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Abstract 

The model of zero knowledge multi prover interactive proofs was introduced 
by Ben-Or, Goldwasser, Kilian and Wigderson. A major open problem associated 
with these protocols is whether they can be executed in parallel. A positive an- 
swer was claimed by Fortnow, Rompel and Sipser, but i ts  proof was later shown 
to be flawed by Fortnow who demonstrated that  the probability of cheating in n 
independent parallel rounds can be exponentially higher than the probability of 
cheating in n independent sequential rounds. In this paper we use refined combina- 
tonal arguments to settle this problem by provin that  the probability of cheating 

has a one-round two prover protocol which is perfectly zero knowledge under no 
cryptographic assumptions. 

in  a parallelized BGKW protocol is a t  most l j 2 "  7 ', and thus every problem in NP 

1 Introduction 

In [GMW] Goldreich, Micah and Wigderson show that under the assumption that one 
way functions exist, every NP language has a computational zero knowledge interactive 
proof system. They prove it by giving a sequential zero knowledge protocol for an NP- 
complete statement. Results in IF21 and [BHZ] imply that if perfect zero-knowledge 
interactive proof-systems for NP exist (i.e. which do not rely on the fact that the verifier 
is polynomial time bounded), then the polynomial time hierarchy would collapse to  its 
second level. This provides strong evidence that it will be very hard to show that NP has 
perfect zero-knowledge interactive proofs. As a result, considerable effort was devoted 
in the last few years to the design of alternative models in which it would be possible 
to solve the problems of perfect zero-knowledge proofs for NP, zero-knowledge proofs for 
NP without intraclability assumptions, and zero-knowledge proofs for N P  in a constant 
number of rounds, 
Feige and Shamir [FS] solved the problem of zero-knowledge argument (namely, when 
the prover is polynomially bounded) for NP in a constant number of rounds, under the 
assumption that one-way functions exist. The counterpart problem with respect to an 
unbounded prover has been solved by Goldreich and Kahan [GK] under the assumption 
that claw-free functions exist. The moblem of Derfect zero knowledge was solved for 
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some special cases: Brassard, Crepeau and Yung [BCY] show the existence of parallel 
perfect zero knowledge arguments for NP under the Certified Discrete Log Assumption 
(or alternatively, under a generalization of this assumption), and Bellare, Micah and 
Ostrovsky [BMO] exhibit perfect zero-knowledge proofs for Quadratic residuosity and 
graph isomorphism in 5 rounds. 
Ben-Or, Goldwasser, Kilian and Wigderson [BGKW] suggested the novel concept of 
multi-prover zerGknowledge interactive proof system for NP, solved the perfect zero- 
knowledge problem by exhibiting a sequentzal twGprover protocol which achieves this 
aim, and remarked that the parallel execution of their protocol is also a perfect zero- 
knowledge proof system with a single round under a weak definition which requires 
only a constant probability of cheating. Fortnow, Rompel and Sipser [FRS] claimed 
a similar result under the stronger definition which requires a negligible probability of 
cheating, but their proof of soundness was later shown to  be faulty by Fortnow [Fl], 
and no alternative parallel protocol is currently known to be sound in this strong sense. 
Moreover, there are some examples of protocols (see [Fl] and (4.1) here) for which the 
probability of cheating in their parallel version is known to be exponentially better than 
in their sequential version. 
In this paper we solve this open problem: we prove the soundness of the parallel two 
prover zero knowledge interactive proof for N P  suggested by Ben-Or, Goldwasser, Kilian 
and Wigderson in [BGKW]. As a first step we describe a simpler one-round two-prover 
interactive proof for Hamiltonicity, and prove that it is sound, complete and perfect zero 
knowledge under no intractability assumptions. We then show that the same techniques 
can be applied to the original [BGKW] protocol. 
In section 2 we give some definitions. In section 3 we present our simplified parallel 
protocol for Hamiltonicity, and prove its correctness in section 4. In section 5 we prove 
that our protocol is also a perfect zero knowledge proof of knowledge, which can extract 
an  actual witness from any sufficiently successful pair of provers. 

