Functional Inversion and Communication Complexity

Shang-Hua Teng*

Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alta, California 94304

Abstract

In this paper, we study the relation between the multi-party communication complexity over
various communication topologies and the complexity of inverting functions and/or permuta-
tions. In particular, we show that if a function has a ring-protocol or a tree-protocol of commu-
nication complexity bounded by #, then there is a circuit of size O(2n) which computes an
inverse of the function. Consequently, we have proved, although inverting N C° Boolean circuits
is N P-complete, planar NC! Boolean circuits can be inverted in N C, and hence in polynomial
time. In general, NC* planar boolean circuits can be inverted in O(n""(*—”") time. Also from
the ring-protocol results, we derive an £2(nlogn) lower bound on the VLSI area to layout any
one-way functions. Our results on inverting boolean circuits can be extended to invert algebraic
circuits over finite rings.

One significant aspect of our result is that it enables us to compare the communication power
of two topologies. We have proved that on some topologies, no one-way function nor its inverse
can be computed with bounded communication complexity.

1 Introduction

One of the most fundamental questions in cryptanalysis is to characterize the class of permutations
(or functions) whose inverse can be computed in polynomial time or by a polynomial size circuit
[1, 10, 12, 16}. Much research in theoretically cryptography has been centered around finding
the weakest possible cryptographic assumptions required in implementing major primitives {11, 4].
However, progress on characterizing permutations with small inversion circuits is very slow [12}.

In this paper, we study the relation between multi-party communication complexity over vari-
ous communication topologies and the complexity of inverting permutations and functions We show
some nontrivial classes of permutations whose inverse can be computed efficiently.

In particular, we show that if a function has a ring-protocol or a tree-protocol of communication
complexity bounded by , then there is a circuit of size O(2Hn) which computes an inverse of the
function. Consequently, we have proved, although inverting N C? Boolean circuits is N P-complete,
planar NC?! Boolean circuits can be inverted in NC, and hence in polynomial time. In general,

*This work was supported in part by National Science Foundation grant DCR-8713489. Part of this work was
done while the author was at School of Computer Science, Carnegie Mellon University, Pitisburgh, PA 15213.

J. Feigenbaum (Ed.): Advances in Cryptology - CRYPTO ’91, LNCS 576, pp. 232-241, 1992.
© Springer-Verlag Berlin Heidelberg 1992

233

NC* planar boolean circuits can be inverted in O(nl"g(k_l)“) time. Also from the ring-protocol
results, we derive an £2{nlogn) lower bound on the VLSI area to layout any one-way functions.
Our results on inverting boolean circuits can be extended to invert algebraic circuits over finite
rings.

One significant aspect of our result is that it enables us to compare the communication power
of two topologies. We have proved that on some topologies, no one-way function nor its inverse
can be computed with bounded communication complexity.

2 Definitions

Let B = {0,1}, i.e., the field ZF(2). Let f: B" — B™ be a boolean mapping from B™ to B™. The
mapping f is a permutation if m = n and f is a bijection. A function g : 8™ — B" is an inverse of
fiffor all y € B™, f(g(y)) = y whenever g(y) is defined. In this paper, let B, m denote the set of
all boolean mappings from B" to B5™.

A Boolean circuit is a directed acyclic graph whose nodes have indegree either 0 or 2. A node
of indegree 0 is labeled with a variable, or with a boolean constant. A node with indegree 2 is
labeled with a boolean function of 2 inputs. A node with a variable label is called an input node
and the one with outdegree 0 is called an oufput node. We assume that each boolean circuit is
reduced in the sense that no two input nodes share the same label. Each circuit C' with n input
nodes and m output nodes defines, in a natural way, a function, denoted by f¢, from 8™ to B™.

A circuit C computes a function f if fo = f. A circuit C' is an inversion circuit of f if C’
computes an inverse of f.

The non-uniform and uniform versions of the inversion problem are defined as follows.

Definition 2.1 (Inversion Problem)

¢ (Non-uniform) Is there a polynomial size circuit that computes an inverse of a given function
f€Bm?

¢ (Uniform) Given a circuit or (a straight line program) that computes a given function f,
construct an inversion circuit {with size bounded by a predefined function in n and m) of f.

