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Abstract 

For every k, we construct an oracle relative to which secret agreement can be 
done in k passes, but not in k-1. In particular, for k=3, we get an oracle relative 
to which secret agreement is possible, but relative to which trapdoor functions 
do not exist. Thus, unlike the case of private cryptosysterns, there is no black 
box reduction from a k-pass system to a k-1 pass system. Our construction is 
natural- suggesting that red-world protocols could trade higher interaction costs 
for an assumption strictly weaker than the existence of trapdoor functions. Finding 
a complexity theoretic assumption necessary and sufficient for public cryptosystems 
to exist is one of the important open questions of cryptography. Our results make 
clear the possibility that this question is impossible to answer because it contains 
a false hidden assumption: the existence of a ’&pass public cryptosystem follows 
from the existence of a k-pass system. The question should really be a famay of 
questions: given k find an assumption equivalent to the existence of a k-pass public 
cryptosystem. 

1 Introduction 

An important project in cryptography is to classify protocols according to the complexity 
t,heoretic assumptions that are necessary and sufficient to guarantee their existence. This 
classification not only lends a structure and coherence to the field, but bases the viability 
of cryptography on the most general possible zssiimptions (as opposed to those involving 
specific problems such as factoring). An excellent example of this type of result is that 
private-key cryptography (under any reasonable definition) is possible if and only if one 
way functions exist[ILL89, ILSS]. This example leads one to seek a corresponding result 
for public cryptosystems (being able to send a secret message to a person with whom YOU 

share no secret information). Researchers, however, have been unsuccessful in finding 
a natural, complexity-theoretic assumption that is equivalerit to the existence of public 
cryptosystems. We shed new light on the difficulty of this problem; in the process, we 

solve some of the main open problems posed in “A Basic Theory of Public axid Private 
Cryptosystems” [Rac88]. 

Following Rackoff’s example, we consider private-key cryptography as the ability to 
send secret messages to a person with whom you share a secret string; public cryptosys- 
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tems as the ability to send secret messages to  a person with whom you share no secret 
information. In neither type of cryptography, do we include a constant bound on the 
number of rounds of interaction as part of the definition. Thus, we call i t  “public cryp- 
tography” and not “public-key cryptography” as defined by [DH76]. (From now on, we 
measure the amount of interaction in terms of passes rather than rounds, e.g., Alice to 
Bob to  Alice is two passes, but only one round.) Although all known protocols for pub- 
lic cryptosystems[DH76, RSA78, GM841 can be easily altered to  use no more than two 
passes, there is no a priori reason to suspect this will always be so. We consider secret 
agreement as the ability to agree on a secret bit with a person with whom you share 
no secret information. Under our definitions, secret agreement and public cryptosystems 
are equivalent; if one is possible so is the other. We will use them interchangeably. 

We show that for any k >_ 2 there exists an oracle relative t o  which public cryp- 
tosystems are possible in k passes, but not in k-1 passes. Furthermore, the internal 
structure of the oracle is not an unnatural construct achieved through diagonalization: i t  
uses  a random func t ion  which shares features w i th  the discrete-1ogarCthrn problem,  used 
by DiBe and HellrnanfDH76] in the i r  original protocol f o r  public-key cryptography. Our 
result applies directly to  Rackoff’s problem of finding “a convincing example where ex- 
tra passes appear to help” achieve secure public cryptosystems. In contrast, Rackoff’s 
problem for privatekey cryptography was resolved oppositely. I t  has been shown that 
a k-pass private-key cryptosystem exists if and only if a one pass private-key cryptosys- 
tem exists[ILL89, IL89] ; furthermore, these results have the form of standard black boz 
reductions. Our result rules out any black box reduction for public cryptosystems. We 
think this difference is counter-intuitive. Our oracle is naturai and is intended to reflect 
real world cryptography. 

