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ABSTRACT Thrcc new trapdoor one-way functions are proposed that are based on 
elliptic curves over thc ring 2,. The first class of functions is a naive construction, d i i ch  
can be used only in a digital signature scheme, and not in a public-key cryptosystem. The 
second, preferred class of function, does not suffer from this problem and can be used for 
the samc applications as the RSA trapdoor one-way function, including zero-knowledge 
identification protocols. The third class of functions has similar properties to the Rabin 
trapdoor one-way functions. Although the security of these proposed schemes is Imsetl on 
the difficulty of factoring n, like the RSA and Rabin schemes, these schemes seem to be 
more secure than those schemes from the viewpoint of attacks without factoring such as 
low multiplier attacks. The new schemes are somewhat less efficient than the RSA atid 
Rabin schemes. 

1 Introduction 
In their seminal 1976 paper [3), Diffic and Hellman introduccd the concept of a trapdoor 
one-wa.y function (TOF). A TOF is a function that is easy to evaluate but infeasible 
to invcrt, unless a secret trapdoor is known, in which case the inversion is also easy. 
Although no realisation of a T O F  was proposed in [3], Dime and IIellman observed that 
such a function would allow the construction of digital signature schemes and pihlic-key 
cryptosystems, two concepts that they introduced. 

The first implementation of a T O F  was proposed by Rivcst, Shamir and Adleman in 
1978 [21]. Its security relies on the difficulty of factoring a composite number n. Some 
other implementations [20, 41 of TOFs have been proposed based on the difficulty of 
factoring and discrete logarithms. From another direction, one of the recent topics in 
the field of elliptic curves is tlieir applicability to cryptography. The  points of an  elliptic 
curve E over a finite f ie ld  form an alxlian group, and hence thc group E can he used to 
implement analogs of the Diffie-IIcllman key exchange scheme and the EIGamal piildic 
!icy cryptosystem, as explained in [9].  The security of these analogous systems rests 011 

the difficulty of t h e  discrete logarithm problem on an elliptic curve. 

' N T T  Laboratories, Sanpeidani, Inuidani, Seikacho, Kyoto, 619-02, Japan 
'Princeton University, Princeton, NJ 08544, USA; Supported by Omnisec AG, Switzerland 
I N T I ?  Laboratories, Yokosuka-shi, Iianagawa 238-03, Japan 
§University of Waterloo, Ontario, N2L 3G1, Canada 

J. Feigenbaum (Ed.): Advances in Cryptology - CRYPT0 '91, LNCS 576, pp. 252-266, 1992. 
0 Springer-Verlag Berlin Heidelberg 1992 



253 

In this paper, we propose new TOFs  (or public-key cryptographic schemes) Imsed on 
elliptic curves over a ring 2,. The  security of these TOFs depends on the difficulty of 
factoring n. Although these schemes are less eflicient than the RSA and Rabin schemes, 
our schemes seem to be more secure from the viewpoint of some attacks that do not use 
factoring such as low multiplier attacks. In this case, even when the RSA system can be 
broken without factoring the modulus, our schemes seem to remain secure. 

?Ve begin with a brief review of the basic definitions and facts about elliptic curves 
over a finite field. In Section 3, we show some properties of elliptic curves over a ring, 
which are used in the succeeding sections. Section 4 proposes a naive construction of the 
TOF (Type 0 scheme) based on elliptic curves over a ring, but wliicli can be used 0111~ 

in a digital signature scheme, and not in a pulilic-key cryptosystem. In Sections .5 and 
6 ,  we proposc the Type 1 and Typc 2 schemes respectively based on the elliptic curve 
over a ring, and discuss their properties. Section 7 discusses the sccurity of the proposed 
schemes, and Section S discusscs their performance. 

2 Elliptic Curves over a Finite Field 
Let I( be a field of characteristic # 2,3,  and let a ,  b E K be two parameters satisfying 
4a3 + 276' # 0. An elliptic curve over 11' with parameters a and b is defined as the set of 
points (2, y)  with 5, y E K satisfying the equation 

y2 = z3+ a x +  b, 

together with a special element denoted 0 and called the point a t  infinity. \Ire will 
mainly be interested in elliptic curves over the finite field F, with p elements, for some 
prime p .  Such a curve will be denoted Ep(a ,  b) .  What makes elliptic curves interesting in 
cryptography is the fact that an addition operation on the points of an elliptic curve can 
be defined that makes i t  into an abelian group. This addition operation, which has but 
its name in common with the ordinary addition of integers, is described in the following. 