3 Communication Complexity

For each function f € Bp m, we write f : 2X — 2Y where X denotes the set of n inputs and Y the
set of outputs.

3.1 Two Party Communication Complexity

Suppose there are two processors in the system. For each partition (Xj,X3) of X, processor
1 receives the values of variables in X; and processor 2 receives the values of variables in X,.
The two party communication complezity of f with respect to the partition (Xy, X3), denoted by
C#(X1,X2), is the number of bits the processors, using an optimal protocol, have to exchange, in
the worst case, in order to jointly compute the values of all outputs of f [17, 13].

234

Notice that an optimal protocol for computing f with respect to the partition (X,, X2) also
induces a natural partition of Y into (Y;,Yz) such that in the protocol, processor ¢ is responsible
to compute the values of all variables in Y3, (7 € {1,2}).

Let P(X) denote the set of all partitions of X and S, the set of all permutations from {1, ...,n}
ta {1,...,n}. For each r € 5y, let

P(X)= {({J:,r(l), ...,.'L‘,,(k)},{:r,r(k+1),...,2:,,(ﬂ)}) :1< k< n}.

Definition 3.1 (Two Party Communication Complexity) Thesymmetric communication com-
plexity of a function f € By m, denoted by SC(f), is defined to be

s = C;(X1, Xa).

max
1,X3)EP{X)
The permutational communication complexity of a function f € By, denoted by PC(f), is defined
to be
PC(f) = min max
®€Sn (X1,X2)EPx(X

It is easy to see that for all function f, PC(f) < SC(f).

)CI(Xl,Xg).

3.2 Multi-Party Communication Complexity

A communication topology of N nodes is a graph G = (V, E) with V = {pg,...,pn—1} and E C
V x V, where V models the set of processors and G models the underlying communication network.

Each processor p; is a Turing machine which has an input tape, an output tape and a work
tape. Each edge of G models the communication channel between processors sited at its two ends.
The whole system forms a computing device where each processor has some information, called
input of the processor, and the processors want to jointly compute their respective share of outputs
which are-functions of all the inputs.

The computation is guided by a distributed protocol P which is a set of rules specifying the
order and content of messages sent from one processor to another. We assume that all processors
have unlimited computing power and the local computation is free. We only charge for the bits
transmitted from one processor to the others. One major goal in the field of distributed computing
is to design a distributed protocol to compute a given function that minimizes the maximum number
of bits one processor has to receive, to send, or both.

For each topology G and protocol P, let ¢¢(P,p;) and ¥g(P,p:) denote, respectively, the
maximum number of bits p; has to receive and send in the worst case. Let wg(P,pi) = ¢a(P,pi) +
¥Y6(P, pi)-

A distributed protocol P computes a function f € By if there is an N-partition (Xo,..., Xn-1)
of X and (Yo,...,Yan—1) of Y, where processor p; receives an assignment z; of X; as its input, such
that after running protocol P, p; computes y; with y = f(z), where ¥y = (y0,...,¥N-1)

For each function, there is a trivial protocol with null communication cost, i.e., the one which
assigns all inputs and all outputs to a single processor. In order to avoid this triviality, we only
concern ourselves the set of balanced protocols,

Definition 3.2 (Balanced—Protocols) 4 partition (Xo,...,Xn—1) of X is H-balanced if for
all0 € i< N—-1,|X;] < H. A protocol P for a function f : 2X — 9V is H-balanced if its
input-partition 1s H -balanced.

235

Let P u(f) denote the set of all //~balanced protocols that compute f : 2X — 2Y,

Definition 3.3 (Balanced Communication Complexity) For each function f : 2% — 2Y,
define!

be,ulf) = 2

P, p;
P AL

Notice that if the balanced communication complexity of a function f is small, then f can be
computed by a circuit of small size (The proof of the following lemma will appear in the full paper).

Proposition 3.1 For each graph G, for each Il € R*, each function f :2X — 2Y can be computed
by a circuit of size O (2H+°GvH(f)n) . o

The topology of communication networks play an important role in designing communication-
efficient protocols. The set of communication topologies studied in this paper includes cliques,
mesh, planar graphs, rings, and trees. The corresponding protocols are respectively called, ideal
protocols, mesh protocol, planar protocols, ring protocols, and tree protocols.