2 Definitions 

Definition 1: 
Let L be an YP-language. We say that L has a two-prover interactive proof system 
if there exists an  interactive BPP machine V (the verifier) capable of interacting with 
two other machines PI and Pz (the provers). The  provers can cooperate and choose a 

common strategy before the interaction with the verifier starts, but are isolated from 
each other during the execution of the protocol. The protocol has to satisfy the follow& 
conditions: 
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1. PI, P2 

2 .  VP1, P2 

Vz E L 

Vz $ L ,  the probability that V accepts 3: is negligible. 

the probability that V accepts 3: is overwhelming. 

Definition 2: 
Let ( P I ,  P2, V )  be a two-prover interactive proof system for L .  Let Viewpl,p2,v(z) de- 
note the verifier’s view during the protocol (namely the sequence of messages exchanged 
between the verifier and the provers along with the  private random bits of V ) .  This is 
a probability space taken over the coin tosses of V and the random tapes of (Pl ,P2) .  
We say that two-prover interactive protocol (PI, P2, V) is perfect zero knowledge for V if 
there exists a BPP machine M such that M ( z )  = Viezup,,p,,v(z). We say that L has a 
two-prover perfect zero-knowledge proof system if there exist independent provers P I ,  PZ 
such that for all BPP verifiers V ,  there exists a probabilistic Turing machine M such 
that for all z E L ,  M ( z )  = Viewp,,p,,p(z) and M(z) terminates in expected polynomial 
time. 
Definition 3: Let H be a t x t matrix of zeroes and ones (which can be thought of 
as an  adjacency matrix of a directed graph). We say that H is exactly Hamiltonian if 
there is exactly a single 1 in every row and in every column, and these t ones define a 
permutation with a single cycle. 
The Basic Step of Proofs of Hamiltonicity (with a single prover): 
Let A and B be two t x t random matrices of zeroes and ones whose pointwise X O R  
A @ B = H is a random exactly Hamiltonian matrix. Denote by S the Harmltonian 
cycle on t nodes whose adjacency matrix is H. Assume now that an honest prover wants 
to use H in order to prove to V the Hamiltonicity of some graph G with t nodes, and 
assume that only the prover knows A ,  B and H but V is convinced that H is exactly 
Hamiltonian. Let A be  a permutation that maps S onto the Hamiltonian cycle of G (i.e. 
n(S)  G). P sends V the permutation 7r and the values of all the entries in n(A)  and 
T ( B )  which do not correspond to edges in G. V accepts the proof 8 all the revealed 
pairs ((a(A)i,j,s(B)i,j) such that ( i , j )  is non-edge in G) are (0,O) or ( 1 , l ) .  P’s proof 
implies that  the t ones that remain unreveaied in s ( H )  correspond to edges of G, and 
thus G contains a Hamiltonian cycle. 
Informally, this protocol is zero knowledge since all the verifier gets is a collection of (pairs 
of equal) random bits and a random permutation, and both things can be simulated in 
random polynomial time. 

3 The Two Prover Protocol 

Let (PI ,  P2, V )  denote the two-prover protocol which receives as input the graph G = 
(v, E ) ,  IVl = t and tries to prove its Hamiltonicity. Let PI and P2 share two random t x 1 
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matrices A and B such that A $  B = H ,  where H is a random t x t exactly Hamiltonian 
matrix, and assume that PI has a witness for this statement on his auxiliary tape. 
The basic two prover protocol (BP) of Hamiltonicity is: 

a V randomly and independently chooses two bits bl and b2. He sends bl to PI and 
bz to Pz. 

0 If bl = 0 then Pl sends A and B to V, otherwise he executes the basic step of the 
previous section. 

a If b2 = 0 then Pz sends A to V, otherwise he sends B to V .  

a According to bl V either checks that A $  B is exactly Hamiltonian or checks that 
the basic step was done correctly, and in both cases he verifies the consistency of 
the revealed entries with Pz’s response. V accepts iff these checks are successful. 

The full protocol FP, is a one-round protocol which consists of n parallel independent 
executions of BP, where n is a security parameter. 
In the next two sections we prove that FP, is a perfect zero knowledge interactive proof 
for Hamiltonicity, and that it is also a perfect zero knowledge proof of knowledge, which 
directly gives the following theorems: 
Theorem I: Every language in N P  has a iwo prover perfeci zero knowledge interactive 
proof of membership in one round without making any intraciabiiity assumptions. 
Theorem 2:  Every language in N P  has a two prover perfect zero knowledge interactive 
proof of knowledge in one round without making any intractability assumplions. 