Let E be an elliptic curve, and let P and Q be two points on E.  The point P + Q is 
defined according to the following rules. If P = 0, then -P = 0, and P + Q = Q (ix. ,  0 
is the neutral element of E) .  Let P = (q, yl) and Q = (zZ,y2). If z1 = x2 and y1 = -y2, 
then P + Q = 0 (i.e., the negative of the point (z,y) is the point (2 , -y)) .  In ail other 
cases the coordinates of P + Q = (x3,y3) are computed as follows. Let X be defined as 

(When P + Q # 0, then the denominator is always non-zero and thus the quot.ient is 
defined.) The resulting point P + Q = (q,,y3) is defined by 

2 3  = xz -2, - 2 2  

213 = X ( Z l  - 2 3 )  -211. 

Clearly, the first equation is equivalent to 23 = X2 - 22, when P = Q. All computations 
are in the field over which E is defined. In particular, when the field is F,, all computations 
are modulo p-  
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Let #E,(a,b) denote the order ( i e ,  the number of points) of the elliptic curve E,(u, b) .  
It is mell-known that #E,(a,b) = p t 1 + t where It1 5 2 J F  for evcry elliptic curvc over 
F,. Every value of t within the given hounds is taken for somc pair ( a , b ) ,  but lliis fact 
will not be used in this paper. There exists a polynomial-time algorithm due to Sclioof 
[22] for computing the order of an elliptic curve, but this algorithm is quite impractical 
for large p .  It is known that E,(a, 6) is either cyclic or the product of two cyclic groups. 
In the latter case, Ep(u,b) S Z N ,  x Z N ~  where N ,  . N z  = #Lp(u ,6 ) ,  where N2 divides 
NI and where N2 also divides p - 1. We refer to [9] for a more detailed introduction to 
elliptic curves, and to [8] for some further cryptographically useful properties of ellilitic 
curves. 

For some special classes of elliptic curves the order and group structure is easily de- 
termined. The following well known two lemmas illustrate this point. 

L e m m a  1. Let p be an odd prime sntisj'ying p G 2 (mod 3) .  Then, /or 0 < 6 < p ,  
E,(O, b) is a cyclic group of order 

#E,(O,b) = p +  1. 

Proof. We first prove that #E,(O,b) = p + 1. When p 2 (mod 3) then the mapping 
z ++ z3 is a permutation on F,. Hence for every 6 there are exactly ( p  - 1)/2 numbcrs 
z E F, for which z3 t 6 is a quadratic residue, and for each such x there are two points on 
E,(O,b), viz., the points ( x , k d m ) .  Together with the points (.I"J--i;,O) and 0 there 
are p + 1 points on E,(O, 6). To prove that E,(O, 6) is cyclic (see also [8]), suppose it is 
not. Then E,(O, 6 )  Z 2~~ x Z N ~  where N I N z  = p +  1 and N2 divides p -  1. Hence N2 = 2 
and NI is even. Then the group Z N ~  x Zz must have four elements P for which -P  = P.  
However, there are exactly two points, P = 6 and (m, 0) for which -P = P ,  since 
the only points P on Ep(0,6) for which -P = P are the points ( z , ~ )  with y = 0. This 
contradiction implies E,(O, b )  is cyclic. 

L e m m a  2. Let p Ire a prime satisfying p z 3 (mod 4). Then, for 0 < a < p ,  we hove 

#E,(n,O) = p t 1. 

Moreover, Ep(a,O) is cyclic i f a  is a quadratic residue modulo p and Ep(a,O) Z(p+ll/2 x 
Z2 otherwise. 
Proof. Let f (z) = x3 +ax. f(x) is an odd function, i.e., j(-r) = -f(x). The condition 
p 3 (mod 4)  implies that  for every s E 25, exactly one of the two numbers 5 or -s 
is a quadratic residue modulo p.  This follows from the fact that ( p  - 1)/2 is odd and 
thus -1 is a quadratic non-residue modulo p .  Consider the ( p  - 1)/2 pairs [x, -x] for 
0 < z 5 ( p  - 1)/2. For every such pair, either f(z) = f(-r) = 0 or f (x) is a quadratic 
residue or f (-z) is a quadratic residue. In either of the three cases, there exist 2 point on 
Ep(a, b )  associated with the pair [z, -51, viz., (kr, O), (I, k m )  or (-x, Ad-), 
respectively. Together with (0,O) and 0 the total number of points on Ep(a,  6) is p + 1. 
The proof of the last claim is similar to the proof given for Lemma 1. 