4 Communication Topologies and Functional Inversion

In this section, we examine the communication power of various topologies including rings, meshes,
ttees, and cliques. We show that no one-way function {permutation) can be computed on a ring or
a tree with bounded information exchange between neighbors.

4.1 Rings

We now prove that if a function f can be computed by an H-balanced ring-protocol with commu-
nication complexity ®4(f), then there is a circuit of size 0(2f+®#(/)) which computes an inverse
of f.

Let P be an H-balanced ring-protocol which computes f with communication complexity
®u(f); let (Xo,...,Xn-1) be the I{-balanced partition induced by P on inputs and (Ya, ..., YN-1)
the partition on outputs; and let {; and r; be the number of bits the processor i sends to processor
i—1 and 7 + 1, respectively. For simplicity, all ‘+’ and ‘-’ (on index) in this section are modulo N.
Let h = H + ®4(f). By definition, we have {; + r; < k.

Let Ui = (ui, ..., uiy;) and V; = (i, ..., %;,r,) denote the set of variables whose values processor
i sends to processor 1 — 1 and i + 1 respectively, in the protocol P.

Notice that the protocol P defines a natural function f; associated with processor ¢, from
(Xi UVisi U Uia) to (Yi U U; UV;). Because f; has only O(h) bit inputs, f; is computable by a
circuit of size O(2*) (see Lemma 3.1). Let C; be such a circuit computing f;.

1We can also define:

v = i P, ps
au(f) Pt 5y max vo(P.p)
Qan(f) = min maxwg(P,pi)-

PePqg, u(f)

236

We now define for each y € B™ a digraph G, with the property that Gy is not acyclic iff there
exists * € B™ such that f(z) = y.
For each output y € B™, let M; and T; be 28 x 271 x 2%+1 x 27 matrices whose entries are
defined as follows.
For each 1: 0 < i <t — 1, for each assignment u;, ¥i—1, uip1, vi to Ui, Vimy, Uigr, Vi-

o If there is an assignment z; to X;, such that fi(@:, vi—1, uis1) = (¥, ui, ¥i),
then Ti[ui, vie1, wig1, vi] = Xy and Milui, vi, g1, 0] = 15

o If there is no such assignment, M;{u;, vi—1, tit1,v:] = 0;

We now define the digraph G, = (V, E) as

v

N-1
U ({i} x BY x B")

1=0
{(G, wiy vim1), (G 4 1, g, wi))M [w, vie 1, wigr, v] = 1}
Lemma 4.1 Gy is not acyclic iff there ezists z € B™ such that f(z) =y.

E

Proof: Suppose that there exists z € B" such that f(z) = y. Since f can be computed by an
H-balanced ring-protocol with communication complexity ®4(f) as above, there are z;, u;, and v;
such that (i, tq, vi) = fi(Ti, Vim1, Uig1), and hence, ((i, ui, vim1), (3 4+ 1, ig1, v:)) is an edge in Gy.
Thus (0, uo, vnv—1)s (1, %1,v0), oo , (¥ — 1, uny_1, vn—2), (0, up, ¥n—1) forms a cycle in G,.

On the other hand, since each simple cycle in Gy contains exactly one node from

{i} x B% x Bri-1.
Hence each simple cycle of Gy, is of the form
(07 Ug, vN—'l)y (1' Uy, 1)0), ey (N - 17 UN-1, UN-2)) (0’ Uo, vN-l)-

By definition of Gy, there exists x;, such that (g, i, v:) = fi(%i, vi-1, tit1), and therefore flz)=uyu.
a

We now show how to invert f, given C;.
Inputs: y € B™.
e compute the matrices M; and T; for 0 < i < N using Ci;
o construct the digraph Gy, using M;'s;
o if Gy has no cycle, then output that there is no z such that f(z) = y;
o otherwise, compute a cycle of Gy (0, ug, un-1), ..., (N — 1, un_1,vn-2), (0, uo, ¥y—1), and
output z = {(zg,...,xN-1), where z; = Ti[ui, vi-1, tig1, vi)
It is easy to check that the above algorithm runs in time O(2"n). Let C be a circuit that
simulates the above algorithm, we have,

Theorem 4.1 For each f € Bnm, if there is an H -balanced ring-protocol computing f with com-
munication complezity ®p(f), then there is a circuit of size O(27+®#U)n) which computes an
inverse of f. a

We say a function f € B, is i-ring-partitionable if it can be computed by an H-ring protocol
such that H + ®4(f) < k.