Black box reductions are quite natural to cryptography. Unlike the situation in 
complexity theory, a black box reduction from A to B is the preferred result. This is 
because cryptographers ultimately want to  implement their work. The reductions should 
be effective, simple, and modular, e.g., black box. Thus, cryptographers seek other kinds 
of reductions only as a last resort. Black box reductions are the only type possible when 
assumption A is physical (e.g., envelopes). 

Setting k = 3, we get an oracle, I?, relative to which three pass public cryptosys- 
tems exist, but two pass systems do not. Oracles separations of this kind rule out the 
black box arguments used in all known cryptographic reductions among protocols which 
pass information from one party to  ano&er (m opposed to zero-knowledge protocols). 
One interpretation of this result is that the existence of public cryptosystems is not 
provably equivalent to  any complexity-theoretic assumption that in turn implies the ex- 
istence of a 2-pass cryptosystem. For example, all the notions of a “trapdoor” function 
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or “trapdoor” permutation appearing in the iiterature[DH76, RSA78, Yao82] imply the 
existence of a 2-pass public-key cryptosystem. Thus, relative to r, public cryptosys- 
tems are possible, but trapdoor functions do not exist; trapdoor functions are not a 
necessary consequence of public cryptosystems. In the other direction, previous work by 
Impagliazzo and Rudich[IR89] has shown similar evidence that the existence of a one- 
way permutation is not sufficient for the existence of public cryptosystems. Combining 
these results, we are at a loss for a good candidate for a complexity-theoretic assumption 
characterizing the nature of public cryptography. Perhaps the requirements of public 
cryptosystems have no natural expression in complexity theory (again, in contrast to 
private-key cryptography). 

The usual protocol design philosophy minimizes the amount of interaction. However, 
current public cryptosystems are based on specific number theoretic problems (e.g. fac- 
toring, discrete-log) which might someday be broken. Our results suggest that  public 
cryptosystems could trade higher amounts of interaction for weaker assumptions less 
likely to be broken. In particular, we justify the following open problem: Find a 3 - p ~ ~  
system based on an assumption which seems to be weaker than the existence of trapdoor 
functions. 

The proof requires a very precise analysis of the information possessed by Alice and 
Bob at  each step. After concluding that the flow of information in a two pass protocol 
has a restricted form, we show any protocol with this form is insecure. This requires 
extending the techniques in [IR89]. 

2 Overview of the oracle for three passes versus two 

The oracle is inspired by the Diffie-Hellman protocol[DH76]: Alice picks a prime p 
and a random a < p .  Alice picks a random 2, Bob picks a random y. Alice sends 
a, p ,  and a‘ mod p .  Bob sends aY mod p .  Alice computes ( a y ) “  mod p .  Bob computes 
(ax)!’ modp. Both parties arrive a t  the same result. The eavesdropper, Eve, has only 
seen a ,  p ,  ax mod p, and aY mod p ;  the only known way for Eve to  compute arY is to  com- 
pute the discrete-log. The salient feature of this protocol is that commutativity allows 
Alice and Bob to  arrive at  the same result by a different calculation. 

The oracle will contain two random functions, ( and D H .  Function < takes an 
input and returns a random string three times its length. With probability 1, < is a 
1-1 function for sufficiently large input strings. (Moreover, 6 is the same “annihilating” 
function defined by Kurtz, Mahaney, and Royer[KMR89]. We will use this fact later.) 
The function DH is designed to maintain the following property: D H ( s , < ( y  . [(.)>I = 
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D H ( y , < ( x  . E ( y ) ) ) .  (. means concatenation.) Apart from this property, DH is a random 
function, i.e. we know the above pair is equal to the same random bit. (We also include 
a PSPACGcomplete portion of the oracle to insure that protocols which do not use the 
random functions portion of the oracle are not secure. For example, we want to be sure 
no two-pass protocol based on factoring or discrete-log could be secure.) 

