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Abstract

We define what it means for a network of communicating players to securely compute a
function of privately held inputs. Intuitively, we wish to correctly compute its value in a manner
which protects the privacy of cacl player’s contribution, even though a powerful adversary may
endeavor to disrupt this enterprise.

This highly general and desirable goal has been around a long time, inspiring a large body
protocols, definitions, and ideas, starting wilth Yao {1982, 1986] and Goldreich, Micali and
Wigderson [1987]. But all the while, it had resisted a full and satisfactory formulation.

Our definition is built on several new ideas. Among them:

o Closely mimicking an ideal evaluation. A secure protocol must mimic this abstraction in
a run-by-run manner, our definition depending as much on individual executions as on
global properties of ensembles.

e DBlending privacy and correctness in a novel way, using a special type of simulalor designed
for the purpose.

e Requiring adversarial awareness—capturing the idea that the adversary should know, in
a very strong sense, certain information associated to the execution of a protocol.

Among the noteworthy and desirable properties of our definition is the reducibility of secure
protocols, which we believe Lo be a cornerstone in a mature theory of secure computation.

Invocation

The last decade has witnessed the rise of secure computation as a new and exciting mathematical
subject. This is the study of communication protocols allowing several parties to perform a correct
computation on some inputs that are and should be kept private. As a simple example, the parties
want to compute the tally of some privately held votes. This new discipline is extremely subtle,
involving in novel ways fundamental concepts such as probabilism, information, and complexity
theory.

In the making of a new science, finding the right definitions can be one of the most difficult
tasks: from relatively few examples, one should handle cases that have not yet arisen and reach the
highest possible level of generality. 1t is the purpose of this work both to identify the right notion
of secure computation and prove the right fundamental properties about it.

In the last few years, cryptography has been very successful in identifying its basic objectives,
properly defining them, and successfully solving them. Secure encryption, secure pseudorandom
generation, secure digital signatures, and zcro-knowledge proofs—concepts that appeared forever
elusive—have all found successful formalizations and solutions. But in contrast to these successes,
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and despite many beautiful and fundamental ideas that preceded us, not even a satisfactory def-
inition of a secure protocol has been proposed so far. This is not surprising, since protocols are
extremely complex objects: after all, by defining security for encryption, signatures, and pseudoran-
dom generation, one is defining properties of algorithms; but to properly define protocol security,
one needs instead to define properties of the interaction of several algorithms, some of which may
be deliberately designed to disrupt the joint computation in clever ways. The intricacy of this
scenario has often encouraged researchers to work either with definitions of security tailored to the
problem at hand; or to consider broad definitions, but restricted to specific computational tasks;
or to work with only intuitive notions in mind.

Lack of universally accepted definitions can only create confusion and mistakes, and it is only
by reaching an ezact understanding of what we can expect from a secure protocol that can we
safely rely on them and further develop them. Powerful computer networks are already in place
and the possibility of using them for new and wonderful tasks wiil largely depend on how successful
this development will be.

In These Proceedings

A {ull description of our notion of secure computation is beyond the scope of a proceedings’ ab-
stract. For this article, we have revised the introduction to [MRO1), incorporating a very high-level
description of the definition and a brief comparison with other notions which have been offered in
the literature.

Secure-Computation Problems

What is secure computation about? Informally, it consists of finding a communication protecol
that allows a group of players to accomplish a special type of task, despite the fact that some of
them may try to sabotage this enterprise. This said, we now explain terms. Let’s start with the
easy ones.

Players (also called processors or parties for variation of discourse) can be thought as people,
each possessing a personal computer, and capable of exchanging messages. A protocol is a set
of instructions for the players to follow for sending these messages. The rules of the game are as
follows: {1) in executing a protocol, some of the participants may be bad, thereby disregarding their
instructions and cooperating to disrupt the joint eflort; (2) no trusted device or external entity is
available; (3) every good party can perform private computation (i.e., computation unmonitored
by the bad players).

What js a secure protocol supposed to accomplish? We start by looking at a few archetypal
examples. Since our aim is to exemplily various issues and key desiderata that may inspire us
to properly define secure computation, in the following list we credit the one who first posed the
problem.

1. THE MILLIONAIRES PROBLEM (Yao, [Ya82a]). Two millionaires wish to find out who is
richer, though neither is willing to reveal the extent of his fortune. Can they carry out a
conversation which identifies the richer millionaire, but doesn’t divulge additional information
about either’s wealth?

2. THE DIGITAL VOTING PROBLEM (Chaum, {Ch81}). Is it possible for a group of computer
users to hold a secret-ballot election on a computer network?