3 Elliptic Curves over a Ring 
We now consider elliptic curves over the ring Z,, where n is an  odd composite sqiiarcfrce 
integer. (An alternative notation for 2, used in the literature is Z/nZ.)  Similar t.o the 
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definition of Ep(a, 6), an elliptic curve &,(a, 6) can be defined as the set of pairs (2, y) f 2; 
satisfying yz z z3 f az + 6 (mod n) ,  together with a point 0 at  infinity. An addition 
operation on &(a, 6) can be defined in the same way as the addition operation on Ep(a ,  b), 
simply by replacing computations in F, by computations in 2,. However, two problems 
occur. The first problem is that because the computation of X requires a division which i n  
a ring is defined only when the divisor is a unit, the addition operation on E,(a,b) is not 
always defined. The second problem, which is related to the first is that E,,(a,b) is not 
a group. It would therefore seem impossible to base a cryptographic system on E,(a, b). 
In the following we present a natural solution to these problems. 

For the sake of simplicity, let n = pq in the sequel be the product of only two primes 
as in the RSA system. Moreover, the addition operation on En(a,6)  described above, 
whenever it is defined, is equivalent to the (componentwise defined) group operation on 
EJa, 6) x E,(a, 6). By the Chincsc Rcmaintlcr Theorem, every element c of Z, can be 
represented uniquely as a pair [cp,cg] where c, E 2, and cq E Z,. Thus every point 
P = (z,y) on E,(a,b) can be represented uniquely as a pair [P,,P,] = [(;tp,yp),(~p,y,,)] 
where Pp E Ep(a ,6)  and P, E E,(a,b), with the convention that 0 is represented by 
[Up,  O,], where 0, and 0, are the points a t  infinity on Ep(a, 6) and E,(a, 6 ) ,  respectively. 
By this mapping, all elements of Ep(a, 6 )  x E,(a, 6 )  are exhausted except the pairs of points 
[Ppr P,] for which exactly one of the points P, and Pq is the point a t  infinity. Note that 
the addition operation on &,(a, 6) described above is undefined if and only if the resulting 
point, when interpreted as an element of Ep(a ,  6 )  x E,,(a,6), is one of these special points. 

It is important to note that when all prime factors of n are large, it is extremely 
unlikely that the sum of two points on E,,(a, b) is undefined. In fact, if thc probability of 
the addition operation being undefined were non-negligible, then the very execution of a 
computation on E , ( a , b )  would be a feasible factoring algorithm, which is assumed not to 
exist. Therefore, the first problem will cause no difliculties in practice. 

The second problem, that E,(a,b) is not a group, can be solved by the following 
lemma. That is, although we cannot use the properties of a finite group directly, we can 
use a property of En(a, 6) which is similar to that of a finite group. The following lemma 
can be easily obtained from the Chinese Remainder Theorem. 
L e m m a  3. Let &(a, 6 )  be an elliptic curue such fhnt gcd(4n3 f 27b2, n )  = 1 and n = pq  
6, q :  prime). Let N ,  be lcm(#E,(a, 6),#Eq(o, 6)). Then, for any  P E &(a, 6 ) ,  and m y  
integer k, 

( k  - N,, + 1) . P = P over En(a, 6 ) .  
We should note that it is possible to define an elliptic curve over a ring so that the 

resulting structure is a group. For our purposes, this is unnecessary. 

4 Naive Construction of TOF Based on Elliptic 
Curves over a Ring 

In this section, we show a naive construction of TOFs (Type 0 scheme) which are based 
on elliptic curves over a ring. These TOFs can be used only in a digital signature scheme, 
and not in a public-key cryptosystem. The shortcomings of t.he TOFs of this section are 
elliminated in the Type 1 and 2 schemes shown in following sections. 

A digital signature scheme based on E,(a,6) can be set up as follows. The signer 
Alice chooses two primes p and q (or, more generally, a set of two or more distinct 
primes) and two parameters a and 6 satisfying gcd(4a3 + 2’ibz, n) = 1, where n = f ~ q .  She 
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then computes the orders of the elliptic curves E,(a, 6) and Eq(n, b)  (for example using 
Schoof’s algorithm [an] ) ,  chooses a public encryption multiple e relatively prime to both 
#Ep(n,  6) and #Eq(a, 6)’ and computes the secret dccryption multiple d according to 

d z e-l (mod Icm(#Ep(a,b),#E,(a,b))). 

Alice releases as public parameters n, a, b and e. When she later wants to sign a message 
M she associates a point P = (z,y) E E,,(a,6) with M in a publicly-known way (see 
below) and computes the point Q = ( 3 , t )  on &(a, b )  according to 

Q = (sit) = d .  P. 

The signature for the message A4 is the pair (s, t ) ’  which can be checked by computing 

P = (z,y) = e .  Q 

on &(a, 6) and extracting the message M from (z,y) (because ( e d ) .  P = P from Lemma 
3). 