Using this oracle the following three pass protocol is secure: Alice picks a random 2, 

Bob picks a random y. Alice sends E(z). Bob sends J ( y )  and [(y [(z))). Alice sends 
<(z . <(y))). Alice computes D H ( z , < ( y .  <(z))). Bob computes D H ( y , < ( z  . J(y))). They 
both arrive at the same result. 

Why is there no 2-pass protocol relative to this oracle? The precise answer is quite 
technical. Very generally, we show that  no two pass protocol can use the oracle to  arrive 
at  the same result by different calculations, i.e., the queries to the oracle that turn out 
to  be useful are exactly those that both parties query. Once this is shown we can use the 
techniques developed in [IR89] to  break the protocol. 

More precisely, a dual p a i r  is a pair of queries to the DH portion of the oracle having 
the form {(z,((y *((z))), (y,<(z . J ( y ) ) ) } .  The fact that J is 1-1 (for suff. large inputs) 
insures that any two distinct dual pairs are disjoint (for suff. large inputs). A protocol 
hifs a dual pair if each query in the pair is made by at least one of the participants. We 
show that a t  the moment a two pass protocol hits a dual pair, one of the two participants 
has already queried both z and y. Thus, he/she can calculate both members of the dual 
pair. This means that one of the two calculations is the same as the one done by his/her 
partner (in the language of [IR89], an intersection query). The oracle is not being used 
to arrive at the same result by a different calculation from one’s partner. The situation is 
not substantively different from using a random function oracle with a PSPACE-complete 
oracle. It has already been shown that relative to such an oracle secure secret agreement 
(public cryptosystems) is impossible[IR89]. 

3 Notation and definitions 

We will abbreviate probabilistic polynomial-time Turing machine with the notation 
P P T M .  We use the notation poly  to  refer to some polynomial function. Thus, we 
can use the freewheeling arithmetic p o l y  * p o l y  = po ly .  By 2 . y we mean the concate- 
nation of the strings z and y. The three oracle P P T M s  (alice, Bob, and Eve) which we 
will consider will all have access to  the same fixed oracle. 

A secret agreement protocol is a pair of oracle PPTMs  called Alice and Bob. Each 
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machine has a set of private tapes: a random-bit tape, an input tape, two work tapes, 
and a secret tape. In addition, they have a common communication tape that both 
can read and write. A run of the protocol is as follows: Alice and Bob both start with 
the same integer parameter 1 written in unary on their input tapes; Alice and Bob run, 
communicating via the common tape; Alice and Bob both write a bit on their secret tapes. 
Alice and Bob run in time polynomial in 1. (1  is often called the secur i ty  parameter . )  
If this bit is the same, Alice and Bob are said to agree. I t  should be noted that a 
protocol which can agree on a bit can be run multiple times to agree on a string; we will 
consider only protocols which agree on a single bit. The entire history of the writes to 
the communication tape is called t he  conversa t ion .  a ( [ )  will denote the probability that 
Alice and Bob agree on the same bit. 

An oracle P P T M  Eve breaks a secret agreement protocol if Eve, given only 1 and the 
conversation, can guess the bit with probability greater than 1/2 + l / p o l y ( l ) .  Eve can 
only use time bounded by a polynomial in 1 .  A protocol is secure if no Eve can break it. 

4 Construction of the oracle for k = 3 

Let E be a random function which takes any input string to  a string of independent 
random bits three times the length of the input string. Let p be random function.from 
unordered pairs of strings to  a random bit. To any particular choice of 5 and p we can 
associate a binary function DH defined by the following property (assuming [ is 1-1): 

D N ( p , < ( q  ' <(PI)) = D H ( p J  ((P. <(q))) = pL({PJ q } )  

DH is undefined everywhere else. Of course, [ might not be 1-1. But with probability 
one, 5 fails to be 1-1 for finitely many inputs[KMR89]. So with probability one, DH is 
well defined for sufficiently large inputs; we can make all the small inputs evaluate to 
zero. 