4 Correctness 

Our first goal is to prove that the parallel protocol FP,, is a perfect zero knowledge proof 
for Hamiltonicity. 
Completeness: PI (which is either infinitely powerful or polynomial time bounded with 
knowledge of a Hamiltonian cycle in G) can determine the permutation x of the basic 
step and perform the protocol. Notice that unlike the [BGKW] protocol, only F‘1 has to 
know the actual input graph, while P2 should only know its size t .  
Zero-Knowledge: We construct a probabilistic polynomial time simulator M which 
without knowledge of a cycle in G can give a response to every 2n-bit query of V which 
is perfectly indistinguishable from the answers of the real provers. This simulation can 
be easily carried out because bl  and b2 are chosen by V before it gets any messages 
from the provers, and thus it4 can use them in choosing A and B.  If bl = 0 then M 
sends V two random t x t 0/1 matrices whose X O R  is an exactly Hamiltonian matrix 
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and according to bz he sends V one of these matrices. If bl = I, M randomly chooses 
a 0/1 matrix A and a permutation i7, simulates 4 ' s  basic step (with the pair ( A , A )  
and i7(G)) and sends A as a simulation of Pz. It is easy to verify that this simulation 
is perfectly indistinguishable from a real execution, which means that our protocol is 
perfect zerc>-knowledge. 
The main difficulty (and therefore the motivation of this paper) is how to prove the 
soundness. 

4.1 Where is The Problem? 

Consider first the basic protocol BP. It is easy to see that simultaneous success of (PI, Pz) 
in answering the four possible requests of V implies the Hamiltonicity of G. Moreover, 
one can verify that the probability of cheating (when G is not Hamiltonian) is a t  most 
314, and thus the probability of cheating in n sequential independent executions of BP 
is a t  most (i)". 
We would like to get the same result with respect to parallel executions but its falsehood 
is the motivation of this paper. Fortnow [Fl] constructed a (somewhat artificial) two 
prover protocol that accepts all inputs with probability 1/2 such that there exists a 
strategy €or the parallel execution of two rounds which causes the verifier to  accept all 
inputs with probability 3/8. We now show that this problem can in fact arise in our 
protocol by showing that if G is not Hamiltonian then the probability of cheating in 
FP2 is greater than ($)'. We demonstrate this fact by specifying astrategy for cheating 
(Pl1 P2) which succeeds in 10 out of the 16 possible requests of V. 
Let (X, Y) and (Z, W )  be two pairs of t x t 0/1  matrices such that X @ Y and Z@ W are 
exactly Hamiltonian matrices. Let I@, X and Y be sets of t 2  - IE(G)I entries of W , X ,  Y, 
respectively, which correspond to non-edges in $(G) for some arbitrary permutation 4. 
Let bi, j  (1 5 i , j  5 2) be the bit sent by V to Pi in the j ' th round, and A i j  be the 
corresponding answer of Pi. 
The strategy is: 
lnstructions for PI: 
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Instructions for P2: 
b2,i  b2,2 A2,i A2,2 
o o x w  
0 1 X W  
l 0 Y Z  
1 1 Y W  

It is easy to check that the following matrix represents the successful executions of FP2 
whenever the provers follow the above strategy: 

In this matrix the pairs a t  the top are the ( b l , l ,  b 1 , z )  requests, those on the left are the 
(b2,1r b2,2) requests, and the ten 1-entries represent the successful executions in which V 
accepts the provers' messages. Since all the choices of bi,, quadruples are equally likely, 
the cheating (Pll Pz) succeed with probability $ (which is greater than ($)'). A simple 
extension of this strategy to n parallel rounds (which succeeds with probability (g)"/' > 
(4)") demonstrates the difficulty of proving the soundness of parallel executions by using 
standard techniques. In the next subsection we show how to  overcome this problem. 

