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Abstract 
The closure test MCT (meet-in-the-middle closure test) was introduced to analyze the 
algebraic properties of cryptosystems [KaRiSh]. Since MCT needs a large amount of 
memory, it is hard to implement with an ordinary meet-in-the-middle method. As a feasible 
version of MCT, this paper presents a switching closure test S C T  which based on a new 
memoryless meet-in-the-middle method. To achieve the rnemoryless method, appropriate 
techniques, such as expansion of cycling detection methods for one function into a method 
for two funcaons and an efficient intersection search method that uses only a small amount 
of memory, are used in an extremely effective manner. 

1. Introduction 
There are two approaches in cryptography to analyzing the security levels of cryptosystems. 
The first is to develop unique attacks for each cryptosystem. This utilizes the idiosyncrasies 
of each cryptosystem. The second approach is to analyze cryptosystems to find their 
features such as algebraic or statistical structures; the cryptosystems are regarded as 
black-box functions. The latter appruach is important because you can accumulate knowledge 
of cryptosystems with a common framework. 

Even if you find the statistical structure of a cryptosystem, you do not automatically 
know of a useful method to attack the cryptosystem. To find the algebraic structure of 
cryptosystems in general, Kaliski et al. [KaRiSh] proposed two closure tests: CCT (cycling 
closure test) and MCT (meet-in-the-middle closure test). These tests can detect features 
such as algebraic closure. Moreover, Kaliski et al. also proposed two cryptattack methods 
based on the algebraic features. CCT experiments performed by Kaliski et al. detected that 
DES is not closed. 

Generally, both CCT and MCT can determine if a cryptosystem is closed or not. If 
a cryptosystem is closed, they give the same results "Fail", which means the cryptosystem 
might be brcakable. However, i f a  cryptosystem is not closed, you cannot be sure that they 
will give the same results "Pass" because it isn't known whether CCT and MCT can detect 
the same dgeoraic structure or not. Our interest was that MCT might prove to be a fertile 
avenue for cryptographic research. MCT offers the possibility of extracting information 
from a not-closed cryptosystem that would ailow the cryptosystem to be broken. Moreover, 
a cryptosystem may fail under MCT even if it passes CCT. 
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CCT needs (operation) time of O(m) and a small amount of (memory) space 
where IKI is the size of key space K of the cryptosystem. However, MCT needs space 
and time of O(m). No feasible method to achieve the meet-in-the-middle strategy, which 
MCT uses, has been proposed because the strategy needs a lot of memory. 

In this paper, we present a switching closure test ( S o  as a feasible version of 
MCT by using a memoryless method. Up to now, though the memoryless method has 
been applied to collision search [QuDe], this paper applies it for the first time to a closure 
test for cryptosystems. Section 2 gives the background of our research. Section 3 shows 
the procedures of S n .  Section 4 describes a feasibility study that confirms Sm performance. 
The paper is concluded in Section 5. 

2. Background 
2.1 What is a closure structure? 
The below explanation of closure structure follows [KaRiSh]. 

Let us denote a cryptosystem Il = ( K , M , C ,  E ) ,  where K ,  M, C are key space, 
message space, and ciphertext space, respectively and E:K x M -+ C is a transformation 
such that, for k E K ,  the mapping E, = E(k , . )  is invertible. 
[Definition 11 
n = ( K , M , C , E )  is closed if and only if its set of encryption transformations, (E,lk E K }  
is closed under functional composition, i.e., for every two keys i, j E K there exists a key 
k E K such that E,Ei = Ek . 

Kaliski et al. presented two closure tests, MCT and CCT, for determining if a 
cryptosystem is closed or not. If the cryptosystem passes either test, then it is not closed 
with high probability. Though CCT was implemented in [KaRiSh], no feasible method has 
been presented to achieve MCT, because it uses O(m) operation time and O ( m )  
memory space. 