3. THE INDEPENDENT ANNOUNCEMENT PROBLEM (Chor, Goldwasser, Micali, and Awerbuch
[CGMASS]). A group of players want to exchange messages so as to announce their secret
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values independently. That is, what the bad players announce cannot be chosen based on the
values of the good players.

4. THE COIN FLIPPING PROBLEM (Blum, [BI82]). Iow can Alice and Bob, speaking to one
another over the telephone, agree on a random, unbiased coin flip—even if one of them cheats
to try to produce a coin flip of a certain outcome?

5. THE OBLIVIOUS TRANSFER PROBLEM (Rabin, [Ra81]). Is it possible for Alice to send to Bob
a message m in such a way that (i) hall the time, Dob gets m; (ii) the other half of the time,
Bob gets nothing; and (iii) Alice never knows which of the two events has occurred?

6. THE MENTAL POKER PROBLEM (Shamir, Rivest and Adleman, [SRA81]). Can a group of
players properly shuifle and deal a deck of cards over the phone?

Privacy and Correctness

Even the above short list illustrates the enormous variety of types of goals for secure protocols.
There may be two parties or many. The output of a protocol may be a single value known to all
players (as in digital voting), or to only one of them (as in an oblivious transfer), or it may be a
private value for each player (as in mental poker). The output may depend on the players’ initial
state deterministically (as in the first three problems), or probabilistically (as in the last three
problems).

What do such heterogeneous problems have in common, then? Essentially, that the joint com-
putation should both be privaie and correct: while preserving the privacy of individually held data,
the joint computation manages to correctly perform some computational task based on this data.
Correctness and privacy may seem to be conflicting requirements, and capturing in the most general
sense what simultaneously meeting them means (within our rules of the game) is quite difficult.
As we explain in the full paper, to obtain a satisfactory notion of security privacy and correctness
should not be handled independently (like in all prior work), but need to be blended in the proper
way.

Prior and Related Definitions

Y-EvaLuaTioN. Distilling a common thread in many prior examples of secure computation, Yao
proposed the following general problem {Ya82a]. Assume we have n parties, 1,...,n. Each party i
has a privaie input, z;, known only to him. The parties want to compute a given function f
on their own inputs while maintaining the privacy of these inputs. In other words, they want to
compute ¥ = f(zy,...,2.) without revealing to any player more about the private inputs than the
output itsell implicitly reveals. If the function is vector-valued, § = f(zi,...,2s), where § has n
components, it is desired that every party i privately learn the i-th component of §.

Yao also proposed a notion for what it means for a protocol to solve the above problem. Roughly
said, his formalization attempts to capture the idea that the worst the bad players can do to
disrupt a computation is to choose alternative inputs for themselves, or quit in the middle of the
computation. We will refer to this notion of security as Y-evaluation. Subsequently [Ya86], Yao
strengthened his notion of a Y-evaluation so as to incorporate some fairness constraint. A fair
protocoi is one in which there is very little advantage to be gained by quitting in the middle. That
is, the protocol takes care that, at each point during the execution, the “informational gap” among
the players is small. The study of fair protocols was started earlier by Luby, Micali and Rackofl
[LMR383], and progressed with the contributions of [Ya86, BG89, GL90].
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GMW-GAMES. A more general notion for security has been introduced by Goldreich, Micali
and Wigderson [GMWS8T7). They consider secure protocols as implementations of abstract, but
computable, games of partial information. Informally, ingredients of such an n-player game are an
arbitrary set of staies, a set of moves (functions {rom states to states), a set of knowledge functions
{defined on the states), and a vector-valued oulcome function (defined on the states) whose range
values have as many components as there are players. The players wish to start the game by
probabilistically selecting an initial global state, unknown to everyone. Then the players take turns
making moves. When it is the turn of player ¢, a portion A (S) of the current global state S must
be privately revealed Lo Lim; here K denotes the proper knowledge function for this stage of the
game. Based on this private information, player i secretly selects a move y, thereby the new, secret,
state must become p(S§). At the end of the game, each player privately learns his own component
of the outcome function evaluated at the final state.

[GMWET] envisioned a notion of security which would mimic the abstract game in a “virtual”
manner: states are virtually selected, moves act on virtual states, and so on. We will refer to their
notion as GMW-games. Again putting aside how this can be achieved, let us point out an additional
aspect of their notion: namely, in a GMW-game, bad players cannot disrupt the computation at
all by quitting early. (This condition can indeed be enforced, in a certain communication model,
whenever the majority of the players are liouest )

OTHER PRIOR WORK. Several noteworthy variants of Y-evaluation and GMW-games have been pro-
posed, with varying degrees of explicitness and care. These definitional ideas include, most notably,
the work of Galil, Haber and Yung [GIIY87], Chaum, Damgard and van de Graff [CDG87], Bexn-Or,
Goldwasser and Wigderson [BGW88], Chaum, Crépeau and Damgard {CCD88), Kilian [Ki89], and
Crépeau [Cr90}].