Here, given a message M ,  a point (5 ,  y) on &,,(a, b)  can efficiently be asociated with 
M .  M is first paddcd with sufficient redundancy, for instance by appending zero’s to hi, 
resulting in M’. I is defined as the smallest integer greater or equal to M‘ such that 
x3 + nz + 6 is a quadratic residue modulo n, and y is defined as one of the square roots 
modulo n of this number. 

(1) Schoof’s algorithm [22] to compute #Ep(a, 6 )  and #Ep(a, h )  is infeasible for large p.  
(2) The signature is roughly twice as long as the original message M .  
(3) This scheme cannot be used for a public-key cryptosystcm, since knowledge of the 
trapdoor is rcquired to create a point on &(a, 6), which corresponds to a plaintext. 

This scheme may be advantageous in some circumstances. It does allow digital signa- 
ture without the possibility of encryption. 

The shortcomings of this scheme are as follows: 

5 Basic T O F  Based on Elliptic Curves over a Ring 
In this section, we propose a new TOF (Type 1 scheme) that is based on elliptic c u n w  
over a ring. It overcomes the three shortcomings of the Type 0 scheme. For simplicity, 
we show a protocol for a public-key cryptosystem based on elliptic curves as described in 
Lemma 1. We can easily construct a public-key cryptosystem in the case of Lemma 2, 
and digital signature schemes, although we omit a description. 

Step 0 ( K e y  Genera t ion)  User U chooses large primes p and q such that 

p q 2 (mod 3). 

U computes the product n = p q ,  and N,, = Icrn(#E,(O,b), #E,(O, 6 ) )  = Icm(p + 
U chooses an integer e which is coprime to N,,, and computes an integer d such that 

ed s 1 (mod Nn). 

Summarizing, U’s secret key is d, ( p ,  q ,  #E,(O, h ) ,  #E,(O, b) ,  Nn), and U’s public 
key is n, e. 

1,n+l ) .  
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S t e p  1 (Encrypt ion)  A plaintext 11.3 = (m,,m,,) is an integer pair, where m, E Z,, 
my E Z,. Let M = (mr, my) be a point on thc elliptic curve E,(O, b ) ,  where b is 
determined by m, and my. 

Sender A encrypts the point M by encryption function E(.) with the receiver’s 
public key e and n as 

C = E(M) = e . A4 over E,(O, b) ,  

and sends a ciphertext pair C = (cr ,  cY) to a receiver B. 

Step 2 (Decrypt ion)  Receiver B decrypts a point C by decryption function D(*) with 
his secret key d and public key n as 

11-1 = D(C) = d . C over E,(O, b ) .  

[Notes] 

1. In the case of Lemma 1, the minimum possible value of e is 5 because 21N, and 
31N,. In the case of Lemma 2, the minimum possible value of e is 3 because 2[N,, .  

2. For elliptic curves, the addition formula is independent of a and b, and the doubling 
formula is independent of b. Thus, the above protocol does not require computation 
of the value b = yz - x3 mod n. If Lemma 2 is adopted, for the addition formula 
the sender S must compute a such that a = (mi - rn;)/rn, mod n, and the receiver 
R must compute a such that a = (ci - c3,)/cz mod n. 

3. This scheme has the interesting property that it is not defined on a single group 
but on a large class of groups, all with the same order. The curve to be used is 
determined by the plaintext to be transmittcd. 

6 %bin-type Generalization 

6.1 Protocol 
We propose another TOF (Type 2 Scheme) also based on elliptic curves over a ring, which 
is the Rabin-type generalization of the basic TOF (Type 1 scheme). The Type 2 scheme 
also overcomes the three deficiencies of the Type 0 scheme. For simplicity, we described 
the protocol for a public-key cryptosystem based on elliptic curves described in Lemma 
1. 

Step 0 (Key Generation) User U chooses large primes p and q such that 

p q I 2 (mod 3 ) .  

U computes the product n = pq,  and the orders N p  = #Ep(O,b) = p + 1 and 
.Nq = #Eq(O, 6 )  = q + 1. 
Summarizing, U’s secret key is p ,  q, N p ,  Nq,  and U.’s public key is n. 
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Step 1 (Encryption) A plaintcxt M = (m,,rny) is an integer pair, where m, E z n i  

my E Z,. Let M = (rn,,rn,) be a point on the elliptic ciirvc E,(O, b), where 6 is 
determined by m, and my. 

Sender A encrypts thc point A4 by doubling on the elliptic curve En with the 
receiver's public key n as 

C = 2 . A4 over En(O, b ) ,  

and sends a ciphertext pair C = (c2,cy) to a receiver 13. 

