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Abstract 

The jacobian of hyperelliptic curves, including elliptic curves as a special case, offers a 
good primitive for cryptosystems, since cryptosystems (discrete logarithms) based on the 
jacobians seem to be more intractable than those based on conventional multiplicative 
groups. In this paper, we show that the problem to determine the group structure of 
the jacobian can be characterized to be in NP n co-NP, when the jacobian is a non- 
degenerate type ( “non-lidf-degenerate”). We also show that the hyperelliptic discrete 
logarithm can be characterized to be in NP fl co-NP, when the group structure is non-half- 
degenerate. Moreover, we imply the reducibility of the hyperelliptic discrete logarithm to 
a inultiplicative discrete logarithm. The cxtended Weil pairing over the jacobian is the 
key tool for these algorithms. 

1 Introduction 
The finite abelian groups play an important role in constructing many public-key cryp- 
tosystems and error correcting codes. The most typical member of the finite abelian 
groups is the multiplicative group of a finite field, and the first public-key cryptosys- 
tern (key-distribution system) was  constructed on a multiplicative group [DH]. How- 
ever, since the structure of multiplicative groups is very simple, certain special techniques 
[Odl, Copl, Cop21 were developed that could attack some cryptosystems (or their discrete 
logarithnls) based on multiplicative groups. On the contrary, the jacobians of hyperelliptic 
curves, including elliptic curves as it special case, offer a rich source of “naturdly occuring” 
(more complex) finite abelian groups, and cryptosystems based on the jacobians seem to 
be more intractable than those based on multiplicative groups [Mill, I<obl, MC‘v‘j. 

In order to use the jacobians for cryptosystems, we should determine their group struc- 
tures and the intractability of their related cryptosystems (discrete logarithms). AS for 
the group structure, Miller has shown an  efficient algorithm of determining the structure 
of an elliptic curve group, using an oracle of factoring. As for the intractability of the dis- 
crete logarithm of the elliptic curve,  it  has been known that some specific elliptic discrete 

J. Feigenbaum (Ed.): Advances in Cryptology - CRYPT0 ’91, LNCS 576, pp. 267-278, 1992. 
0 Springer-Verlag Berlin Heidelberg 1992 



268 

logarithms are as  tractable as  multiplicative discrete logarithms [MOV]. Thus it remained 
open whether these results about ell iptic curves could be extended to hyperelliptic curues. 

The hyperelliptic discrete logarithm has been characterized from the viewpoint of 
structural computational complexity [SIS]. According to their result, the hyperelliptic 
discrete logarithm was characterized as more intractable than the multiplicative discrete 
logarithm. More precisely, they have shown that a problem corresponding the hyperelliptic 
discrete logarithm is in NP n cc-AM, while a problem corresponding the multiplicative 
discrete logarithm is in N P  n co-NP. However, it  remained open whether the problem 
corresponding to the hyperelliptic discrete logarithm is in NP n cc-NP. 

In this paper, we extend the above results of elliptic curves to derive similar results for 
the hyperefliptic curves; we show that the problem to determine the group structure of the 
jacobian can be characterized to  be in NP n c e N P ,  when the jacobian is a non-degenerate 
type ("non-hdf-degenerate"), and show that some specific hyperelliptic discrete logarithms 
are as tractable as multiplicative discrete logarithms. Moreover, we partially solve the 
above-mentioned open problem regarding the characterization of the hyperelliptic discrete 
logarithms; we show that the problem corresponding the hyperelliptic discrete logarithm 
is in NP n co-NP, when the group structure is non-half-degenerate. Note that this result 
does not state that the hyperelliptic discrete logarithm is as tractable as the multiplicative 
discrete logarithm. (The above result is only a characterization from the viewpoint of 
structural computational complexity.) 

The extended Weil pairing defined over hyperelliptic curves plays an essential role 
throughout this paper. So, first, in section 3 ,  we define the extended Weil pairing and 
introduce an efficient algorithm to compute the extended Wed pairing. Then, in section 4, 
we show that the problem corresponding to the group structure of the non-half-degenerate 
jacobian is in NP n co-NP. Section 5 shows that the problem corresponding to the non- 
half-degenerate hyperelliptic discrete logarithm is in NP n CO-XP, and that some specific 
hyperelliptic discrete logarithms are as tractable as multiplicative discrete logarithms. 