CONCURRENT WORK. Early in our effort we told our initial ideas (like merging privacy and cor-
rectness) to Beaver, who later pursued his own ones in [Be9la, Be91bj.

Later, we collaborated with Kilian in developing definitions for secure function evaluation. This
collaboration was enjoyable and profitable, and its fruits are described in [KMR90].

Concurrently with the effort of [KMR90], Geldwasser and Levin (GL90] independently proposed
an interesting approach to defining secure function evaluation.

Critique of These Definitions

Definitions cannot, of course, be “wrong” in an absolute sense; but we feel that all previous ones
were either vague, or not sufficiently general, or considered “secure” protocols that should have not
been called such at a closer analysis. We thus cheerfully decided to clarify the intuitive notion of
secure computation. Little we knew that we had taken up a two-year commitment!

Let us very briefly critique some of the mentioned work.

Y-EVALUATION. Though Yao should be credited for presenting his notion with great detail', in our
opinion his ideas do not fully capture the fundamental intuition of secure computation, leading to
several difficulties.

Blind input correlation. One of these difficulties we call “blind input correlation.” Namely, a two-
party Y-evaluation, while preventing a bad player from directly learning the good player’s input,
might allow him to choose his own input so to be correlated with the good player’s. For example, it

IThis precision, however, was made heavier from lacking more modern constructs for discussing these issues, like

the notion of a simulator developed by Goldwasser, Micali and Rackoff [GMR89].
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is not ruled out that, whenever the good player starts with secret input z, the bad player, without
finding out what = was, can force the output to be, say, y = f(z,z) (or y = f(z,—%z), or ...). In
some context, this correlation may result in (what would be considered by most people) a loss of
security.?

Privacy/correctness separation. Y-evaluation considers privacy and correctness as separate con-
straints and, though with a different terminology, considers secure a protocol that is both private
and correct. Indeed, privacy and correctness are the fundamental aspects of secure computation,
but, as we describe in the full paper, the logical connective “and” does not combine them ade-
quately together. In particular, there exists functions f and protocols P such that, under most
reasonable-sounding definitions (including Yao’s), P correctly computes f; and P is private leaking
only f; and yet P is definitely not a good protocol to securely compute f. Basically, the problem is
that there can be tradeoffs between privacy and correctness, and simply demanding their conjunct
does not respect this possible interplay.

GMW-GAMES. GMW-games are most general and powerful, and they are endowed with very strong
intuitive appeal. However, the author’s main goal was to propose the first general solution to the
problem of securely evaluating a function, and so they were less concerned with arriving at a fully
general, “protocol-independent” notion of security. In particular, the authors notion of security
was tailored for protocols that begin with a “commit” stage, and then perform computation on
these committed inputs. While their algorithmic structure has proved to be very successful (indeed,
all subsequent protocols designed for the task share it), it should not be embedded in the general
definition of our goal. Finally, the authors did not provide full help in their proceedings paper for
turning the intuition described into a successful formalization, and several wrong choices could still
be made {rom the level their definition was left at.

CONCURRENT WORK. Concurrent work does not suffer from this drawback, but has other short-
comings. Beaver (Be91a] does not blend the various goals for a secure protocol, but treats them as
separate requirements, as Yao first did and incurring in the same type of dificulties. In [Be91b], the
author avoids this problem, but offers a notion of security weaker than ours (once cast in the same
framework), and one which calls “secure” some protocals which we feel should not be considered
as such. Security in the sense of Goldwasser and Levin, in turn, seems to be weaker than the
simulation-based notion of [Be91b]. Both, then, admit pitfalls including the following:

Privacy/correctness unification. If Yao goes to one extreme in separating privacy and correctness,
[GL90, Be91b] go to the other, completely merging them. We do not have space to adequately
describe their definitions, but the net result is that if privacy is to be achieved in a computational
sense (which, for example is necessarily the case when everyone communicates on a broadcast chan-
nel, using encryption to hide private inputs), then correctness also is achieved in a computational
sense. While it is OK to say that the adversary cannot understand someone’s input because she
does not have the resources to make sense of it, it is less acceptable to output wrong results and
just be saved by the fact that they “look right” with respect to time-bounded computation. Con-
sider, for instance, the computation that consists of outputting a random quadratic reside modulo

