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Abstract  

We define what it means for a network of communicating players to securely colnpute a 
function of privately held inputs, Intuitively, we wish to correcfly compute its value in a manner 
which protects tlie pnvacy of cacli player's contribution, even though a powerful adversary may 
endeavor to disrupt tliis enterprlse. 

This highly general and desirable goal has been around a long time, inspiring a large body 
protocols, definitions. and ideas, starting will1 Yao [1982, 19661 and Goldreich, hlicali and 
Wigderson [1087]. But all the while, it had resisted a full and satisfactory formulation. 

Our definition is built on several new ideas. Among them: 

Closely mimicking an Ideal eualuatzon. A securt proLoco1 must mimic this abstraction in 
a run-by-run manner, our definition depending as much on individual executions as on 
global properties of ensembles. 

Blending privacy and correctness i n  a novel way,  using a special iype of simulator designed 
for the purpose. 

Requiring adversanal awareness-capturing the idea that the adversary should know, in 
a very strong sense, certain information associated to the execution of a protocol. 

Among the noteworthy and desirable properties of our definition is tlie reducibilify of secure 
protocols, which we believe to be a cornerstone in a mature theory of secure computation. 

Invocation 

The last decade has witnessed the  rise of secure computation as a new and exciting mathematical 
subject. This is t h e  s tudy of communication protocols allowing several parties to perform a correct 
computation on some inputs  tha t  are  and should be kept private. As a simple example, t h e  parties 
want to compute the tally of some privately held votes. This  new discipline is extremely subtle, 
involving in novel ways fundamental concepts such as probabilism, information, and complexity 
theory. 

In the making of a new science, finding tlic right definitions can b e  one of the most d incul t  
tasks: from relatively few examples, one should handle cases t h a t  have not  yet arisen and  reach the  
highest possible level of generality. I t  is the purpose of this  work Loth t o  identify t h e  right notion 
of secure computation and prove the  right fundamental properties about  it.  

In the  last few years, cryptography has been very successful in identifying i ts  basic objectives, 
properly defining them, and successfully solving them. Secure encryption, secure pseudorandom 
generation, secure digital signatures, and zero-knowledge proofs-concepts that appeared forever 
clusiv-have all found successful formalizations and solutioi,;. But  in contrast to these successes, 

*MIT Laboratory lor Computer Science, 515 Technology Square, Cambridge, MA 02139. 
'IBM, 11400 Burnet  Road, Austin. TX 78758. Work performed ill part wliiie tlie author wasat the M I T  Laboratory 

for Computer Science, and in part while at Dartmouth Collegc. 

J. Feigenbaum (Ed.): Advances in Cryptology - CRYPT0 '91, LNCS 576, pp. 392-404, 1992. 
0 Springer-Verlag Berlin Heidelberg 1992 



393 

and despite many beautiful and iuiidamentai ideas that preceded us, not even a satisfxtory def- 
inition of a secure protocol has been proposed SO far. Tlik is not surprising, since protocols are 
extremely compiex objccts: after all, by dehning security for encryption, signatures, and pseudoran- 
dom generation. one is defining properties of algorithms; but to properly define protocol security, 
one needs instead to define properties of the inleraction Of several algorithms, some of which may 
be deliberately designed to disrupt the joint computation in clever ways. The  intricacy of this 
scenario has often encouraged researchers to work either with definitions of security tailored t o  the 
problcrn at hand; or to consider broad definilions, but restricted to specific computational tasks; 
or to work with only intuitive notions in mind. 

Lack of universally accepted definitions can only create confusion and mistakes, and it is only 
by reaching an exact Enderstanding of what we can expect from a secure protocol that can we 
salely rely on them and further develop tlicm. Powerful comnuter networks are already in place 
and the possibility of using them for ncw and wonderful tasks will largely depend on how successful 
this development will be. 

In These Proceedings 

A full description of our notion of secure computation is beyond the scope of a proceedings’ ab- 
stract. For this article, we have revised the introduction to  [MR91], incorporating a very high-level 
description of the definition and a brief comparison with other notions which have been offered in 
the lileraturc. 