2 Hyperelliptic Curves and the Jacobian 
This section briefly introduces the notions regarding the jacobians of hyperelliptic curves. 
For more detail, refer to  [KobZ, Lan, Sill 

Let C be a 
hyperelliptic curve of genus g over A', whose equation is of the form v 2  + h(u)v = f ( ~ ) ,  
where h(u) is a polynomial of degree at most g and I(.) is a monic polynomial of degree 
2g+ 1. Here f and h have coefficients in I<, and we assume that the curve has no singular 
point. 

where 
(x E L ,  y E L) is a solution of the hyperelliptic curve equation. If u is an automorphism 
of L over Ir', we let P" denote Pu(r),u(y) and O"=O. 

A divisor is a finite formal sum of E-points D = C m,P,. We define the degree of D 
to be the integer C m,. T h e  divisors form an additive group D ,  in which the divisors of 
degree 0 form a subgroup Do. Given D = C m,P, E D ,  we define D+ = m,P,. We 
say that D 2 0 if D = D+. Given two divisors D1 = Cm,P, and Dz = C n,P, in Do, we 
define gcd(D1, Dz) E Do to be (C min(m,, n,)P,). 

We define the order of a polynomial function p(u, vf with coefficients in Tir at a point 
P E C, denoted ordpp, as follows: 

Let li be an arbitrary field, and let denote its algebraic closure. 

Let L be afield containing I<. An L-point P denotes an infinite point 0 or 
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(1) Assume P = Pr,y is a finite point. p(u7 u )  can be reduced to the form P(u, v )  = 
(,u - ~ ) ~ ~ ( a ~ ( u )  - b o ( u ) ~ ) ,  where ( u  - x) does not divide both a0 and bo. Let r = ro 
if P # p and r = 2ro i f  P = p .  Then, ordp,,yp = r if ao(z) - b o ( z ) g  # 0, else, it 
equals to T plus tlie exponent of the highest power of (u - 2) which divides a o ( ~ ) ~  + 
h( u)  a0 ( u)bo (u )  - f ( u)bo (u )~ .  

( 2 )  If P = 0, then o rdoP  = - max(2deg a.  2g + 1 + 2deg 6) .  

To any p ( u , v )  such that # 0, we associate the divisor div(p) = C (ordpp)P E 
Do. By rational function on C we mean a ratio of the form p(u, zl)/q(u, V )  with # 0. 
l i(C) denotes the rational function field of curve C over field li. A divisor of the form 
div(p/q) = div(p) - div(q) E Do is called principal. The quotient group D o / P  is called 
the jacobian J of the curve C, where P is the subgroup of principal divisors. 0 denotes 
the identity element of J ,  which is the element corresponding to P. When two divisors 
D1 and D2 are in the sailie elenierit of J, D1 is said to be linearly equivalent to Da and 
we denote D1 - Dz. Then, there exists a rational [unction 1 such that D1 = DZ +div(f) .  

The support of a divisor D = C m,P, is the set of points P E C for which m, # 0. 
Now let f E r ( C )  be a [unction such that div(f) and D have disjoint supports. Then, 
we define f ( D )  = n f ( f ' , )ml .  

We associate to D the set of iunctions L ( D )  = {f f R ( C )  1 div(f)  2 - D }  U (0). 
L ( D )  is a finite dimensional r -vec tor  space, and we denote its dimension 1(D). 

Every D E Do can be uniquely represented as an element of J by a reduced divisor Di 
= C m,P, - (C m,)O with C m, 5 g. Ths result follows from the Rieman-Roch theorem. 
We denote ( P i ,  (Q) as the reduced divisors of P, Q E J[rn], and we also denote ( D )  as 
the reduced divisor such that (D) N D ,  where D is a divisor. 

A semireduced divisor D = C m,P, - (C m,)O can be uniquely represented as the 
gcd of two divisors of [unctions of the form a(.) and b(u) - u ,  where u(u)  = n ( u  - Z i ) m i  

and b(u) is the unique polynomial of degree < deg a(u)  such that b(z,)  = y; for each i 
and b ( ~ ) '  + h(u)b(u) - f(u) is divisible by u(u).  A divisor D represented in the form 
gcd(a(u), (b(u)  - u ) )  is abbreviated D = div(a, b ) .  D is reduced if and only if deg a 5 9. 