4.2 The Proof of Soundness. 

Our main theorem uses novel techniques to show that the parallel protocol is sound, by 
proving that the probability of cheating decreases exponentially fast: 
Theorem 3: If G is not Hamiltonian then 

1 
p / 9  

v(P1, P2) Pr{FP,, succeeds}  < - 
where the probability is taken over the coin tosses of V .  
Proof: Without loss of generality we can assume that P I  and P 2  are deterministic, and 
use their best strategy against the particular verifier V .  Denote by u a random n-bit 
string sent by V to 4, and by T a random n-bit string sent by V to 4. Let uk (q) be 
the k'th bit of u (T). For each u denote by A,  the set of all those T'S for which FP,, 
succeeds on ( u , ~ ) .  We prove the theorem by proving that if: 

1 
Pr{FPn succeeds}  2 - 

2 4 9  

then there exists a successful quadruple, i.e. (a', d', T', T") such that FP, succeeds on 
each one of the following pairs: (a', T' )  , (ar, T") , (u", T' )  , (8, ?) and there exists 
1 5 k 5 n such that: 
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Lemma 4: The existence of a successful quadruple implies the Hamiltonicity of G. 
Proof: Assume that (c’, d’, f ,  r”) is a successful quadruple and without loss of gener- 
ality assume that for some 1 5 k 5 n 

We concentrate now on the answers of the provers at the k’th stage of the parallel 
protocol: As a response for u‘, PI sends V the 0/1 t x t matrices A and B,  where 
H = A @ B is an exactly Hamiltonian matrix. The success of the executions implies that 
P2 sends A as a response to f ,  and B as a response to f ‘ .  It also implies that  while 
executing the basic step in response to u”, PI sends a permutation ?r and pairs of equal 
bits which are identical to  their counterparts in P2’s matrices, and thus identical also 
to their counterparts in PI’S answer on u’ (i.e. A and B).  Therefore, by executing this 
protocol just against PI on d and on u” we can extract the Hamiltonian cycle (HC) in G 
by concentrating on his answers a t  the k’th stage, and comparing the adjacency matrix 
o f r ( G ) t o H = A $ B .  R 

The existence of a successful quadruple was shown to contradict the assumption that G 
is not Hamiltonian. Note that the condition on t is essential, since in the concrete matrix 
demonstrated at the end of section 4.1 there are several quadruples d, d‘, r’, f ’  which 
define four successfu1 executions, but we cannot extract the witness since none of them 
satisfies the condition on k. For example: d = (Ol), d’ = (ll), r’ = ( 0 0 ) ,  f ’  = (01) 
define four successes but there is no index 1 5 k 5 2 on which u’ differs from d’ and T’ 

differs from 7‘’ simultaneously. 
D&nition:We say that u is good if 

Lemma 5: If Pr(FP,succeeds} 2 =& then there exist at least && good U’S.  

Proof: The provers are deterministic, therefore there are at least 
2n-bit strings for which ( P I ,  Pz) succeed. Therefore trivially by applying an elementary 
counting argument we get the result. 

Denote by T the set of all the good c’s (IT1 2 &&). Our goal now is to show that it 
is possible to choose a set S C T of 4.2”/’ good n-bit strings d s  such that every two 
strings in S differ from each other in more than 9n/40 bits. 
An algorithm €or choosing S: 

(22n/2“/9) 

I 
i 
i 
i 

1 BEGIN 
I 
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0 s-4. 
Repeat 4 . 2 " / '  times: Choose an arbitrary good n-bit string u in T ,  add it to s, 
and remove from T all the strings which differ from u in less than 9n/40 bits. 

END 
Lemma 6:  This algorithm cannot s top  prematurely. 
Proof: First we have to notice that the total number of n-bit strings 
z = ( z l , zz r .  . . , z") for which Cy=l zi < is less than: 

n 2" 

for all sufficiently large n. 

Therefore for each n-bit string there are a t  most i& strings which differ from it in less 
than 9n/40 bits. Therefore the validity of the following inequality implies the success of 
the algorithm: 

Lemma 7:  There exist d,d' E S ,  such that: 

Proof: According to the inclusion exclusion formula we have: 

If the Lemma is not true then we get: 

which is false. W 

Denote by d and u" two strings in S for which: 

We showed that every two strings in S differ from each other in a t  least 9n/40 bits, 
and in particular these two a', u" have this property. Denote by I the set of 9n/40 indices 
in which IT' differs from u''. Choose an arbitrary r' E A,, A,,, . There are exactly 
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n-bit strings which are identical to T' on each of the indices of I .  Therefore the total 
number of strings in the intersection which are identical to f on each of the indices of f 
is bounded by: 

Therefore there exists r" g A,) nA,lt which differs from 7' in a t  least one of the indices 
of I ,  and we have thus found a successful quadruple. 