Secure-Computation Problems 

What  is secure computation about? Informally, it consists of finding a communication protocol 
that  allows a group of plnyers to accomplish a special type of task, despite the fact that some Of 
them may try to sabotage this enterprise. This said, we now explain terms. Let’s start with the 
easy ones. 

Players (also called processors or parties for variation of discourse) caa be  thought as people, 
each possessing a personal computer, and capable of exchanging messages. A protocol is a set 
of instructions for the players to follow for sending these messages. The  rules of the game are as 
follows: (1) in executing a protocol, some of the participants may be bad, thereby disregarding their 
instructions and cooperating to disrupt the joint effort; (2)  no trusted device or external entity is 
available; (3) every good party can perform private computation (i.e., computation unmonitored 
by the bad players). 

What is a secure protocol supposed to accomplish? We start by looking at a few archetypal 
examples. Since our aim is to exemplify various issues and key desiderata tha t  may inspire US 

to properly define secure computation. in the following list we credit the  one who first posed the  
problem. 

1. T l I E  MILLIONAIRES PROBLEM (\‘a, [Ya82a]). Two millionaires wish to find out who is 
richer, though neither is willing to  reveal the extent of his fortune. Can they carry out a 
conversation which identifies the richer millionaire, but doesn’t divulge additional information 
about either’s wealth? 

2. THE DIGITAL V O T I N G  PROBLEM (Chaum, ICliSl]). Is i t  possible for a group of computer 

3. THE I N D E P E N D E N T  A N N O U N C E h l E N T  PROBLEM (Chor, Goldwasser, Micali, and Awerbuch 
[CGbIASS]). A group of players want to exchange messages so as to announce their secret 

users to  hold .L secret-ballot electlon on a computer network? 



394 

values independently. That is, what the bad players announce cannot be chosen based on the 
values of the good players. 

4. THE COIN FLIPPING P R O B L E M  (Dlum, [BlSZ]). IIow can Alice and Bob, Speaking to one 
another over the telephone, agree on a random, unbiased coin f l i p e v e n  if one of them cheats 
to try to produce a coin flip of a certain outcome? 

5 .  TIIE O B L l V l O U s  TRANSFER P R O B L E M  (Rabin, [RaBl]). Is it possible for Alice to send to Bob 
a message m i n  such a way that (i) half the time, Bob gets m; (ii) the other half of the time, 
Bob gets nothing; and (iii) Alice never knows which of the two events has occurred? 

6. Tlls MENTAL P O K E R  PROBLEM (Shanlir, Itivcst and Adleman, [SR.A8l]). Can a group of 
players properly shuffle and deal a deck of cards over the phone? 

Privacy and Correctness 

Even the above short list illustrates the enormous variety of types of goals for secure protocols. 
There may be two parties or many. The output of a protocol may be a single value known to  all 
players (as in digital voting), or to only one of them (as in an oblivious transfer), or it may be a 
private value for each player (as in mental poker). The output may depend on the players’ initial 
state deterministically (as in the first tlirce problems), or  probabilisticdy (as in the last three 
problems). 

What do such heterogeneous problems have in common, then? Essentially, that  the joint com- 
putation should both be priuate and corrcct: while preserving the privacy of individually held data, 
the joint computation manages to correctly perform some computational task based on this data. 
Correctness and privacy may seem to be conflicting requirements, and capturing in the most general 
sense what simultaneously meeting them means (within our rules of the game) is quite difficult. 
As we explain in the full paper, to obtain a satisfactory notion of security privacy and correctness 
should not be handled independently (like in all prior work), but need to be blended in the proper 
way. 

Prior and Related Definitions 

\’-EVALUATION. Distilling a common thread in many prior examples of secure computation, yao 
proposed the foollowing general problem jYa82aI. Assume we have n parties, 1 , .  . . , n. Each party i 
has a private input, z,, known only to him. The parties want to compute a given function f 
on their own inputs while maintaining the privacy of these inputs. In other words, they want to 
compute y = f ( z l , .  . . ,zn) without revealing to any player more about the private inputs than the 
output itself implicitly reveals. If the function is vector-valued, ij = f ( z l r . .  . ,zn), where ?has n 
components, it is desired that every party i privately learn the i-th component of v. 