3 Extension of the Weil Pairing 
The Weil pairing was originally defined over elliptic curves by A. Weil [Sill. Lang gen- 
eralized the Weil pairing over the abelian varieties [La.]. In this section, we define the 
extended Weil pairing on the jacobian of the hyperelliptic curves, which is a specific class 
of Lang's generalization, and show an expected polynomial time algorithm of computing 
the extended Weil pairing. M'e Lave two different ways to define the extended Weil pair- 
ing. One is suitable for the efficient computation of the pairing, and the other is suitable 
for proving some properties, although these definitions are equivalent. Here, we only show 
the definition that is suitable for the eficient computation of the pairing. 

3.1 
Definition 3.1 Let C be a hyperelliptic curve defined over El and J be tlie Jacobian 
OR C (J  = D o / P ) .  Let J[m] be D0",n]/P and pm be the  set of m-th roots of the ufity, 
where DO[m]={D I D E Do and mD E P} and the characteristic of li is prime to m. 

Definition of the extended W-eii pairing 
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First, we define a function w, 

w, : @[m] x D"Im]+ /Am 

as follows; Let X, Y E DO[m], and we assume X ,  Y are disjoint supports. Since X and y 
have order m, there are functions f,y, fu E 6 such that div(fx) = mX and div(fy) = my. 
Then we define 

wn(X, Y )  := f X ( Y ) / f Y ( X ) .  
Then, we define a pairing (the extended Weil pairing) 

em : J[m] x J[m] --* p,,, 

as follows: Let P, Q E J[m] ,  and A and B be divisors over C such that A E P and B E Q 
md they have disjoint supports. Since A ,  B E DO[m], we can define wm(A, B). Then we 
define 

e m ( P ,  Q) = Wrn(A, B ) .  

We will show an efficient algorithm based on the above definition. 

3.2 Miller's algorithm 

Input 
output 
Step 1 

Step 2 

Step 3 

This subsection introduces Miller's algorithm (algorithm 1 in [Mi12]), which is used in the 
extended Weil pairing algorithm. 

Algorithm 1 (Miller's Algorithm) : 
A hyperelliptic curve C with genus g ,  and a divisor A E Do 
A function f, and a reduced divisor B such that A = 5 + div(f) 
Rewrite the divisor A = alpl  + a2P2 + . . . + as a sum of reduced divisors 
aI(S - 0 )  + a2(pz - 0)  + . . . + a k ( ~ k  - 0) .  
Calculate a basis for the space L(3gO) in the form fi ,  . . . , fd where ordo fi > 
ordo f2 > ordo > . . . > ordo fd. (There is a one-to-one correspondence between 
reduced divisors and integral ideals of the ring of functions whose only poles are 
at 0. Each ideal can be represented by means of the Grobner basis.) 
For each reduced divisor (P, - 0), use doubling and addition repeatedly to 
compute a reduced divisor B and a function f such that al(P1 - 0) + . . . + 
ak(fk-0) = B+div(/). This computation can be done by repeatedly using the 
following primitive computation: given two reduced divisors P and Q ,  compute 
a reduced divisor R and a function h such that P + Q = R + div(h). The 
following substeps show this computation. 

Step 3-1 
Step 3-2 
Step 3-3 

Find afunction s E L(3gO-P+-Q+), where P = P+-gO,Q = 9'-go. 
Set S = div(s) + 3gO - P+ - Q+. 
Find a function t E L(2gO - S) ,  and set T = div(t) + 2gO - S. Here 
R = T -go, and h = s / t .  

Step 4 Output B and f .  
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3.3 Extended Weil pairing algorithm 
Here, we show a n  expected polynomial time algorithm for computing the extended Well 
pairing. The Weil pairing is defined over two elements PI& in 4 m ] .  However, in order 
to calculate the value of e,(P, &) in an algorithm, P, Q must be given explicitly (or in 
a polynomial-size expression). Any element in Jim] can be uniquely represented by a 
reduced divisor from the Riemaim-Roch theorem. Therefore, the reduced divisor is the 
best explicit representation of an element of J[m]. 