Step 2 (Decryption) Receiver B computes A{, E Ep(O, b )  and ibfq E E,(O, b )  from 

C, = (c ,  mod p ,  cy mod p )  E Ep(0,6) and C, = (cz mod q,  cy mod q )  E E,(O,b) 
such that 

C, = 2 .  Mp over Ep(O, b ) ,  C, = 2 .  Mq over E,(O, b ) ,  

by using a halving algorithm, which is described in Section 6.2. 

(mqz,mqu) E Eq(O,b) using the Chinese Remainder Theorem. 
computes M = (rn,,rn,) E En from Mp = (mpz,napv) E Ep(0,6) and 11.3, = 

[Notes] 

1. Since both N, and N ,  are even, 2 is not coprime to N,, Nq and N,. 

2 .  The Type 2 scheme has the drawback that there is 4:l ambiguity in the decrypted 
messages, as is true for the original Rabin scheme. 

3. In decryption based on a halving formula, the algorithm for finding a non-tloulde 
point requires an exact expression of the elliptic curve. Thus, the receiver B must 
compute b such that 6 = ct - 62 mod n. 

6.2 Halving Algorithm 
In general, points on Ep(a, b )  : y2 = x3 + ax + 6 mod p can be separated into 2 classes, as 
integers in 2, are classified into quadratic residue and quadratic non-residue modulo p.  

Definition If P = 2 . A' over Ep(a, b)  for some point X on the curve E,(a,b), h e n  
we call point P a double point, where we denote the set of all double points by DP,. If 
P # 2 1 X over E,(a, 6) for any point X, then we call point P a non-double point, where 

Double points and non-double points are distinguishable by using the following three 
lemmas, when the group structure of E,(a,b) is known. 

L e m m a  4. Assume that E' is a cyclic subgroup of Ep(a, 6) having the maximum order 
N'. Let P be in E',  and N' be even. Then 

we denote the set of all non-double points by NDP,. 0 

P E DP, if and only if N'/2 - P = 0 over E,(a,b), 

Lemma 5. Assume that E' is a cyclic subgroup of EJu, b) with the maximum order N'. 
Let LY be the cardinality of DP, in B'. Then 
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N'/2,  i f  N' is even; 

N' ,  if N' is odd. 

Lemma 6. Assume that Ep(ar6) has the group structure Z(p+lj/2 x Z2. Let E' be a 
cyclic subgroup of E,(a, 6) with the maximum order ( p +  1)/2 and let Q be a point in this 
subgroup. Then 

P E DP, and P E E' if and only if e(,+l)/z(P, Q) = 1 and (p+1) /4 -P  = 0 over E,(n, b), 

where e(,+l)/z is the Weil pairing function [8, 191. Note that ( p  + 1)/2 is always even. 
Next, consider a halving algorithm on elliptic curve E,(a,6) which outputs a half point 

of a given point over Ep(a,6). 
The algorithm of Adleman, Manders and Miller [l, 111 for computing a square root 

mod p is easily adapted to a halving algorithm in E p ( a ,  b). For completeness we describe 
the result. 

Theorem 7. Thcre exists an expected polynomial time algorithm which, given an odd 
prime p ,  an elliptic curve Ep(a ,  6) in the case of Lemma 1 or 2, N p ,  and a point Q E DP, 
as inputs, will output a half point of Q over EP(a,  6). 

The proof of Theorem 7 is a direct consequence of the following algorithm. 

Halving Algorithm on  Elliptic Curve for  Type 2 scheme 
Input :  p (prime), Ep(a ,  b), N p ,  Q (= 2 . H )  E Ep(n, 6). 
Step 1. Compute an odd c, and It such that N p  = 2 h ~ .  
Step 2. Choose random point T such that T E NDP, and T is in the rnaxiinum 

Step 3. Set Y = Q, H = ( c  + 1) /2 .  Q over Ep(n, b). 
S t e p  4. Find the least k such that (2'c) Y = 0 over Ep(n,  6). 
Step 5. If k = 0 then  output 11; else sct 

Y = Y - 2 h - k .  T over E,(n, b), 

cyclic subgroup including Q. 

H = H - 2h-k-1 . c . T over Ep(a ,  6) 

and go to step 4. 
o u t p u t :  H. 
An algorithm for finding a non-double point T is derived from Lemmas 4 and 6 as 

follows: 

Algori thm 1 for  Finding a Non-Double Point (Ep(a ,  b): cyclic) 
Input :  p (prime), Ep(a, b), N,. 
S t e p  1. Choose a random point T = ( t z ,  iy) on Ihe curve. 
S t e p  2. If T is a non-double point, that is, N p / 2 .  T # 0 over Ep(a ,  6), 

Outpu t :  T = ( t trty)  E NDP,. 
t h e n  output T; else go to  stcp 1. 