Y m  also proposed il notion for what it means for a protocol to solve the above problem. Roughly 
said, his formalization attempts to capture the idea that the worst the bad players can do to 
disrupt a computatioii is to choose alternative inputs for themselves. or quit in the middle of the 
computation. We will refer to this notion of security as Y-evalualion. Subsequently [YdG], YaO 
strengthened his notion of a Y-evaluation so as to incorporate some juirness constraint. A fair 
proLocoi is one i n  which there is very little advantage to be gained by quitting in the middle. That 
is. the protocol takes care that,  a t  each point during the execution, the “informational gap” among 
the players is small. The study of fair protocols was started earlier by Luby, M i d  and Rackoff 
[LMRSS], and progressed with the contributions of [YaSG, BGSD, GLDO]. 
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GMW-GAMES. A more general notion lor sccurity has been introduced by Goldreich, Micali 
and Wigderson [GMW87]. They consider secure protocols as implementations of abstract, but 
computable, games of partial inlormation. Informally, ingredients of such an n-player game are an 
arbitrary set ol states, a set of moves (functions from states to states), a set of knowledge functions 
(defined on the states), and a vector-valued outcome furaction (defined on the states) whose r a g e  
values have as many components as there arc players. The players wish to start the game by 
probabilistically selecting an initial global state, unknown to everyone. Then the players take turns 
making moves. When it is the turn of player i, a portion li(S) of the current global state S must 
be privately revealed to him; liere A’ denotes the proper knowledge function for this stage of the 
game. Based on this private information, player i secretly selects a move p,  thereby the new, secret, 
state must become p ( S ) .  At the end of the ganie, each player privately learns his own component 
of the outcome function evaluated at the final state. 

[GMW87] envisioned a notion of security which would mimic the abstract game in a “virtual” 
manner: states are virtually selected, moves act on virtual states, and so on. We will refer to their 
notion as GMW-yurnes. Again putting aside liow this can be achieved, let us point out an additional 
aspect of their notion: namely, in a GbIW-game, bad players cannot disrupt the computation at 
all by quitting early. (This condition can indecd be enforced, in a certain communication model, 
whenever the majority of the players are lioxiest ) 

OTHER P R I O R  W O R K .  Several noteworthy variants of Y-evaluation and GMW-games have been pro- 
posed, with varying degrees of explicitness and care. These definitional ideas include, most notably, 
the work of Galil, Haber and Yung [GIIY87], Chaum, Damgkd  and van de GraiT [CDG87], Ben-Or, 
Goidwasser and Wigderson [BGW88], Chaum, Crdpeau and Damgird [CCDSS], Kilian [Ki89], and 
Crfpeau [CrOO]. 

CONCURRENT WORK. Early in our effort we told our initial ideas (like merging privacy and cor- 
rectness) to Beaver, who later pursued his own ones in [Begla, BeSlb]. 

Later, we collaborated with Kilian in developing definitions for secure function evaluation. This 
collaboration was enjoyable and profitable, and its fruits are described in [KMRSO]. 

Concurrently with the effort of [KMRSO], Goldwasser and Levin [GL90] independently proposed 
an interesting approach to defining secure function evaluation. 

Critique of These Definitions 

Definitions cannot, of course, be “wrong” in an absolute sense; but we feel that  all previous ones 
were either vague, or not sufficiently general, or considered “secure” protocols that  should have not 
been called such a t  a closer analysis. We thus cheerfully decided to clarify the intuitive notion of 
secure cornputation. Little we knew that we had taken up a two-year commitment! 

Let us very briefly critique some of the mentioned work. 