I n p u t  
O u t p u t  em(f', Q) 
Step 1 
S t e p  2 

Step 3 

Step 4 

S t e p  5 

Algorithm 2 (Extended Weil pairing) : 
( P ) ,  (Q) such that P, Q E J[m]  

Select two reduced divisors T and U over C randomly. 
Compute ( ( P )  + T) and ((Q) + U ) .  For this computation, we use Cantor's 
(Koblitz's) algorithm [Can, I<ob2]. 
Set A = ( ( P )  + T) - T ,  and B = ((Q) + U )  - U .  (Note that A - ( P )  is in P ,  
and that yo of (( P )  + T )  and go of T are cancelled in A.)  
Compute functions fA and fB. For this computation, we use Algoritlim 1 
(Miller's algorithm). 
Compute f ~ ( E 3 )  and f ~ ( , 4 ) .  If either f A ( B )  or fB(A) is zero or undefined, then 
return to 1. Otherwise, compute fA(B)/f5(A) as e,(P, Q ) .  

Lemma 3.2 Algorithm 2 is performed in expected polynomial time in log q. 

Proof: 
Let 1 = a l , .  . . ,at = m be an addition chain, which is used to compute functions 

fa and f5. T and U both have Mg candidates, where M is the number of I<-points 
of curve C (note that M is not the number of J). We define a bad pair ( T , U )  such 
that A (consists of at nost  29 support points) is disjoint from (a,(Q + U))+ (consists 
of at most g support points) and (a,U)+ (consists of at  most g support points), and B 
(consists of a t  most 2g support points) is disjoint from (a,(P+T))+ (consists of a t  most g 
support points) and (a,T)+ (consists of at most g support points). Therefore, the failure 
probability at step 5 of the above algorithm is at most 8tgM9-' /M2g = 8tg/M9+'. Hence, 
this failure probability is O(g(1og q)/2(g+1)('0gq)) (or negligible). Thus, this algorithm is 
expected polynomial time in l ogq .  (The expected number of rounds from step 1 to  5 is 

Similarly, the extended Weil pairing can be computed in non-deterministic polynomial 
almost 1.) ll 

time. 

3.4 Correctness of the definition 
In this subsection, we show that the extended Weil pairing satisfies some properties that 
are needed for the intended applications. 

Lemma 3.3 W, is well-defined. 

Lemma 3.4 Let P, P', Q, Q' E DO[m] such that P - P' (rap. Q - Q') E P .  Then 

w,,(P', Q )  = w,,(f', Q ) ,  w,(f', Q') = wrn(P, 9). 
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Lemma 3.4 implies that  w, induces a natural pairing em over J[m] x J[m]. Therefore 

Next we investigate some properties of em. 
the definition that e,(P, Q) = w,(A,  E )  makes sense. 

Theorem 3.5 

(1) For any elements PI Q E J[rn], 

(2) Alternating: For any elements P, Q E J[m],  

(3) Bilinear: For any elements Pll P2, Q E J[rn], 

em(P1 + Pz, Q )  = ern(P1, Q)em(Pzi Q ) ,  

ern(Pi QI + Q 2 )  = em(J'i Q ~ ) e m ( P i  Qa>* 

(4) Identity: For any elemen4 P E J[m], e,(P, P )  is I .  

(5) Non-degeneracy: If e,(P, Q )  = 1 for all P E J[rn], then Q = 0. 

4 Complexity of Determining Hyperelliptic Group 
Structure 

This section shows that the problem to determine the group structure of a jacobian J 
over P ,  can be characterized to be in NP n co-NP, when J is "non-half-degenerate". 

Let J be a jacobian over a field Pq with group structure Z,, x Z,,, x . . . x Z,,, (simply 
we write (731, 7 3 2 , .  . . I nzg)) ,  where 73, 2 1 (1 5 z 5 2g), and n, divides n, when n, < %. 
(This comes from the property of finite abelian groups.) The maximal order of an element 
in J is 731. 

(GI, Gz,. . . , Gzg) be a canonzcal generating tuple for the abelian group of J, if every 
element X E J can be written uniquely as 

X = alG1 + . . . + agGzg, 

where 0 5 a, < n, and n, = Ord(G,). (Ord(G,) denotes the order of G,.) 
< G I , .  . . , G, > denotes the subgroup generated from GI , .  . . , G,. Note that ( G I ,  Gz) 

and (nl, n2) are used for denoting a paired property of the group structure (see Lemma 
4.1 for the definition of "paired canonical generating tuple"). 