Algorithm 2 for  Finding a Non-Double Point (E,(a,O) 2 Z(,+,)/2 x 2,) 
Inpu t :  p (prime), Ep(a,O), N,, Q E Ep(n,O). 
S t e p  1. Choose a random point T = (ill I!,,) on the curve E,(a,O) such that 

Step 2. If T is a non-double point, that is, ( p  + 1)/4 - T # 0 over E,(a,O), 
en(Q, T) = 1- 

t hen  output T; else go t o  stcp 1. 
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Output: T such that T = ( t r , t y )  E NDP, ,  and T E E’, whcre E’ is a cyclic suligroup 

There exists a polynomial time general algorithm for finding a point on the elliptic 
curve [g]. In case 1, for any y E Z,, the point ((y’ - b)’I3,2/)  is on the curve. Since 
3 J p -  1, the value of (21’ - 6)’13 can be easily computcd by (y’- 6)p mod p ,  wherc 38 G 1 
mod ( p  - 1). In case 2, for any x E Z,, the point (x, (x3 + as)’ / ’ )  is on the curve. Since 
p = 4k + 3 ( k  : integer), the value of (s3 + us)’/’ can Ix easily computed I>Y (2 + 
mod p .  

of E,(a, 0) with the maximum orclcr of ( p  + 1)/2 which includes point Q. 

7 Security 
The security of the proposed Type 1 scheme and Type 2 sclicme over elliptic curves is 
based on the difficulty of factoring n. In this scction, we discuss tlie security of these 
schemes from various viewpoints. 

7.1 Solving the Order 
The original RSA and Rabin schemes can be broken if one can dcterminc order of the 
multiplicative groups. It is known that finding $ ( n )  = ( p  - l ) ( q  - 1) is computationally 
equivalent to factoring n. That is, thc former is polynomially rcduciblc to the latter, and 
vice versa. In our proposed schemes (Types 1 and 2 in the cascs of Lemmas 1 and 2), a 
similar relationship holds. 

Theorem 8. Let N,, be Icm(#E, , (a ,b) ,#Eq(a,b))  = lcm(p + 1,q + 1). Finding N,, is 
computationally equivalent to factoring the composite number n. 

7.2 Finding the Secret Key 
The security of the original RSA scheme is also based on the difficulty of finding the secret 
exponent key. The security of the Type 1 scheme is also based on the dificulty of finding 
the secret multiplier key d. We have the following relationship. 

Theorem 9. Solving a secret key d Jrom pli/diC keys e and n is computationally equivaleirt 
to factoring a com.posite number n. 

7.3 Complete Breaking 
Completely breaking Type 1 and 2 schemes means to recover both m, and my from any 
ciphertext pair (cz,  5)  and the public keys. It is well known that completcly breaking the 
original Fbbin cryptosystem is as hard as factoring tlie composite n used as the modulus. 
For the Type 2 scheme, we have thc following theorem. 

Theorem 10. Completely breaking the Type 2 scheme as com.putationally eqirivalent to 
factoring n .  

Proof: It is clear that if once the factors of n are known, plaintext (ms, m,) can easily 
be computed from ciphertext (cz ,cy)  and public keys ( a , n ) .  Conversely, if there is an 
Algorithm A l ,  given P on E,,(a,b) (E,,(O,b) or E,,(a,O)), to output Q satisfying P = 
2 . Q with non-negligible probablity, then we can construct an  expected polynomial-t.ime 
algorithm B to factor n, using A1 as an oracle. First, B chooses a raiitlom point R = 
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( r , , r y )  (rrrry E Z,,), and multiplies it by 2, asks A1 to halve this point, and 13 obtains R’ 
satisfying P = 2 .  R’ with non-negligil~le probablity. Then I3 computes Ro = R-R’.  Since 
2 .  & = 0, and Ro over Ep(a ,b )  (& over & ( a ,  6))  is 0, (Oq), then l?~ is an  undefined 
point with probability 1/2. II Ro is undefined, B can compute a non-trivial factor of n 
by the extended Euclidean algorithm used for division modulo n. Clearly, the expectcd 
running time of B is polynomial-time in logn. 

In the Type 1 scheme, the equivalence between completcly breaking this scheme and 
factoring n is not known. This situation is thc same as the original RSA scheme. 

7.4 Homomorphism Attacks and Their Countermeasures 
The encryption-decryption functions E(.) and D(.) for Type 1 and 2 schemes are homo- 
morphic for addition as 

E(M1 + M z )  = E(Ml) + E(Ai2) and D(Al, + M2) = D(Xfl) + D(Aif2), 

for any points A l l  and Af2 on the same elliptic curve. This kind of homomorphic property 
is the basis for some attacking methods proposed [7] against the original RSA and Raliin 
schemes. 