Y-EVALUATION. Though Yao should be credited for presenting his notion with great detail’, in our 
opinion his ideas do not fully capture the fundamental intuition of secure computation, leading to 
several difficulties. 
Blind input correlation. One of these difficulties we call “blind input correlation.” Namely, a two- 
party Y-evaiustion, while preventing a bad player from directly Iexning the good player’s input, 
might allow him to choose his own input so to be correlated with the good player’s. For example, it 

’This precision, however, was made licavier lrom lacking more modern constructs for discussing these issues+ like 
Ihe notion of a simulator developed by Goldwasser, hIicali and RackoK[GMR89]. 
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is not ruled out that, whenever the good player starts with secret input I, the bad player, without 
finding out what x was, can force tlie output to be, say, y = f (z ,x)  (or y = f(z,-z), or . . .). In 
some context, this correlation may result in (what would be considered by most people) a loss of 
security.2 
Priuacy/cormclness sepamtion. Y-evaluation considers privacy and correctness as separate con- 
straints and, though with a different terminology, considers secure a protocol that is both private 
and correct. Indeed, privacy and correctness are the fundamental aspects of secure computation, 
but, as we describe in the full paper, the logical connective “and” does not combine them ade- 
quately together. In particular, there exists functions f and protocols P such that, under most 
rezlsonable-sounding definitions (including Yao’s), P correctly computes f ;  and P is private leaking 
only f ;  and yet P is definitely not a good protxol  to securely compute f .  Basically, the problem is 
that there can be tradeofls between privacy and correctness, and simply demanding their conjunct 
does not respect this possible interplay. 

GMW-GAMES. GMW-games are most general and powerful, and they are endowed with very strong 
intuitive appeal. However, the author’s main goal was to propose the first general solution to  the 
problem of securely evaluating a function, and so they were less concerned with arriving a t  a fully 
general, “protocol-independent” notion of security. In particular, the authors notion of security 
was tailored for protocols that begin with a ”commit” stage, and then perform computation on 
these committed inputs. While their algorithmic structure has proved to be very successful (indeed, 
d subsequent protocols designed for the task share it), it should not be embedded in the general 
definition of our god. Finally, the authors did not provide full help in their proceedings paper for 
turning the intuition described into a successful formalization, and several wrong choices could still 
be made from the level their definition was lelt at. 

CONCURRENT W O R K .  Concurrent work does not suffer from this drawback, but has other short- 
comings. Beaver [BeSla] does not blend the various goals for a secure protocol, but treats them as 
separate requirements, as Yao first did and incurring in the same type of difficulties. In [BeSlb], the 
author avoids this problem, but offers a notion of security weaker than ours (once cast in the same 
framework), and one which calls “secure” some protocols which we feel should not be considered 
as such. Security in the sense of Goldwaiser and Levin, in turn, seems to be weaker than the 
simulation-based notion of [BeSlb]. Both, then, admit pitfalls including the following: 
Priuacy/correctness unification. IT Yao goes to one extreme in separating privacy and correctness, 
[GLDO, BeSlb] go to the other, completely merging them. We do not have space to  adequately 
describe their definitions, but the net result is that if privacy is to be achieved in a computational 
sense (which, for example is necessarily the case when everyone communicates on a broadcast chan- 
nel, using encryption to hide private inputs), then correctness also is achieved in a cornputatjonal 
sense. While it is OK to say that the adversary cannot understand someone’s input because she 
does not have the resources to make sense of it, it is less acceptable to output wrong results and 
just be saved by the fact that  they “look right” with respect to time-bounded computation. Con- 
sider, for instance, the computation that  consists of outputting a random quadratic reside modulo 