Lemma 4.1 Let J be ajacobian over a field F, and (Gll  Gz, .  . . , GZg) ( Ord(G,) = n, ) 
be a canonical generating tuple of J ,  where n2, 5 n2r--l (but the other greater or smaller 
relations are not fixed). Let h, (i = 1, . . . , g )  be the homomorphism 

h : X E Jq[n2:-1] en2, - , (G, -x ,x) ,  
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and ff ( z  = 1, . . . , 9 )  be the homomorphism 

J ,[w:-~]  --+ Jq[na-iI/ < G(Jq[n2,--l]) - G2t >, 

where J,[n] denotcs {P I P E J  A nP = U } ,  and G(Jq[nz,-l]) denotes {GJ I n, devides 

Then there esists a canonical generating tuple (Gl ,  Gz,.. . , GZg) such that for all 
n2,-1}. 

elements P, Q E Jq[n2,-1], 

h, ( P )  = h, ( Q )  if and only if f l  ( P )  = f,( Q) .  

The canonical generating tuple satisfying the above property is writ ten as ((GI, Gz), 
Here, 

7 1 ~ ~ ) )  denotes its- group structure. Without loss of gen- 
(G3,G4), . . . , (G29-1, G2,,)) and is called a paired canonical generating tuple. 
({nl,  n2) ,  (n3,nq),  . . . , 
erality, we assume that n2(,+l)-1 5 7 1 2 , ~ ~  ( z  = 1,. . . , g  - 1;j = 1,. . . , g  - 2 ) .  

Proof: 
We will show that we can construct a paired canonical generating tuple ((Gi,Gz), 

(G, G4), . . . , ( G g - i r  G2,)) such that f , ( P )  = f,(Q) (or P - Q E< c(Jq[nz:-iI) - Gai >) 

Let J[nl] be defined over the algebraic closure field Fq (see subsection 3.1), of which J 
i s  a subgroup. Since the group structure of J[n,]  is (n1)29, there exist elements 7 2 , .  . . ,?ag 
such that (GI,??, . . . , ~ 2 ~ )  is a canonical generating tuple for J[nl] ,  and G; = (nI/n*)Ti 
(i = 2 , .  . . ,2g) .  

First, we will prove it when i = 1. An element P E J whose order is the maximaum 
order, nl, is selected, and set G1 = P. Next, since hl is a linear map with the kernel, 
Ker(hl), of co-dimension 1, there exists an element 7 2  E 4.11 such that Ord(y2) = n1 
and 7 2  $! Ker(h1) (or e,,(G1, y2) # 1). Therefore, when (GI, y2,. . . , 72,) is a canonical 
generating tuple for J [n l ] ,  < GI, T ~ , .  . . y29 >E I<er(hl). Then, a canonical generating 
tuple for J, (Gl ,  G a l . .  . , G2g) is determined by GI = (nl/n,)7,  ( i  = 2 , .  . . , 2g). 

if and only if (G2,-1, P )  = (G2,-1, Q). 

Next, we will show that for all elements P, Q E Jq[nl],  

h , (P)  = h l ( Q )  if and only if f , ( P )  = fi(Q). 

(If) Suppose that f l ( P )  = fl(Q). Then by the definiton, there exists an integer c 
such that P - Q = clCl + c3G3 + . . . czyG2g. Using bilinearity and the identity of the 
extended Weil pairing, and the above mentioned property of the map hl,  

enl (GI,  P) = en,  (GI,  Q + CiG-1 + ~3G3 + . . . ~~gG29)  
= e n l ( G ~ l Q ) e n l ( G ~ ,  G I ) ~ ' ~ ~ , ( G I ,  G3Y3 '..en,(G1,G2g)C1' 

= en,(Gi,Q).  

(Only if) Suppose j l ( P )  # fl(Q). Then there exists integers cl, Q , . .  .czq such that 
P - O =  clG1 + CZCZ + C ~ G R  + . . . C Z ~ G Q ,  where CZGZ # 0. 

en, (GI,  P )  = en, (GI, Q + c1Gl + czG2 + . . . CzqGZy) 

= en1(Gi, Q)en,(G1,G1)C'e,l(G11~2G2)...enl(G1,c~gGzg) 
= en, ( G I  &)en, (GI, c2G2). 