Corollary 4.1 If f is O(log n)-ring-partitionable, then there is a polynomial size circuil computing
an inverse of f. Hence, there is no one-way function which is O(log n)-ring-partitionable. a

237

4.2 Trees

We now show that if a function f can be computed by an H-balanced tree-protocol with communi-
cation complexity @y (f), then there is a circuit of size O(2#+®#(/}5) which computes an inverse
of f.

Without loss of generality, we can assume that trees are rooted. But in the tree-protocol,
each node can communicate with any of its neighbor (children and parent). For simplicity of the
presentation, we further assume that the trees are binary, i.e., each node has at most two children.
Qur results can be extended to any bounded degree tree.

Let P be an H-balanced tree-protocel computing f with communication complexity ®r(f);
let (Xo,...,Xn-1) be the H-balanced partition induced by P on inputs and (Yp,...,Yn-1) be
the partition on outputs. For each node i in a given tree, let p(i), lc(2), re(i), be its parent, left
child, and right child, respectively. Let c(i) be a child of i. Let p;, /; and r; be the number of bits
the processor i sends to processors p(i), {c(4), and rc(i), respectively. Let A = H + &g(f). By
definitions, we have p; + {; + r; < h.

We now reduce the inversion problems to the following consistency problem on trees.

A labeled tree is a 3-tuple (T, F,Z) where T is a rooted tree with ¥ nodes {0,.,N — 1},
Z ={Z¢,...,Zn-1}, and G = {go,..-,9i-1}. Each node ¢ in T is associated with a set Z; of k;
boolean variables and a (k; + kp(i) + Kic(i) + Kre(iy)-place boolean function g; which only depends on
variables with node i and with neighbors of node i. An assignment to variables in Z satisfies gi, if
the value of g; is 1 under this assignment.

Definition 4.1 (Consistency Problem on Trees) Given a labeled tree (T',G,Z), compute an
assignment of Z which satisfies all functions g;, 0 <1< N —1.

The consistency problem on trees can be solved in O(2%*%()n) time by RAKE operation
[9, 8, 2]. Recently, the author gave an optimal O{logn) time algorithm for this problem when
(max; &;) is a constant [14].

Let U; = (Ui1y - %id)y Vi = (05,152 Vipy)y and Wi = (wi1, ..., w;r;) denote the set of variables
of whose values processor i sends to processors p(i), lc(i), and rc(i), respectively, in the protocol
P. Notice that the protocol P defines a natural function f; associated with processor i, from
X;u Up(ie(iy) Y Up(re(i)) Y Wep(s)) to Yi U U; U V; U W;. Because Ji has only O(h) bits inputs, f; is
computable by a circuit of size O(2") (see Lemma 3.1). Let C; be such a circuit computing f;.

Now, let Z; = X;UU;UV;UW; and let g; be a function from (X.'U Up(lc(i)) U Up(,c(,‘))u Wc(p(i)) V]
Ui UV; U W;) to B such that g; has value 1 if

(3 U U U ViU W) = fi(XU Upetiy) Y Upgregin) Y Wegatin))-

;From the above discussion, we have the following lemma (the proof will appear in the full
paper).

Lemma 4.2 for each y € B™, for each assignment z to X, there is an assignment, u; to U;, v; to
Vi, and w; to W; satisfying all g; iff f(z) = y.

Therefore, for each y € B™, in O(2"*n) time, we can, using the algorithm for consistency
problem on trees, compute an z € B, such that f(z) = y (if such an z exists). Let C be a circuit
that simulates the above algorithm, we have,

238

Theorem 4.2 For each f € Bpm, if there is an H-balancea iree-protocol computing f with com-
munication complezity @y (f), then there is an inversion circuit of size Q(2F+®un) for f. O

We say a function f € B, ., is h-tree-partitionable if it can be computed by an H-tree-protocol
such that H + @y (f) < A.