’Let’s see what i ls  effects might be on some of the discussed securecomputation problems. Consider solving the 
digital voting problem by Y-cvaluating the tally funcbion. Then the bad playen -though ignoring the electoral 
intentions of a given good player- might succeed in voting as a block for the opposite candidate. Should we 
consider this a secure election? We believe not. Similarly, trying to solve the independent announcement problem 
by Y-evaluating the “concaknrtion“ function (i.e., the [unction that, on inpats 21,. . . , zn, returns the single value 
rI# .  ..#zn), a bad player might always succeed in announcing the same d u e  as a given good player. Indeed, a 
poor case of independence! 
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a composite number whose factorization is unknown by the players. Then a secure protocol in 
the sense of [GL90] or [Be91b] may well consist of outputting a random quadratic nonresidue of 
Jacobi symbol +l. Under the proper complexity assumption, no one can notice the difference-yet 
it seems ( to  us) that this protocol is not a correct one for performing the specified task. 
Input absence. Sometimes we define a function part of the purpose of which is to  check that its 
inputs fall in some relation to one another: for simplicity, consider f(5) = 1 if 2 E OK, f(5) = 0 
otherwise. A secure computation of f should. when it evaluates to 1, convince the participants 
that  they collectively hold an F E Ol i .  IIowever. protocols secure in the sense of [GLgO] or (Deglb] 
allow the good players to each output a 1 even though the bad guys have never chosen their 
contribution ST-and, in fact, even when there is )LO such contribution which would result in the 
function evaluating to 1! 
Reducibility? In light of the difficulty of designing secure protocols, i t  is essential that  the definition 
of security supports a “reducibility property” which ensures the possibility of constructing complex 
secure protocols by properly combining simpler secure protocols in a black-box manner. (This will 
be further described shortly.) Unfortunately, we do  not see any way of proving the reducibility 
property we are alter frotn their alternative definitions. 

, 
1 
1 

Our Definitions 

Our notion of secure cornpulation solves the above difficulties, and other ones as well. We plan t o  
build up our definition in two stages. First, as our  alternative to Y-evaluation, we define secure 
function evaluation, to which this paper is devoted. Our notion is quite powerful and expressive; 
for instance, the first three secure-computation problems described earlier are straightforwardly 
solvable by securely evaluating the proper function. After developing secure function evaluation, 
we hint how this notion can be successfully extended to that of a secure game, our way of fully 
specifying GMW-games. (The full paper is already quite long, and a different one should be devoted 
to a detailed treatment of this extension. Also, the present treatment restricts its definitions to 
there being three or more players.) Secure games capture, in our opinion, the very notion of secure 
computation. Quite rcassuringly, all six problems specified earlier are straightforwardly solved by 
“playing” a secure game. 

The basic intuition behind secure function evaluation is the same one put forward, in quite a 
different language, by [GMW87]. In essence, two scenarios are considered: an ideal one in which 
there is a trusted party helping in the function evaluation, and a realistic one in which the trusted 
party is simulated by running a protocol. Security is a property of a realistic evaluation, and consists 
of achieving “indistinguishability” from the corresponding ideal evaluation. Wide  remaining quite 
informal, let us a t  least be less succinct. 

IDEAL FUNCTION E V A L U A T I O N .  In an i d e d  function evaluation of a vector-valued runction f there 
is an external trusted party to whom the participants privately give their respective secret inputs. 
The trusted entity will not divulge the received inputs; rather, it will correctly evaluate function f 
on them, and will privately hand component i of the result to party i. An adversary can interfere 
with this evaluation as follows. A t  the very beginning, before any party has given his own input 
to the trusted party, she can corrupt a first player a ~ i d  learn his private input. After this, and 
possibly based on what she has just learned, the adversary may corrupt a second player and learn 
this input, too. This continues until the adversary is satisfied. At this point, the adversary chdoses 
alternative, fake inputs for the corrupted players, and all parties give the their inputs to the trusted 
authority-the uncorrupted players giving their iLii:ial inputs, and the corrupted players giving their 
new, fake inputs. When the proper, individual outputs have been returned by the trusted party, 
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the adversary learns the value of the output of every corrupted player. The adversary can still 
corrupt, one by one. alditional playcrs, learning both thcir inputs and outputs when she does SO. 

It should be noticed that in such an ideal evaluation the adversary not only learns the inputs 
of the players she corrripts, bu t  by choosing properly their substitutes, she may learn from the 
function’s output value quite a bit about  thc other inputs as weil. 