Therefore, if en, (Gl l  c2G2) # 1, then the proof of this (Only if) part is completed. 
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Next, we will prove that en, (GI,  c2G2) # 1. From the nongeneracy of the Weil pairing, 
c2G2 is 0 i f  and only il, for all elerrients X = a1G~+o2yz+. * ~ 2 ~ 7 2 ~  in J[n1] (0 I a, < nl) ,  

e,,(c2GzrX) = 1. 

e n , ( c 2 G 2 , X )  = enl(czGz,ulGi +a272 +.. .  a 2,yzg) 

Then, 

= en, (czG~ GI)''* 
Hence, for all elements X E J [ n l ] ,  e,,(cZG2, X )  = 1 if and only if en,(czGz,G1) = 1. 
Therefore, czG2 is 0 if and only if et,,(c2GZ,G1) = 1. By the condition, c~GZ is not 0, 

Hence the proof has been completed when i = 1. We can easily prove it sequcn- 
tially when i = 2 , 3 , .  . . , g in the same manner as i = 1, by considering the subgroup 

From the above lernma, when ((GI, G2), (G3, G4), . . . , (GZg--l, GZg)) is a paired canon- 
ical generating tuple, Ord(e,,,-,(G~,-~, Gz,)) = nz,, and en,,-,(G2,-1, Gj) = 1 ( j  # 22). 
Then, we can say that the g subgroups < G1,Gz >, < G3,Gd >, . .. , < G z ~ - ~ , G z ~  > are 
independent, in the sense that the extended Weil pairing of elements from two different 
subgroups is always 1. 

Definition 4.2 Let J be a jacobian over F, with a paired canonical generating tuple, 
((G1,Gz), . . . (G2g-1,G2g)). J is h a y - d e g e n e r a t e  if there exist at least two cyclic sub- 
groups, < Gz,-, # 0, G2, = 0 >, (or there exits at least two i ' s  E { 1 , 2 , .  . . , g }  such that 
G2,-1 # 0 and G2, = 0). J is non-hal j -degenerate  i f i t  is not half -degenerate ,  (or there 
exits at most one i E { 1 , 2 , ,  . . , g} such that G2,-1 # 0 and Gz, = 0). 

Lemma 4.3 Let J be ajacobian over a field F ,  with groupstructure ((nl,nz), (nJ,n,), 
. . . , (nzg-l, n2,)). Then, q - 1 divisible by nzl (i = 1,. . . , g ) .  

SO eni(c2G2rG1) # 1. 

< G2,-1, Gz,, . , . , Gzs > in place of J. 7 

Proof: 
Let ({GI, Gz) ,  (G3, G4), . . . , (G2g--l, G2g)) be a paired canonical generating tuple of 

the abelian group of J. Consider the multiplicative group MI ( z  = 1,. . . , g) consisting 
of values en,i-l(G2,-1,X) where X ranges over the elements of J,[nz,-I]. This forms a 
multiplicative group from the bilinearity and identity of the extended Wed pairing, and 
the size of M ,  is n2, from Lemma 4.1. Since the values en*,-, (G2,--1, X)  are in the finite 
field F,, group MI is a subgroup of the multiplicative group FS. Consequently, the size 
of group FG is divisible by the size M,, so q - 1 is divisible by n2,. ll 
Lemma 4.4 Let J be a jacobian over a field F,. Assume that J is non-half-degenerate. 
Then the group structure of J is ( (nlr  n2}, (n3,  nq} j  . . . , (nZg-1, nzg)) ,  if and only if there 
exists 2g-tuple ( (PI ,  PZ), (P3,P4) ,  . .. , (P2g-~,P2g)) such that, for all i = 1, .. .,g, 

Ord(Pj) = n, ( j  = 1, .. . ,2g),  

Ord(en~,-~(P~i- l j  p~i)) = nz:, 
en~,-l(P~t-~1f'j) = 1 ( j  f 2 i ;  .i E { 1 , * * * , 2 g } ) ,  
en, , (P?, ,<)=  1 ( j # 2 a - 1 ;  . i c { 1 , * * * , 2 g } ) ,  