Corollary 4.2 If f is O(log n)-tree-partitionable, then there is a polynomial size circuit computing
an inverse of f. Hence, there is no one-way function which is O(log n)-tree-partitionable. a

4.3 Cliques

In the above two subsections, we show that if the balanced communication complexity (on trees
or rings) of a [unction is small, then there exists a small size circuit computing an inverse of the
function. Of course, the results depend critically on the topology of the communication networks.
To what topology can our resuits be extended? We first observe that our result can be extended
to O(logn) by n meshes (the proof will appear given in the full paper).

Theorem 4.3 For each f € Bn,m, if there is an H-balanced mesh-protocol on the O(logn) x
n mesh computing f with communication complezity ®y(f), then there ezists a circuit of size
O(2H+®5)n2) which computes an inverse of f. o

It is remain open whether the similar result exists for an n by n mesh.

We now show, it is unlikely to extend the results to all topologies with bounded degree. We
say a function f € By, is k-partitionable if there is a k-balanced protocol on an n-clique with
communication complexity $(f) bounded above by &.

Theorem 4.4 If NP # P, there is a G-partitionable function f such that no polynomial size
circuil compules an inverse of f. a

Proof: This theorem follows simply from the following lemma.

Lemma 4.3 (Garey and Johnson) The SAT problem, in which each clause contains at most 3
variables or the negation of variables and each variable or its negation is in at most three clause,
is N P-complete. a

Corollary 4.3 If NP # P, there is o 6-partitionable function f which is neither O(logn)-ring
partitionabdle, nor O(log n)-tree partitionable. O

Similarly, we have,

Corollary 4.4 If NP # T(2P°9) there is a G-partitionable function f which is neither polylog-
ring partitionabdle nor polylog-tree partitionable. a

*In this papez, the notation of NP # P denote that there is an NP function which can not be computed by a
polynomial size circuit.

239

5 Inverting Planar Circuits

A boolean circuit C is planar if (1) the underlying graph of C is planar and (2) all inputs are on
the same face of the underlying graph, (this face is called the input face).

We now show the relationship between the depth of a planar boolean circuit and the balanced
communication complexity (on ring) of the function it computes.

Lemma 5.1 If a function f € Bn., can be compuled by a planar circuit of depth d, then f is
O(d)-ring-partitionable.

Proof: Without loss of generality, we can assume that C is embedded on the surface of a cylinder
with the input face at the bottom if the cylinder (see Figure 1).

Figure 1: Embedding Planar Circuits on a Cylinder

Since the height of C is d, C has a (1/3,2/3)-separator of size d [6, 7] that (1/2,2/3)-splits the
inputs (See Figure 2).

Figure 2: Partition of a Circuit by a h-separator

By recursively applying the separator partition, we can partition the circuit into n’ components,
Ca, ..., Cni_1, each contains at most h-inputs. We say two components are neighbors, if they share
some nodes which are removed during the partition. From the construction above, it follows that
each component has at most two neighbors. Moreover, no pair of neighbors share more than d
nodes which are removed, and hence, without loss of generality, we assume C; has neighbor C;_;
and Ciyy. Therefore, we have an d-balanced ring-protocol with #’ nodes, where the processor on
node 7 evaluates the component C; and communicates with processor on node i — 1 and i + 1 to

240

evaluate the nodes on the separator. Clearly, the communication complexity ®x(f) is bounded by
0(d). o

Theorem 5.1 If f can be computed by a planar circuit of depth d, then an inverse of f can be
computed by a circuit of size O(2%). o

A function f € B is NCF-computable if f can be computed by an O{(logn)*)-depth circuit
of polynomial size. It is NC*-planar-computable if it can be computed by a O((logn)¥)-depth
planar circuit of polynomial size.

Corollary 5.1 If NP # P, then there is an NC° function whick can not be computed by an NC?
planar circuit. o

Combining with a result of Hastad (3],

Corollary 5.2 if P # NC?, then there is an NC° permutation which can not be computed by an
NC?! planar circuit. o

Note that in the definition of the planar circuit, it is crucial to impose the restriction all inputs
are on the same face. When this restriction is removed, the class of resulting circuits is called
general planar circuits. The computational power of general planar circuit is greater than planar
circuit (the proof will appear in the full paper).