Remarks: 

1. Recent improvements of the analysis (obtained independently by Peleg, Alon and 
Feige [Fe]) reduced the upper bound on the probability of cheating and extended 
the analysis to other protocols based on constant-size queries. 

2. The same technique of successful quadruples can be used to prove the soundness 
of the original [BGKW] protocol. The analysis is slightly more complicated due to  
their use of three valued "bits" as messages, and will be given in the full version of 
this extended abstract. 

5 The Protocol is a Proof of Knowledge. 

In this section we prove that our protocol for Hamiltonicity is also a perfect zero knowl- 
edge proof of knowledge. We follow the definition suggested by Feige, Fiat and Shamir 
in [FFS]. 
Definition: 
Let ( P I ,  P2, V )  be a two-prover perfect zero knowledge interactive proof system for an 
NP-language L such that PI and Pz are probabilistic polynomial time bounded. We 
say that ( P I ,  P2, V )  is an interactive proof of knowledge if there exists an interactive 
probabilistic machine T (knowledge extractor with complete control over (4, pz) ) such 
that for aU (PI, 4) and for all input z, if V accepts the proof (that 2 E L )  with non 
negligible probability. then the output produced by T at the end of polynomially many 
executions of ($1, P 2  , T )  on input r is a witness for 2 E L and T terminates in expected 
polynomial time. More formally: 

3T V ( P l ,  Pz)  Vx Va 3b 3N Vn > N 

Prioutput of ( P ~ , P ~ , T T )  on z is a witness f o r  z} = 1 
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and the ezpected running tzme of T is O(nb) ,  where the  probability zs taken over  the 
coin tosses of V. 
Theorem 8: FP,, is a perfect zero knowledge interactive proof of knowledge for Hamil- 
tonicity. 
Proof: Without loss of generality we can assume that PI and P2 are deterministic. 
Therefore the probability space consists of all the (equally likely) 2n-bit strings which V 
may send to (PI, P?), and at least 22n/na of them result in successful executions. 
Due to the same argument (and using the same notation) of the previous section we 
conclude that there exist at  least 2"/2n" u's whose lAul 2 2"/2n', and call them good 
u's. 
Lemma 9: For every  set S of 4n20 good u's there exist u', d' E S such that: 

IA,) 0 AU,/ 1 2 2n/(Zna)3. 

Proof: As in the proof of Lemma 7, the first two terms of the inclusion exclusion formula 
trivially give the result. 

We now specify the knowledge extractor T :  Choose a random set S of 4n2" good U'S .  

This step can be performed by an expected polynomial number of statistical experiments 
of the  following type: randomly choose an n-bit string u;  for this string choose indepen- 
dently polynomially many random n-bit strings ( T ' s ) ,  execute the protocol for each such 
pair (T,  u )  and estimate the probability of success with respect t o  this u. 

Choose an  arbitrary pair u', 6'' E S which satisfies Lemma 9 (there are only O(n4") pairs 
for which we have to execute statistical experiments). Choose a n  arbitrary n-bit string 
in A,, n A,!! ,  and call it TI .  

Notice the following crucial point: In order to choose S, we randomly choose polynomially 
many n-bit strings, each one by n unbiased and independent coin tosses, and thus every 
two chosen strings differ from each other in at least n /3  bits with overwhelming prob- 
ability. In particular, the d, d' chosen from S satisfy this property with overwhelming 
probability. Denote by J the set of indices on which u' differs from U" (IJI 2 n/3) .  
The same argument used in the proof of Theorem 1 yields that almost all the strings in 
A,l nA,if differ from T' in at least one of the indices of J ,  therefore we can easily choose 
a string in this intersection which has this property, and call it TI ' .  

NOW all T has to do in order t o  extract the Hamiltonian cycle in G is to execute the 
Drotocol FP, against (9,  Pz) on the following four pairs: 
(T',  d), (T ' ,  d') ,  (T" ,  d), (T" ,  u"), and use Lemma 4. To complete the proof, we can ex- 
ecute in parallel an  exhaustive search for a witness to handle the negligible probability 
that the main procedure fails to find a witness. 
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