MCT is based on the following property which is satisfied by closed cryptosystems. 
[Property 11 
Let Il = ( K ,  M,C, E )  satisfy M = C ,  the number of {Eklk E K} be m, and k E K be any 
key. If n = ( K ,  M ,  M ,  E )  is closed, then there are exactly m pairs of keys (i, j) such that 
E,E, = Ek . 

2.2 Meet-in-the-middle closure test (MCT) [KaRiSh] 
MCT works as follows: given n =  ( K , M , M ,  E) ,  pick any key k E K and search for keys 
a,b E K such that Ek = E,E,. To search for them, you use a standard "meet-in-the-middle" 
strategy. The MCT procedure is shown in Fig. 2.1. 

Suppose that a pair ( p , c )  is given where c = E k ( p ) .  If ll is closed, then property 1 
above means that there are rn pairs (i, j )  among all m2 key pairs satisfying EjE, = Ek - 
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Therefore, the probability of a match between { E , ( p ) }  and [E;'(c)] is qr, 2. where r, is 

the number of elements of { E , ( p ) }  and r, is the number of elements of [E;'(c)]. If n is 

closed, m = O(lKI), and r,r2 = O(rn), then we can find a pair ( i ,  j )  such that EfE, = E, with 
high probability. 

If there is no match in MCT under the condition r,rz = O(rn), you can conclude that 
the cryptosystem is not closed with confidence. Note that MCT requires r, operations of 
E , ( p ) ,  r, operations of E;'(c) and at least r, or r, memory space. If r, =rz, which is 
optimal from the standpoint of operation number, r, = r2 = O(&). 

input: a cryptosystem n=  ( K , M , M , E )  and integer control parameters 5, r2, 1. 

Step 1. Pick k E K andp,,p,;--,p, E M  at random. 
For 1 = 1 to f , compute c, = E(k ,  0,). 
Let p = p1 and c = c,. 

Step 2. For i = 1 to ti a n d j  = 1 to rz, select ax,b, E K at random 

andcornputex, =E(u , ,p )  andy, = E-'(b,,c). 

Step 3. Sort triples (xt,a,,"A') for 1 I I 

and (y,,b,,"B") for 1 I j I r, on the first components. 

Step 4. For each "match" x, = yf with 1 I 1 < r, and 1 I j I r,, 

if Ek = Eb Ea , then return ("Match found'). 

(To test if E, = E, E,, , stanstically venfy that c,, = E(b,,E(u,,p,)) for all 15 h 21.1 
I '  

Step 5. return("No match found"). 

Fig. 2.1 Meet-in-the-middle closure test (MCT) procedure 

2.3 Related Work 
The meet-in-the-middle strategy is effective in cryptography [DiHe, QuDel. 

In [DiHe], this strategy is used to find a key pair (k,,k) from a pair ( p , c )  in  the 
double-encryption cryptosystem, where c = E ( k , , E ( & , p ) ) .  If an exhaustive key search is 

used, O(IKr) operations are needed. If a meet-in-the-middle strategy is applied, only 
O(lK1) operations and O(lK1) memory space are required. 

Quiquateret al. developed the meet-in-the-middle technique with O(m) operations 
without memory. The technique was applied to find collisions of hash functions [QuDel . 

Collision is not a problem for a hash function since collision is only based on the 
hash-function's randomness. On the other hand, if a pair of keys (4,s) is found for a 
cryptosystem by using MCT, it implies that the cryptosystem is vulnerable. 
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3. Switching closure test (SCT) procedure 
This section introduces the memoryless procedure needed to make the ordinary meet-in- 
thc-middle method feasible and shows how to apply the procedure to a closure test. 

3.1 Memoryless meet-in-the-middle procedure 
We propose the memoryless meet-in-the-middle procedure in Fig. 3.1. In the procedure, 
the penod-length search requirerl by Steps 2 and 6, is given in Paragraph (1). The intersection- 
point search of Steps 3 and 7 is described in Paragraph (2). If the random function h is 
defined as shown in Paragraph (3). the intersection-point search can be expanded into the 
collision-point search for a meet-in-the-middle method 

input: a function h ( x )  switchingf(x) or g ( x )  and an integer control parameter t .  

