p-l ,q-I)) .

f (x) = px modn,

g (x) = cx modn,

cf(x)=(trueifx>-, falscifxs-).

Thus, we can define functions, f , g , cf, respectively as;

n n
2 2

At first, n = 33, k, = 3, and (p , c) = (13,19) are given. Though secret values
(k , = 7.L = 10) are kept secret, Fig, 4.2 is drawn by SCT. If you search from the initial
value 18, you find period-length ;L = 5 and a collision of f(l8) = f(28). Since SCT
cannot find the collision of f and g , you know chat the collision is wrong.

In Strategy #1, the intersection search is carried out on the same plane from
another start point 12. Then, you can find the collision of f (19) = g(13) which is right for
all pairs (p , c) . On the other hand, in Strategy #2, the intersection search is carried out on
another plane for (p ,c) = (4,31) from another start point 22. You find the right collision of
f(22) = g(4). Thus, RSA fails in SCT.

192

1

31 s (2)

(by Strategy #1)

12

(a) p=13, c=19

Fig. 4.2 Small

31

4

(by Strategy #2)

(b) p=4, ~ = 3 1

; function f
-* ; function g

RSA cryptosystem
in n=33, &=3

model of RSA

Though RSA is an asymmemc cipher, it has one idiosyncrasy that allows it to be
broken. If the right collision of f(x) = gfy) is found, x = k,ymodL must be right Therefore,
since you can know a multiple of L, the composite number n can be factorized by using the
multiple [Mil. In the above example, 22 = 3 x 4 mod 10. However, since commercial RSA
schemes use n greater than 2500, S C T would need more than 2=' operations; RSA is not
menaced by SCT.

5. Conclusion
A switching closure test SCT based on a new memoryless meet-in-the-rniddle procedure
has been proposed as a feasible version of MCI'. To achieve the memoryless procedure,
several techniques, the most important of which are expansion of cycling detection methods
for one function into a method for two functions and an efficient intersection search by
using a small amount of memory, are effectively used. Moreover, feasibility studies using
a Caesar cipher and a small model of an RSA cryptosystem have been presented.

We intend to apply SCI ' to various kinds of cryptosystems.

193

References
P M e] W. DZie and M. E. Hellman: "Exhaustive Cryptanalysis of the NBS Data Encryption
Standard," Computer, 10, 6, pp.74-84, June 1977.
[FlOd] P. Flajolet and A. M. Odlyzko: "Random Mapping Statistics," Advances in

Cryptology-EUROCRYP89, Proceedings, pp.329-354, Springer-Verlag, 1990.
[KaRiSh] B. S. Kaliski Jr., R. L. Rivest, and A. T. Sherman: "Is the Data Encryption
Standard a Group? (Results of Cycling Experiments on DES)," J. Cryptology, 1, 1,

[Kn] D. E. Knuth: Exercise 3.1 No. 7, "The Art of Computer Programming 2nd ed.
(Seminumerical Algorithms)," Addison-Wesley, 1981.
[Mi] G. L. Miller: "Riemann's hypothesis and tests for primality," J.Computer and System
Science, 13, pp.300-317, 1976.
[QuDe] J.-J. Quisquater and J.-P. Delescaille: "How Easy is Collision Search. New
Results and Applications to DES," Advances in Cryptology-CRYPT0'89, Proceedings,
pp.408-413, Springer-Verlag. 1990.
[RiShAd] R. L. Rivest, A. Shamir, and L. Adleman: "A Method of Obtaining Digital
Signatures and Public Key Cryptosystems," Comrn. of ACM, pp.120-126, Feb. 1978.
[SeSzYa] R. Sedgewick, T. G. Szymanski, and A. C. Yao: "The Complexity of Finding
Cycles in Periodic Functions," S U M J. Cornp., 11, 2, pp.376-390, May 1982.

pp.3-36, 1988.

	Introduction
	Background
	What is a closure structure?
	Meet-in-the-middle closure test (MCT) [KaRiSh]
	Related Work

	Switching closure test (SCT) procedure
	Memoryless meet-in-the-middle procedure
	Closure test for cryptography functions

	Feasibility study
	Caesar cipher as symmetric cipher
	RSA cryptosystem as asymmetric cipher

	Conclusion
	References