I 

We construct a random r as follows. Pick a random < and p. Now construct an 
oracle with three parts: 

The function <. 

The function DH which is associated with ( and p .  

A PSPACEcomplete oracle. 

By the above remarks, we know that with probability one, r is well defined. It is 
important to note that when we say with probability one over random r, we mean over 
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random E and p .  This should not be confused with saying that I? is a random oracle. 
The  results in this paper are not being proved relative to a random oracle. 

5 A three pass public cryptosystem 

We can use r to acheive a three pass public cryptosystem which we call the natural 
cryptosystem associated with I?. The following is a protocol for Alice and Bob to agree 
on a random bit: 

Alice and Bob agree on a security parameter I .  Alice picks a random x of length 1 ,  
Bob picks a random y of length 1 .  Alice sends ((z). Bob sends <(y) and ((y.((z))). Alice 
sends ((2 .E(y))). Alice computes D H ( z , ( ( y .  ((2))). Bob computes D H ( y , ( ( z  .((y))). 
They both arrive at  the same result. 

Theorem 5.1 The natural cryptosystem associated wzth r is correct and secure with 
probability one. (If Eve asks a polynomrally bounded number of oracle queries, not even 
infinite computational power will help her guess ihezr secret bat with probability greater 
than 1/2 + pdy( 1)/2' .) 

Proof: The protocol is clearly correct as long as I? is well defined. This happens with 
probability one. 

For the security of the protocol it suffices to argue that knowing the conversation, 
i.e., ((y), ((t), [(z . ((y))), and ((y . ((z))), does not reveal any information about 3: or 
y. The  proof is standard and we omit it here. 

6 Three passes are required 

In this section we argue that three passes are required for secure secret agreement relative 
to a random I?. 

6.1 Defining knowledge about the oracle. 

It is possible to formalize the notion of an oracle T M  knowing certain facts about a 
random I?. We say an  oracle TM T t r i e d  q at a certain point in its computation if it 
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makes a query to r of the form: ((*q*),  DH(* ,q ) ,  or D H ( q , * )  where * is any string. 
We say a protocol tried q if either Alice or Bob tried q. We say a protocol queries a 
dual pair involving p and q if the protocol has made the queries: D H ( p ,  ( ( q  . ( ( p ) ) )  and 

D H ( q ,  E ( P .  E ( n ) ) ) .  

Lemma 6.1 With probability one, over random r, for  any oracle P P T M  T using r ,  for 
suflciently large n and any string q o f  length greater than or equal to n ,  the probability 
(over random tapes of T )  that T (n )  tried ( ( q )  at time t without having queried ( ( a )  at a 
time prior to t is bounded b y  poiy(n)/2".  

Proof description: The proof of lemma 3.4 in [KMR89] already proves the above result 
for a random oracle ( (as opposed to r). Their proof techniques can be generalized to r 
because the DH portion of the oracle that can be queried without first querying ( ( 4 )  is 
independent from [ ( q ) .  

This theorem can be equally well applied to protocols rather than to individual ma- 
chines; a protocol can be simulated by a single P P T M .  

6.2 Two pass protocols have restricted form 

Lemma 6.2 Any run of a secret agreement which satisfies the following two properties 
must make at least three passes: 1) The protocol queries some dual pa i r  involving p and 
q ,  when neither p a r t y  has tried both p and q. 2) The protocol never tries ( ( q )  without 
first having queried [ ( q ) .  

Proof: Suppose Alice made the query D H ( p , [ ( q  . ( ( p ) ) )  and Bob made the query 
D H ( q , ( ( p  . [ ( q ) ) ) .  Thus, Alice tried p ,  but not q. Bob tried q ,  but not p .  The pro- 
tocol tried ( ( q  . ( ( p ) ) .  By property 2, someone queried ((4 . [ ( p ) ) ;  i t  must be Bob since 
i t  wasn't Alice who tried q. Thus, Bob tried ( ( p ) .  Symmetrically, Alice tried ( ( q ) .  