N = nl . . . . . nag, 
where P I , .  . . , P2g be elements of J, and N be the number of elements of J .  
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Proof: 
(Only if) Suppose that the group structure of J is ((q, n2}, . . . , (nzg-lr nzg) ) .  Then, 

clearly there exists a generating tuple ( P I ,  . . . , P2,) which satisfies the above conditions. 
(If)  Suppose that there exists 2y-tuple (P,, . . . , P2,) which satisfies the above condi- 

tions. From Lemma 4.1, e, ,z , - l  ( Pz,-l ,  P,) = 1 ( j  # 22) and enli(Pz,, PJ) = 1 ( j  # 2i - 1) 
implies that PJ ( j  # 2i - 1 , Z i )  is not included in subgroup < P2,-1, P2i >, if P2,-1 # 0, 
Pz, $1 0 and P, # 0. From the assumption that J is non-half-degenerate, there exists 
at most one i E (1,. .. , y }  such that # 0 and Pz, = 0. Therefore, the con- 
dition implies that e x h  non-identity subgroup < P2, > is independent from the 
other non-identity subgroups, and each subgroup has the structure (n2,-1, n2, ) ,  where 
non-identity subgroup < P2,-*, P2, > denotes the subgroup such that < P2i-1, P2, ># 0 
(or Pz,-1 # 0). Therefore, iV = nl - . . . . n.zg results in ( (PI ,  Pz), . . . , (Pag-l, Pa,)) being 
a paired canonical generating tuple. This concludes that the group structure is ( (n l ,  nz) ,  

n 
Then we show the main result of this section. The following theorem shows that a 

membership problem regarding the problem to determine the group structure of a jacobian 
is in NP n co-NP, when the jacobian is non-half-degenerate. 

Definition 4.5 HESTR is a language, or membership problem such that 

HESTR = {(C, g,  q ,  (ml, . . . , mzg))  1 the group structure of the jacobian 2 of curve C, 
((nil 4, . . . , (nzg-1, w9)), satisfies n, >_ m,, ( I , . .  . ,2g). 1, 
where c is a hyperelliptic curve with genus 9 defined over F, (q is a prime power), m, is 
a positive integer. 

. . * , (n29-1 9 %,)I. 

Theorem 4.6 HESTR is in N P  n co-.NP, when J is non-half-degenerate. 

Proof: 
If a nondeterministic machine shows a witness that ( (n l , n2 ) ,  ..., (n~g--lrnzg)) is 

the group structure of J, the witness is used for both HESTR and the complement of 
HESTR. When J is non-half-degenerate, the witness is (PI ,  P2, ..., Pz,) which satisfies the 
conditions of Lemma 4.4, factors of the number of the elements of J ,  N ,  and appropriate 
reduced divisors T and U for computing the extended Weil pairing value (see Algorithm 
2) .  Then, from Lemma 4.4, a poly-time machine can check the group structure using the 
extended Weil paring and factoring (for checking orders). Here, the poly-time machine 
can compute N by Pila’s algorithm [Pill. (Note that ( P l ,  P2, ..., P2g) is agenerating tuple 
of this group.) Since the extended Weil pairing can be computed in polynomial-time by 

Theorem 4.6 can be written as follows, using the notion of the promise problem 
[ESY]: Let (&I ,  R1) be a promise problem such that &I is the promise that J is non- 
half-degenerate, and R1 is the property that HESTR is true. Then (Q1, R1) is in NPP n 
CO-NPP, and (&I ,  R,) has a solution in NP fl co-NP. 

Note that generally the fact that ( Q , R )  is in NPP n co-NPP does not imply that 
(Q, R )  has a solution in NP n co-NP (see [ESY]). However, (Q1, R,) above has a solution 
in NP f~ co-NP, since the witness of R1 can also be the witness of Q1 (or &I is in NP), 
while generally promise Q is not in NP. 

using appropriate T and U ,  HESTR is in NP n co-NP. ll 
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5 Complexity of Hyperelliptic Discrete Logarithm 
This section introduces two results about the difficulty of the hyperelliptic discrete log- 
arithm; one is the characterization of the problem from the viewpoint of the structural 
complexity theory. The other is the reduction 
of the hyperelliptic curve discrete logarithms to the conventional multiplicative discrete 
logarithms, which is an extension of the result by [MOV]. 

This improves on the result of [SIS]. 

5.1 
Definition 5.1 Let P E J over F ,  be an element of maximum order nl,  and let R E J. 
The hyperelliptic curve logarithm problem is the following: Given P and R, determine 
the unique integer I ,  0 5 1 5 nl - 1, such that R = lP ,  provided that such an integer 
exists. 