Step 1. Pick x t '  E M for i = 1,2,-.-,r at random. 
Step 2. i = 1. 

Search period - length il for sequence S") started from x t ) .  
(where S'" = {xt;",x~",...}) 

Step 3. Search for an intersection point in the sequenceS'". 

Step 4. If the intersection point found is the collision point inS"' wheref(x) and g ( y )  meet 

then retum(x,y). 

Step 5. i = i + l .  

Step 6. Search period - length A for the sequence S'" started from x:) 

and check that the new sequence S(i) meets the previous sequnces 

(s"',s'Z',S'"; .., s('-I)l* 
Step 7. Search for a new intersection point in S") or between S(') and S"' (1 I j 5 i - 1). 

If the intersection point found is the collision point in S(i)  or between S(il and S"' 

wheref(x) and g(y )  meet, then return(x,y). 
Step 8. Go to Step 5. 

Fig. 3.1 Memoryless meet-in-the-middle procedure 

(1) Period-length search [Kn, SeSzYa] 
If the random function h generates values x ,  the "Birthday Paradox" states that the random 
sequence S = (xo ,xI , - . .>  has a period whose length is O(m), where xi+] = h ( x i )  and 1x1 
shows the size of X space. When the sequence {xo,xl,---} is plotted on directed graphs, it 
can be drawn as shown in Fig.3.2 (a). 



(a) Original sequence (b) Two sequences 
contains Point I meet at Point I1 

Fig. 3.2 Sequences on directed graphs 

Methods to find period-length A have been developed in the design of a random 
generator [Kn, SeSzYa]. The methods compare two values xi and x j  (i # j )  to determine 
xi = xA+,  . We based our memoryless meet-in-the-middle procedure on these methods. 

(2) Intersection search 
There are two kind of intersection points as shown in Fig.3.2. Point I is represented by 

3l = + p 1 ) 7  X A + p  = h(XA+p-l)> 

where xN = xL+# ,  x,,-~ f 

Point I is shown as the junction between a loop and a leader in Fig.3.2 (a). Point I1 in 
Fig.3.2 (b) is represented by x:') = h ( x / : )  and x y  = h(xj f : )  where x:') = xy) and 

x!!\ # xj?, where the superscripts distinguish values of Sequences S'" and S"). To find 
Point 11, sequences starting from two different initial values x t )  and x g )  are needed. It is 
known that graphs of the random function It tend to have one giant loop (or component) 
and 3 few large leaders (or trees) plod]. 

In brief, to find Point I, after the period-length A is determined, pairs, ( x o , x A ) ,  
(xI , .xA+,) ,  -.-, ( x i , x I + , )  are compareduntil x, = xl+,,  is found. However, this procedure 
is inefficient because you need p comparisons and 2p operations of the function h. 
Therefore, to overcome this inefficiency, we have developed techniques that require only 
O( log,(p)) operations. The techniques will be presented in the full paper version. The 
same approach is used to find Point 11. 
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( 3 )  Switching function 

Fig. 3.3 Block diagram of h(n) function 
To find the match between f ( x )  and g ( x )  functions as the collision of the meet-in-the-middle 
procedure, let's define h ( x )  as a switching-type function of f ( x )  or g ( x )  condidonally 
defined as 

f ( x )  if c f ( x )  is true, 
g ( x )  if c f ( x )  is false, 

h ( x )  = 
. -  

where c f ( x )  is a conditional function which generates m e  or false with 50-% probability 
for each value x .  

The intersection points found in Paragraph ( 2 )  are expected to contain collision 
points between f and f with 25 %, between g and g with 25 70, and between f and g 
with 50 %. The intersection points between f and g mean the collision points between 
two different functions f and g. Consequendy, the meet-in-the-middle procedure succeeds 
for two different functions. 