The probability that randomly chosen integer pairs MI and Mz are on the same elliptic 
curve is as negligibily small. Thus, passive attacks using homomorphism seem to be 
ineffective against Type 1 and 2 schemes. 

Consider an active attack (a chosen-plaintext attack) using homomorphism. Suppose 
an attacker A wants to make a victim B sign a. plaintext A1 = (mr,my) without B’s 
consent. A generates another message M‘ with B’s public keys ( e B ,  ne) and random 
integer r ,  

M’= A l + e ~ . ( r . M ) o v e r  Eng, 
and sends M’ to B. B makes a signature S’ for M‘ with his secret key dg: 

S‘ = d~ 1 M’ = dg . ( M  + eg ( r  * M ) )  over EnB. 

Then, A computes a signature S for A I  from S’ by 

S = S‘ - r . hI over SnB. 

Using this technique, A can forge B’s signatures without B’s secret key. To counter 
this attack, a randomization of a plaintext with a hashing function h should be applied 
before the application of the function D. This method is similar to that required for the 
original RSA scheme. 

7.5 

Definition 

Isomorphism Attacks and Their Countermeasures 

Let n = p q  ( p , q :  prime), and 

EL : y2 = z3 -j alx + bl mod n, 

and Ei  be elliptic curves such that 

E: : y2 = x3 + a2x +- 62 mod n. 

EA and E: are isomorphic if there exist up E Z i  and u8 E Zf such tliat 

a2 = uia, mod p ,  4 3 u6,bl mod p ,  
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a2 3 u“,, mod q ,  b2 3 ~ ; b l  mod q. 

Then the following isomorphic property of lhe elliptic ciirves over a ring is shown 11)’ 
using the property of the elliptic curves over a finitc field and the Chincse. Remainder 
Theorem. 

Lemma 11. Let E,! and J3: be elliptic curves such that 

Ei  : yz = z3 + alz + 6, mod n, Elf : yz = x 3  + a2x + b2 mod n. 

Let Mi = (mi,,mlv), G = (CIr,cIg) E EA and Mz = [ m ~ + , n 1 2 ~ ) ,  Cz = (czZ,c2y) E E: 
where 

2 C1 = e .  MI over E,!, 

(i) SA and E: are isomorphic. 

Cz = e . Mz over En. 
Then the following statements are equivalent: 

(ii) a2 u4a1 mod n, 4 z u6b1 mod n 3u E 2;. (1) 

( i n )  cZr = u2c1, mod n, cZy 3 u3cly mod n 3u E 2;. (2) 

(iv) mk = u2mlI mod n, rnzy = u3mlY mod n 311 E 2;. (3) 

... 

If C1, C2 and MI satisfying congruence (2)  are given, then M z  can be easily found 
by computing congruence (3). Notice that it is casy to check whethcr or not congruence 
(2) holds. If Af1 and h& are randomly chosen, then the prolmbility that there exists u 
satisfying congruence (2) is a negligibly small 1/n €or large n. Thus, passive attacks using 
isomorphism seem to he difficult for Types 1 and 2 schemes. 

Consider an active attack (a chosen-plaintext attack) based on the isomorphic property 
of the elliptic curves. Suppose an attacker A wants to make a victim B sign a plaintext 
M = (m,,m,) without B’s consent. A generates another message M’ with B’s public key 
ng and random integer u: 

M‘ = (uZm, mod ng, u3my mod ng), 

and sends M‘ to B. B makes a signature S’ = (.& 3;) for M’ with his secret key dg: 

S‘ = dg M‘ over Ek,. 

Then, A computes a signature S = (sz, sY) for A2 from S’ by 

S = ( S ~ ,  sy )  = (u-’.s; mod n B ,  ZL-~S; mod ns).  

Note that the curve Eng containing points (Ad, S) and the curve EkB containing points 
(M‘,S’) are isomorphic. Using this technique, A can forge El’s signatures without B’s 
secret key. To counter this attack, the same technique described in Section 7.4 can be 
applied. 