I D E A L  VS. S E C U R E  F U N C T I O N  Ev,iLurrioN. While the notion of an ideal function evaluation has 
been essentially defined above, formalizing the notion of a secure function evaluation is much more 
comples; we will do it iii the nest few sections. Here let us just give its basic intuition. TO begin 
with, there no longer is any trusted party; the players will instead try to simulate one by means of 
a protocol. The adversary can still corrupt players, but this time a corruption will be much more 
“rewarding.“ For not only will she learn the private inputs of corrupted players, but also their 
current compumtionai state jn thc protoc.01 (and a bib oC additional information as well). She will 
receive all future message addressed to them and she will get control of what messages they are 
responsible for sending out. 

Given the greater power of the adversary i n  this new setting, it is intuitively clear that  a protocol 
for function evaluation cannot perform “better” than an ideal function evaluation; but it can do 
much worse! ltoughly said, a secure function evaluation consists of simulating every important 
aspect of an ideal function evaluation, to the mazirnum eztent possible, so that  a secure protocol 
does not perform “significantly worse” than the corresponding ideal protocol. 

Setting the stage of security in terms of the above indistinguishability is an important insight of 
the [CivIW87] work. The main difference with their work, though, and the real difficulty of OUTS, is 
not so much in the spirit of the solution as i n  properly realizing what “maximum possible” should 
mean, a i d  identifying what arc the important features, implicit (and perhaps hidden) in an ideal 
function evaluation that should (and can!) be  mimiclied in a secure function evaluation. 

We point out that none of the alternative definitions proposed for secure function evaluation 
is motivated by attempting to mimic the ideal evaluation of a function in so direct and strong a 
manner. Rather. they intend that a protocol should be called “secure” if and only if i t  is, intuitively, 
a secure computation. We, instead, are willing to call ‘%ecure” only those protocols which mimic 
the ideal evaluation extremely closely-even if this means exciuding “intuitively correct” protocols 
from being called “secure.” 

Key Features of Our  Definitions 

Let us now highlight the key features of our  definitions. These we distinguish as choices and prop- 
erties. The former are key technical ideas of our notion of security. The latter are key desiderata: 
each one is a condition-sine-rlua-non for calling a protocol secure. Notice, though, that  we do not 
force these necessary conditions into our definitions in an artificial manner; rather, we derive them 
naturally as consequences (hence the name “properties”) of our notion of security, and thus of our 
technical choices. 

Key Choices 

BLENDING PRIVACY A N D  C O R R E C T N E S S .  Secure protocols are more than just correct and private. 
Simply requiring simultaneous meeting of these two requirements leads to several “embarrassing” 
situaticnr;. In a secure protocol, correctness and privacy are blended a deeper manner. In particular, 
privacy -a meaningful notion all by itself- is taken to mean that the protocol admits a certain type 
of simulator, and corrcctncss is J concept which we define ihrough the same simulator proving the 
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protocol private. This merging of privacy and correctness avoids calling secure protocols those which 
clearly are not, and is a main contribution of this paper, as well as one of our first achievements 
in the course of this research. M‘c are pleased to see that our idea h a s  becn adopted by other 
researchers in the area. 

ADVERSARIAL A W A R E N E S S .  In the idcal evaluation of f ,  not only is there a notion of what inputs 
the adversary has substituted for tlie original ones of the corrupted players, but also that she is oware 
of what these substituted inputs arc! Similarly, she is aware of the outputs handed by the trusted 
party to the corrupted players. \Ve realize that this is a crucial aspect of ideal evaluation, and 
thus one that should be preserved as closely as possible by secure evaluation. Indeed, adversarid 
awareness is an essential ingrcdicnt in obtaining the crucial reductbifily property discussed below. 

TIGIIT M I M I C R Y .  Our  definition of a secure protocol mimics the ideal evaluation of a function f 
in a very “tight” manner. (For those fmiiliar with the earlier definition of zero knowledge, the 
definition of security relies less on “global” properties of ensembles of executions and more on 
individual executions.) In each particular run of a secure I’rotocol for evaluating f, one may 
“put a finger on” what inputs the adversary has eflectively substituted for the original ones of the 
corrupted players; when in the computation this has happened; what the adversary and the players 
get back from the joint computation. and when this happens; and these values are guaranteed 
(almost certainly) to be exactly what they slrould be - based on j ,  the inputs tlie adversary has 
effectively substituted, and the inputs the good players originally had. 