We can now reason about who tried what first. For example, before the protocol tried 
( ( p )  it must have queried ( ( p )  (property 2) .  Thus either Alice or Bob queried ( ( p ) ;  it 
must have been Alice lest Bob have tried both p and q (contradicting property 1). Thus 
Alice tried p before Bob tried [ ( p ) .  
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Alice tried ( ( q  . < ( p ) ) ,  but did not make that particular query lest Alice have already 
tried q. By property 1, that query was made previously. It must have been made by 
Bob. Before Bob could have made it, Bob must have tried J ( p ) .  Thus, Bob tried t ( p )  
before Alice tried ( ( q  . ( ( p ) ) .  

Summarizing more succinctly: By property 2 and the definition of trying, Alice tried 
p before Bob tried [ ( p )  before Bob queried [ ( q  . [ ( p ) )  before Alice tried c ( q  . ( ( p ) ) .  
Symmetrically, Bob tried q before Alice tried < ( q )  before Bob tried [ ( p  . [ ( q ) ) .  Alice and 
Bob are both involved in two separate passes. There must have been at least three passes 
in all. I 

We say a protocol has restricted form if, with probability one, over random I?, for 
sufficiently large n, the protocol will have probability greater than 1 - poly(n)/2” of 
having a run in which each time the protocol queries a dual pair involving p and q of 
length greater than n,  at least one of the two parties has tried both p and q .  

Combining lemmas 6.1 and 6.2 we get the following result: 

Lemma 6.3 Any t w o  pass  protocol has restricted form. 

6.3 Two pass protocols can be broken by Eve 

Lemma 6.4 With probabili ty one, over random r, a n y  protocol of restricted f o r m  can 
be broken by Eve. 

Proof description: In previous work by Impagliazzo and Rudich[IR89], it is shown that 
no protocol is secure relative to  an oracle with just the and PSPACEcomplete portions. 
Intuitively, a protocol of restricted form just can’t make any other use of the DH portion 
of the oracle besides extracting random bits from it; thus, such a protocol is no more 
secure than it would be using only the ( portion of the oracle. 

[IR89] rely on the notion of an intersection query, a query to the oracle that is made 
by both Alice and Bob. They show that if Eve has figured out all the intersection queries 
that occurred before a given time, then Eve has a high probability of figuring out the 
next intersection query. By maintaining this inductive procedure Eve can figure out the 
final intersection query, namely, the secret itself. 

If a protocol using r has restricted form, we can assume without loss of generality 
when the protocol queries a dual pair the party that tried both p and q (with high 
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probability one of the parties tried this, unless the queries are very short and clearly 
useless) can ask both queries in the dual pair. Thus, Alice and Bob will intersect on this 
dual pair. Using the techniques Impagliazzo and Rudich, it can be shown that Eve can 
use the same inductive procedure on the intersection queries. 

7 Putting it together 

Combining lemmas 5.1 and 6.3 with the above theorem we get: 

Theorem 7.1 W i t h  probability one over random I’, a three pass public cryptosystem 
exists, but a two pass sys tem does not. 

Corollary 7.1 There exists an oracle relative t o  which public cryptosystems exist, but 
trapdoor funct ions do not.  

This corollary should be contrasted with the result in [IR89] stating the existence of 
an  oracle relative to which one-way permutations exists, public cryptosystems do not. 

To generalize the oracle construction to k > 3, we simply have to change the definition 
of the D H  function portion of the oracle. For example, for k = 4, D H  is defined by the 
following property: 

OH(Pt < ( q  ’ “P ‘ E ( 4 ) ) )  = D H ( q ,  <(P ’ ‘ E ( P ) ) ) )  = q l )  

The  proof techniques in this paper remain unaffected. 

We get: 

Theorem 7.2 For a n y  k 2 2, there exists an oracle relafive t o  which k pass public 
cryptosystems are possible, but k-1 pass systems do not. 
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