An attacker may try to forge a signature by using both homomorphism and isomor- 
phism shown above. However, such combined attacks can also be prevented by random- 
ization with the hash function 11. 
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7.6 

Hastatl [6] showed a low exponent attack on the original RSA and Rabin schemcs when 
the same message is encryptcd with several distinct moduli. He considered the problem of 
solving systems of congruences f , (m)  E 0 (mod n;) i = 1, ..., k, where P, are polynomial 
of dcgree e and the n, are distinct relatively prime numbers and m < min ni. He proved 
that i f  k > v, then m can be recovered in polynomial time. Thus, he pointed out 
that enciphcring linearly related messages with the RSA scheme with low exponent or 
the &bin scheme is insecure. For the original M A  scheme, let c = me mod n, ci = naf 
mod ni, and n = n1 n2 ---nk. In Hastad’s algorithm, c is first obtained from ci rising 
the Chinese Remainder Theorem. Next, m can be efficiently calculated from c = me 
(with neglecting n), provided that me < R. For our proposed Types 1 and 2 schemes, 
let C = e ’ - M  over En(alb),  C, = e ‘ . M  over En,,  where C = (cz,cu), M = (mz,my), 
C, = (c,+,ciu). The value of (cz,cu) is also obtained from (cis,ciy). However, it is difliciilt 
to solve (mr, my) from (cz, c,,) because c, and c,, are expressed by rational equations in 
m, and mu. Since the rational equations include divisions modulo n, if we transform 
the rational form relation into the polynomial form relation, the size of the coefficient 
of the polynomial form is of the order of n’s size. Therefore, it seems impossiblc to 
solve the rational or polynomial form relation by neglecting modulus n. Thus, even if  
the multiplicr e’ is small, a Hastad-like attack does not seem to work against the elliptic 
curve cryptosystems. 

Security for Low Multiplier Attack 

8 Performance 
An elliptic curve addition PI +Pz on E,(a, b) requires one division, one squaring operation 
and one general multiplication in Z, when PI # Pz, and an extra squaring when PI = Pz. 
(The much faster additions and subtractions in Z, are neglected for the sake of simplicity). 
Surprisingly, as opposed to Z, where squaring can be performed faster than a general 
multiplication, doubling a point on an elliptic curve is computationally more costly than 
adding two different points. This means that in order to compute a multiple c a  P of a 
point P ,  an irregular addition chain for c avoiding doubling operations should be used. 
When neglecting the fact that squaring in Z, can be implemented somewhat faster than 
a general multiplication, elliptic curve addition and doubling operations require about 2 
and 3 multiplications in Z, and one division in Z,, respectively. 

Division in Z, can be implemented by the generalized Euclidean algorithm for comput- 
ing greatest common divisors. The most efficicnt algorithm for computing multiplicative 
inverses, however, is that invented by Massey [17], which is a gencralization of Stein’s 
algorithm [25]. However, a division in Z, seems to be less efficient than a multiplication 
in Z,. 

On the other hand, if we calculate the addition on &,(a, b) in homogeneous coordinates, 
we can avoid the division in Zn (except the final stage of the addition chain), although 
we must perform more multiplications. 

Let PI = ( Z I , Y I , Z I )  E Ep(a,b),  PZ = ( Z Z , ~ Z , Z Z )  E E,(a,b), and suppose that Pl,Pz # 
0, PI + Pz and PI # -Pz. The addition formula [9] for E,(a, b )  to find P3 = PI + Pz = 
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(Q, y3, 23) is given by 

= v{z2(u2z1 - Zv2r l )  - u3} mod p ,  I x3 
i3 = v3z1z2 mod p ,  

where u = y2z1 - ylz2 mod p, v = x2z1 - xlz2 mod p. 
The doubling formula [9] for &(a, 6) to find P3 = 2 . PI is given by 

1 z3 = 8y:z: mod p, 

z3 = 2ylzl(wz - 8zly:zl) mod p, 

y3 = 4y:z1(320sl - 2y:zl) - w3 mod p, 

where w = 3 4  + az: mod p. 
One addition over E,(a,b) requires 12 multiplications in Z,, and one doubling over 

&(a, 6) requires 10 multiplications in Z,, if a = 0. 
Therefore, in the affine coordinates, the computation required for our scheme (Scheme 

1) is about (2 + c) times as much as that for the RSA scheme, where c is the ratio of 
the computation amount of division in 2, to that of multiplication in Z,. On the other 
hand, in the homogeneous coordinates, the computation required for encryption with our 
scheme is about 11 times as much as that for the RSA scheme. Since in our elliptic curve 
system a message consists of two elements of Z, compared to only one in the RSA system, 
the computation speed of our scheme is about 2/(2 + c) or 1 /G of the speed of RSA. 

9 Conclusions 
We have proposed new public key cryptosystems based on elliptic curves modulo 11, where 
n is a product of two large primes. Furthermore, we have given some analysis of the 
security of these systems. For the proposed Type 1 scheme, the master key concept [lo] 
and the blind signature concept [2] are similarly applicable (using the combined tecliniqocs 
of Sections 7.4 and 7.5). 
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