Key Properties 
MODEL I N D E P E N D E N C E .  As we said a secure protocol is one that “properly” replaces the trusted 
external pwty of ided evaluation with exchanging messages. There are, however, several possibil- 
ities for exchanging messages. For instance, each pair of participants may be linked by a secure 
communication channel (i.e., tlie adversary cannot hear messages exchanged by uncorrupted peo- 
ple); alternatively, each pair of players may have a dedicated, but insecure, communication channel; 
else, the only possible communication may consist of broadcasting messages, and so on. Though 
for ease of presentation we develop our notion of security with respect to a particular, underlying 
communication model, our notion of security is essentially independenf of the underlying communi- 
cation model. Indeed, we prove that the existence of secure protocol in one model of communication 
entails their existence in all other “reasonable” models. This proof is highly constructive: we show 
that, for any two rich-enough communication models, there exists a “compiler” that, given a pro- 
tocol secure in the first model, generates a protocol for the same task which is secure in the second. 
(Interestingly, the proof, though oftcn considered folklore, turned out t o  be quite dificult!) 

SYNTACTIC I N D E P E N D E N C E .  Our definition of security is independent of the “syntax” in which a 
protocol is written. Designing a secure protocol is easier i l  one adopts a syntactic structure a la 
[GMWW]; that is, having the parties first execute a “committal phase” in which they pin down 
their inputs while keeping them still secret3 and then they compute on these committed inputs. 
A dilferent type of syntactic help consists of assuming that a primitive for securely computing 
some siniple function is given, and then reducing to it the secure computation of more complex 
functions. This also simplifies the design of secure computation protocols (and actually presupposes 
that secure protocols enjoy the reducibility property we discuss below.) While i t  is alright to use 
a right syntax to lessen tho difficulty of designing secure protocols, we insist that our definition of 

3This secret cornmilmen1 is called verifiable secret sharing, a notion introduced by [CGMABS]. Far a precise 
definition and worked out. example see pM90] 
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security be independent of any specific syntactic restriction for a protocol to be called secure. (Of  
course, though we insist at remaining at a n  intuitive level here, being secure is itself an enormous 
restriction for a. protocol, but of a different nature.) 

I N P U T  I N D E P E N D E N C E .  There is yet a third, and crucial, type of independence property. In the 
ideal evaluation of a function f, the fahe values the adversary chooses are completely independent 
of the values held by uncorrupted players. Of  course, a secure protocol should have this property 
too, as closely as is possible. (I t  is a rather subtle matter how to state this goal satisfactorily.) After 
the proper definitions are in place, we show that our definition of security captures independence 
in an ezlrernely strong sense-not by “adding i t  in” as a desired goal, but, rather, by it being a 
prova6le property of any secure protocol. 

I ~ E D U C I B I L I T Y .  Let us describe this goal. Suppose you have designed a secure protocol for some 
complicated task-computing some function f ,  say. In an effort to make more manageable your 
job xi protocol designer, you assumed in designing the protocoi that  you had some primitive, gr 
in h i d .  You proved that your protocol ~g for computing f was secure in a “special” model of 
computation - oue in which an “ideal” evaluation of the primitive g was provided “for free.” One 
would want that  you obtain a secure protocol for f by inserting the code of a secure protocol for 9 
wherever it is necessary in Pg that  g be computed. This key goal for a n y  “good” definition of 
security is surprisingly dificult to obtain, particufarly if one adopts the most natural and innocent- 
looking notion of adversarial awareness (namely, the result of applying a fixed algorithm to the 
adversary’s entire computational state). Reducibiiity has always been a key desideratum for US, 

Igc, this is the first definition which provably achieves it. 