Theorem 5.2 If NP # P, there is a function f computable by a general planar circuit with
constant depth and polynomial size, whose inverse is not computable by any polynomial size circuit.
a

6 Area Requirement of One-way Functions

In this section, we prove a lower bound on the VLSI area requirement of one-way functions in
Thompson model [15, 5} where all inputs and outputs are on the boundary of the Thompson grid.
We can prove (the proof will be in the final version)

Theorem 6.1 If a function f has a circust with layout area A, then there is a circuil of size
0(24/™) computing an inverse of f. o

Corollary 8.1 For all one-way functions f, the area required to layout f is at least U(nlognj. O

7 Final Remarks

All results presented in the above section are stated in the non-uniform form. Similar uniform
version of the results can be proven. We also consider the parallel complexity of inverting boolean
circuits. Those results will be included in the full paper. One interesting question remain open is
to what topology can our upper bound result be extended. In particular, it is interesting to know
whether similar results can be obtained on n by n meshes.

241

Finally, we have also obtained some results that relates the two-party communication complex-
ity to the complexity of inverting permutations. Those results will be included in the final version
of the paper.

Acknowledgments We would like to thank Alan Frieze, Merrick Furst, Hillel Gazit, Manpreet
Khaira, Zhi-Li Zhang for helpful discussions.

References
{1] R. Boppana and J. Lagarias. One-way functions and circuit complexity. In Proc. Struc. in Compl.
Theory, Lect. Noles. in Computer Science., 1986.

[2] H. Gazit, G. L. Miller, and S.-H. Teng. Optimal tree contraction in the EREW Model, In Current
Computations edited by S. K. Tewsburg, B. W. Dickinson, and S. C. Schwartz”, pages 139-156. 1988.

{3] J. Hastad. Computational Limitations for Small Depth Circuits. The MIT Press, 1986.

[4] R. Impagliazzo and S. Rudich. Limits on the provable consequence of one-way permutations. In
Proceedings of the 21st Annual ACM Symposium on Theory of Compuling, pages 44-61. 1989.

[5] Frank Thomson Leighton. Coemplezily Issues in VLSI. Foundations of Computing. MIT Press, Cam-
bridge, MA, 1983.

[6] R.J. Lipton and R.E. Tarjan. A separator thecrem for planar graphs. SIAM J. of Appl. Math., 36:177-
189, April 1979,

{7] G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs, In Proceedings of the
16th Annual ACM Symposium on Theory of Compuiing, pages 376-382, 1984.

[8] G. L. Miller and J. H. Reif. Parallel iree contraction and its applications. In 26th Symposium on
Foundations of Compuler Science, pages 478—489, 1985.

9} J. Pearl. Heuristics: Intelligent Scarck Strategies for Computer Problem Solving. Addison Wesley, 1984.

[10] R. Rivest, A, Shamir, and L. Adleman. A method for obtaining digitial signatures and public-key
cryptosystems. CACM, 21(2):120-126, 1978.

[11] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings of the
22th Annual ACM Symposium on Theory of Compuling, pages 387-394. 1990,

[12] C. Sturtivant and Z.-L. Zhang. Efficiently inverting bijections given by straight line programs. In J1st
Annual Symposium on Foundalions of Compuler Science, pages 327-334. 1990.

(13] M. Szegedy. Functions with bounded symmetric communication complexity and circuit with mod m
gates. In Proceedings of the 22th Annual ACM Symposium on Theory of Computing, pages 278-286.
1990.

{14] S. H. Teng. Fast parallel algorithms for tree-based constraint satisfaction problems. Manuscript,
Carnegie Mellon University, 1990.

[15] C.D. Thompson. A Complezily Theory for VLSI. PhD thesis, Carnegie-Mellon University, Department
of Computer Science, 1980.

(16} A.C.-C. Yao. Theory and application of trapdoor functions. In 28th Annual Symposium on Foundations
of Compuler Science, pages 80-91. IEEE, 1982.

[17} A. C.-C. Yao. Some complexity questions related to distributive computing. In Proceedings of the 11st
Annual ACM Symposium on Theory of Compulting, pages 209-213. ACM, 1979.

	Introduction
	Definitions
	Communication Complexity
	Two Party Communication Complexity
	Multi-Party Communication Complexity

	Communication Topologies and Functional Inversion
	Rings
	Trees
	Cliques

	Inverting Planar Circuits
	Area Requirement of One-way Functions
	Final Remarks
	References