3.2 Closure test for cryptography functions 
(1) How to apply to a closure test 
The SCT procedure is presented in Fig. 3.4. If S C T  detects an x and y pair that 
satisfies E ( x , p )  = E-'(y,c) for any (p , c ) ,  the cryptosystem fails in SCI' .  On the other 
hand, if S C T  doesn't detect any x and y pair several times, the cryptosystem passes. 
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input: functionsf(x) 1 E ( x , p )  and g ( x )  = E-'(x,c) and integer control parameter 1,f. 
Step 1. PickkEKandp,,p, ,-- . ,p,  ~ M a t r s n d o m .  

For i = 1 to I ,  compute ci = E ( k , p , ) .  

Set p = p1 ,c = c,. 

Step 2. Call Memoryless Meet -in - the - middle procedure (f,g,t), 

then get ( x , y )  at the collision point. 

Step 3. If Ek = EYE,. then return ("Match found") 

(TO test if E, = E ~ E ~ ,  statistically verify c, = ~ ( y , ~ ( x , p , ) )  for all 12 /I 5 [.I 
Step 4. return("No match found"). 

Fig. 3.4 Switching closure test (SCT) procedure 

Since we want to find key pairs (k,,k) instead of the real secret key k for any 
plaintext and ciphertext pair ( p , c )  where c = E ( 4 ,  E(k , ,p ) )  and c = E ( k , p ) ,  a meet-in-the- 
middle method is used to find pairs of x and y which make E ( x , p ) =  E-l(y,c). In the 
S C T  procedure in Fig. 3.4, S C T  verifies that E ( x , p )  = E-'(y ,c)  for any (p ,c ) .  To simplify 
the explanation, we omit functions FE and FD from Fig. 3.4. More precisely, the f and g 
functions are defined as shown in Fig. 3.5. 

Fig. 3.5 Definitions o f f  and g 

(2) Strategies & probability to detect closure structure 
We have devised two strategies to increase the intersection points in SCT after the first 
period-length and intersection-point searches. In Strategy #1, an intersection search is 
carried out from another s t m  point for the same plaintext and ciphertext pair. Strategy #2 is 
to carry out an intersection search for another plaintext and ciphertext pair. Therefore, 
Strategy #2 employs both period-length and intersection searches and always finds the 
Point I in Fig. 3.2. 

If a cryptosystem is closed, their probability of success can be assessed from the 
analysis given in Section 2.2. If, finally, '1 values of f and r2 values of g have been 
generated by the h function, their probability is approximately given by 
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1 - exp( -2) 
where there m m kinds of independent transformations. In Strategy #1, if 6' values of f 
and r,' values of g newly appear, its probability becomes 

because Strategy # I  replaces 5 and r, with (r, +J') and (rz +r2'),  respectively. On the 
other hand, in Strategy #2. if r,' and r,' values also newly appear, its probability becomes 

m 
because the first and second searches are independent. 

Strategy #2 needs more operations than #l. Strategy #1 has a higher probability of 
success than #2 if 6' and r,' have the same values for both strategies. However, Strategy 
#2 can be efficiently implemented on parallel processing hardware. Therefore, Strategy #2 
is better for hardware implementations. 

4. Feasibility study 
This section explains the SCI"s  detectability of closure property for both symmemc and 
asymmemc ciphers. Moreover, we will show that S C T  yields a known-plaintext attack 
against closed cryptosystems. In the case of a symmetric cipher, if you find the key p a  
(4,h) from (p,c) using S C T ,  wherec = E ( k , p )  and E, = Ek2 Eh , then you can decipher 

any ciphertext c' by E - ' ( k , , E - ' ( ~ , c ' ) )  without a secret key k .  However, is it impossible 
to attack asymmemc cryptosystems using SCT"? In Section 4.2 we attack a small model of 
an RSA cryptosystem. 