The Definition, in a Nutshell 

Here we describe, at  the highest possible level, our definition of secure function evaluation. 
Our notion owes much to the idea of a simulator, originally devised by Goldwasser, Micali and 

Rackoff [GMR89] in the context of interactive proofs. Recall that ,  in that  context, a simulator which 
establishes zerc-knowledge is a probabilistic algorithm which, knowing only “what i t  is entitled to” 
(whether or not z E L )  manages to produce a “fake” adversary view drawn from a distribution 
which closely resembles the distribution on “real“ adversary views. TO call a protocol secure, we, 
too, will demand the existence of a simulator-but our simulators are of a different sort. In fact, 
there are two major differences, which we now describe. 

The first difference concerns specifying what information should be provided to the simulator: 
i t  is entitled to exactly the information available in the ideal evaluation. This is straightforwardly 
accomplished by equipping the simulator with a special type of oracle. Specifically, this oracle 
responds to two types of queries: first, component queries, which ask for the values of particular 
private inputs; and also a (single) output query, which asks the value of the function at a (partially) 
specified input, ?!. 

The second major difference is that instead of being an algorithm which produces a certain 
distribution on views, our simulator plays the role of the uncorrupted players. In fact, the adversary 
interacts with a simulator just as though she were interacting with the network. The “goOd” 
simuiators (those which show that a protocol is secure) manage to interact with any adversary 
in a way which makes it indistinguishable to her whether i t  is the simulator or the network with 
whom she speaks. (This type of simulator, whicli we call an “on-line simulator,” is not the same 
restriction as “black-box” simulation.) 

Demanding the existence of such il simulator defines a strong notion of privacy. To capture 
security as a whole we employ the same simulator demanded for a privacy, a s  we now describe. 
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When the simulator asks the  output  query of its oracle, it computes this query-somehow. We 
add in a simple restriction: that  the adversary herself could compute this query as a function dX 
of information which she undeniably has assess to (the “message traffic” between herself and the 
simulator, say). This function AT-the adversary input function-captures something important 
in the ideal evaluation of a function f :  tha t  a t  some point in time the adversary inserts a value 2;. 
into the collaborative computation, and she is necessarily aware of what this value is and when she 
provides it. 

Correctness is defined by looking a t  individual executions of the network in the presence of the 
adversary. We demand that  in a correct evaluation o f f ,  what the good players compute is (almost 
always) the function f evaluated a t  what the adversary input function iadicates the adversary 
regards herself as having used for substituted values on this particular execution on behalf of the 
corrupted players, taken together with the good players’ private inputs. 

Actually, there is more to  correctness than that. As mentioned, in the ideal evaluation of a 
function, not only is the adversary aware of what she contributes on behalf of corrupted players 
and when, but she gets an output  back from these corrupted players, too! A secure protocol must 
mimic this. Thus the adversary must b e  able to compute, on behalf of the bad players, what is 
their share of the correctly computed function value. Tlus is formalized by demanding the existence 
of an adversary output function AU-again, something easily computed by the adversary-and, 
thinking of the output from a protocol execution being what the good players do output together 
with what the adversary ”could” output  by evaluating AU, the notion of correctness is as before. 

(We comment that extra. care must be exercised in ensuring that the adversary input  and 
output are properly co-ordinatecl with one another-roughly, that not only does the adversary 
regard herself as having inserted a certain value into the collaborative computation, and gotten a 
certain value back from it ,  but  that  these values are, in fact, the values the protocol has acted on.) 

Other Scenarios 

One last comment concerning the generality of our notions: that ,  though the full paper singles out 
just a few models of computation, one particular adversary, and one particular ideal scenario to  
mimic, it is  the thesis underlying this work that  the definition given here lifts to many other reason- 
able scenarios as well, a great many being easy to describe and potentially interesting. Essentially, 
the thesis is as follows: you specify the communications model, the ideal evaluation you are trying 
to imitate, and the adversary’s capabilities, and we provide, making the right “syntactic modifica 
tions,” a definition of what i t  means for a communications protocol to imitate the corresponding 
abstraction. 
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