Discrete logarithms over the Jacobians 

Defiuition 5.2 HEDL is a language, or membership problem such that 

HEDL = {(C, g,q,  P, R, 1,) I there exists I such that I 5 lo and R = 1P. }, 
where C is a hyperelliptic curve with genus g over F, and P E J over F ,  be an element 
ofinaJilniurn order nl, and let R E J. 

5.2 HEDL is NP n co-NP when non-half-degenerate 
Theorem 5.3 HEDL is NP  n CCFNP, when J is non-half-degenerate. 

Proof; 
When < C , g ,  q,  P, R, lo > is in HEDL, then integer 1 that satisfies R = 1P and 1 5 10 

is the witness for the input in HEDL. Clearly the computation of R = IP and 1 5 11, is 
delerministic polynomial time. Therefore, HEDL is in NP. 

There are two cases in which < C,  g1 q,  P, R, lo > is not in HEDL. One is the case where 
there exists 1' such that R = L'P and 1' $ lo. The other case is where 1 does not exist such 
that R = IP. In the former case, 1' is the witness for the input not in HEDL. In the latter 
case, when J is non-hdf-degenerate, the group structure, its witness, (PI , .  . . , P2,) etc., 
(Theorem 4.6), and a vector (q,. . . , uZg) such that P = PI and R = are 
the witness for the input not in HEDL. This is because I does not exist such that R = LP 
if and only if there exists i such that a; # 0 and i # 1. Here, Theorem 4.6 guarantees the 
existence of the witness for the group structure for HEDL, when J is non-half-degenerate. 
Therefore, HEDL is in co-NP. 

Similarly to Theorem 4.6, Theorem 5.3 can be written as follows, using the notion 
of the promise problem [ESY]: Let (91, Rz) be a promise problem such that Q1 is the 
promise that J is non-half-degenerate, and Rzis the property that HEDL is true. Then 
(QI, Rz) is in NPP n ceNPP,  and (Q1, R2) has a solution in NP n co-NP. 

a 

5.3 Reducing hyperelliptic logarithms to multiplicative loga- 
rithms 

Definition 5.4 Let J be a jacobian over F, with a paired canonical generating tuple, 
((GI, Gz), . . . , (Gzg--l, GZg))) and its group structure be ((n~, n2), . . . , (n2g--l, n2,)). Let 
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({GI, rz), . . . , {y2q-.1,-yz,)) be the paired canonical generating tuple of 4 7 2 1 1 ,  where G, = 
(tal/n,)r, (‘2 = 2 , .  . . ,2g). Then, J‘”[n1] denotes < - f 2 , - 1 , ~ 2 ~  >. 

Algorithm 3 (Reduction of HEDL) : 
Input 
O u t p u t  A n  integer 1 such that R = 1P. 
Step 1 

Step 2 
Step 3 
Step 4 

Note that the output of the above algorithm is correct since 

A n  element P E J over F ,  of maximum order n I ,  and R E J. 

Determine the smallest integer k 5uch that J(F,t)  includes J(’)[nl], where P is 
the first element, G1, of the paired canonical generating tuple of 4 7 2 1 1 .  

Find Q E .J(Fq4) such that a = e,,(P, Q) has order 121. 

Compute p = en, (R ,  Q )  
Compute i, the discrete logarithm of p to t7he base CY in Fqh. 

P = en, ( K ,  &I = en, ( lp ,  Q )  = en, ( P ,  Q)’ = a‘. 

Remark: Similar to algorithm 2 of [MOV], the above dgorithm is incomplete as we do 
not provide methods for determining k., or for finding the point Q. In the final version of 
this paper, we will show algorithms to find k and Q for some specific hyperelliptic curves. 

G Conclusion 
In this paper, we have shown that the problem to determine the group structure of 
the jacobian can be characterized to be in  NP n co-NP, when the jacobian is non-half- 
degenerate. Moreover, we have shown that the hyperelliptic discrete logarithm can be 
characterized to be as tractable as the multiplicative discrete logarithm from the viewpoint 
of structural computational complexity, when the jacobian is non-half-degenerate. I t  is 
an open problem to eliminate the condition of non-half-degeneracy for the jacobian in our 
results. 
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