4.1 Caesar cipher as symmetric cipher 
The definition of the Caesar cipher is given as shown; 

E ( k , p )  = p + kmodn, 

E- ' (k , c )=  c-kmodn. 

f ( x )  = p + x m o d n ,  

g ( x )  =c-xmodn ,  

c f ( x )  = (true i fx  is "odd', false if x is "even"). 

We define functions, f , g , cf, respectively as; 

At first, ( p , c )  = (5,2),  and n = 11 are given. Though a secret key k = 8 is kept 
secret, Fig. 4.1 is drawn by SCT. If you start from xg) = 1 or xf) = 0 ,  you find a b p  
with A = 3 or A = 2 without the collision point. If you start from xf' = 4, you find a loop 
with A = 4 with the collision pointf(9) = g(10). Since you can verify f(9) = g(10) for dl 
other plaintext and ciphertext pairs ( p , c )  = (6,3),(7,4),(8,5),..., the Caesar cipher fails in 
S CT. 
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The Caesar cipher is shown to be broken in SCT because plaintext values p 'can be 
calculated from ciphertext values c ' b y  using p '=  E-'(9,E-'(l0,ct)). 

8 

5 

7 

==---&- ; function f 
r - h  ; function g 

Caesar cipher in n=77 

Fig. 4.1 Caesar cipher 

4.2 RSA cryptosystem as asymmetric cipher 
This section presents a feasibility study for a small version of RSA [RiShAd]. In this 
model, the relation of parameters is: 

~ ( k , , p )  = $0 modn, 

E-'(k,,c) = c'd rnocin 

(k,k, =lmodL,n=pq.L=LCM(p-l ,q-I)) .  

f ( x )  = px modn, 

g ( x )  = cx modn, 

cf(x)=(trueifx>-, falscifxs-). 

Thus, we can define functions, f , g , cf, respectively as; 

n n 
2 2 

At first, n = 33, k, = 3,  and ( p , c )  = (13,19) are given. Though secret values 
(k ,  = 7.L = 10) are kept secret, Fig, 4.2 is drawn by SCT. If you search from the initial 
value 18, you find period-length ;L = 5 and a collision of f(l8) = f(28). Since SCT 
cannot find the collision of f and g , you know chat the collision is wrong. 

In Strategy #1, the intersection search is carried out on the same plane from 
another start point 12. Then, you can find the collision of f (19) = g(13) which is right for 
all pairs ( p , c ) .  On the other hand, in Strategy #2, the intersection search is carried out on 
another plane for (p ,c )  = (4,31) from another start point 22. You find the right collision of 
f(22) = g(4). Thus, RSA fails in SCT. 
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1 

31 s (2) 

(by Strategy #1) 

12 

(a) p=13, c=19 

Fig. 4.2 Small 

31 

4 

(by Strategy #2) 

(b) p=4, ~ = 3 1  

; function f 
-* ; function g 

RSA cryptosystem 
in n=33, &=3 

model of RSA 

Though RSA is an asymmemc cipher, it has one idiosyncrasy that allows it to be 
broken. If the right collision of f(x) = gfy) is found, x = k,ymodL must be right Therefore, 
since you can know a multiple of L,  the composite number n can be factorized by using the 
multiple [Mil. In the above example, 22 = 3 x 4 mod 10. However, since commercial RSA 
schemes use n greater than 2500, S C T  would need more than 2=' operations; RSA is not 
menaced by SCT. 

5. Conclusion 
A switching closure test SCT based on a new memoryless meet-in-the-rniddle procedure 
has been proposed as a feasible version of MCI'. To achieve the memoryless procedure, 
several techniques, the most important of which are expansion of cycling detection methods 
for one function into a method for two functions and an efficient intersection search by 
using a small amount of memory, are effectively used. Moreover, feasibility studies using 
a Caesar cipher and a small model of an RSA cryptosystem have been presented. 

We intend to apply SCI '  to various kinds of cryptosystems. 
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