?Let’s see what its effects might be on some of the discussed secure-computation problems. Consider solving the
digital voting problem by Y-evaluating the tally function. Then the bad players —though ignoring the electoral
intentions of a given good player— might succeed in voting as a block for the opposite candidate. Should we
consider this a secure election? We believe not. Similasly, trying to solve the independent announcement problem
by Y-evaluating the “concatenation” function (i.e., the [unction that, on inputs z1,...,2y,, returns the single value
z1# ... #2n), a bad player might always succeed in announcing the same value as a given good player. Indeed, 2
poor case of independence!
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a composite number whose factorization is unknown by the players. Then a secure protocol in
the sense of [GL90] or [Be9lb] may well consist of outputting a random quadratic nonresidue of
Jacobi symbol +1. Under the proper complexity assumption, no one can notice the difference—yet
it seems (to us) that this protocol is not a correct one for performing the specified task.

Input absence. Sometimes we define a function part of the purpose of which is to check that its
inputs fall in some relation to one another: for simplicity, consider f{(Z) = 1if z € OK, f(£)= 0
otherwise. A secure computation of f should, when it evaluates to 1, convince the participants
that they collectively hold an & € OK. However, protocols secure in the sense of {GL90] or [Be91b]
allow the good players to each output a 1 even though the bad guys have never chosen their
contribution &-—and, in fact, even when there is no such contribution which would result in the
function evaluating to 1!

Reducibility? In light of the difficulty of designing secure protocols, it is essential that the definition
of security supports a “reducibility property” which ensures the possibility of constructing complex
secure protocols by properly combining simpler secure protocals in a black-box manner. (This will
be further described shortly.) Unfortunately, we do not see any way of proving the reducibility
property we are after from their alternative definitions.

Our Definitions

Our notion of secure computation solves the above difficulties, and other ones as well. We plan to
build up our definition in two stages. First, as our alternative to Y-evaluation, we define secure
Junction evaluation, to which this paper is devoted. Our notion is quite powerful and expressive;
for instance, the first three secure-computation problems described earlier are straightforwardly
solvable by securely evaluating the proper function. After developing secure function evaluation,
we hint how this notion can be successfully extended to that of a secure game, our way of fully
specifying GMW-games. (The full paper is already quite long, and a different one should be devoted
to a detailed treatment of this extension. Also, the present treatment restricts its definitions to
there being three or more players.) Secure games capture, in our opinion, the very notion of secure
computation. Quite reassuringly, all six problems specified earlier are straightforwardly solved by
“playing” a secure game.

The basic intuition behind secure function evaluation is the same one put forward, in quite a
different language, by [GMWS7]. In essence, two scenarios are considered: an ideal one in which
there is a trusted party helping in the function evaluation, and a realistic one in which the trusted
party is simulated by running a protocol. Security is a property of a realistic evaluation, and consists
of achieving “indistinguishability” from the corresponding ideal evaluation. While remaining quite
informal, let us at lcast be less succinct.

IDEAL FUNCTION EVALUATION. In an ideal function evaluation of a vector-valued function f there
is an external trusted party to whom the participants privately give their respective secret inputs.
The trusted entity will not divulge the received inputs; rather, it will correctly evaluate function f
on them, and will privately hand component i of the result to party i. An adversary can interfere
with this evaluation as follows. At the very beginning, before any party has given his own input
to the trusted party, she can corrupt a first player and learn hLis private input. After this, and
possibly based on what she has just learned, the adversary may corrupt a second player and learn
this input, too. This continues until the adversary is satisfied. At this point, the adversary chooses
alternative, fake inputs for the corrupted players, and all parties give the their inputs to the trusted
authority—the uncorrupted players giving their iuitial inputs, and the corrupted players giving their
new, fake inputs. When the proper, individual outputs have been returned by the trusted party,
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the adversary learns the value of the output of every corrupted player. The adversary can still
corrupt, one by one, additional playcrs, learning both their inputs and outputs when she does so.

It should be noticed that in such an ideal evaluation the adversary not only learns the inputs
of the players she corrupts, but by choosing properly their substitutes, she may learn from the
function’s output value quite a bit about the other inputs as weil.

IDEAL VS. SECURE FUNCTION EVALUATION. While the notion of an ideal {function evaluation has
been essentially defined above, formalizing tlie notion of a secure function evaluation is much more
complex; we will do it in the next few sections. Ifere let us just give its basic intuition. To begin
with, there no longer is any trusted party; the players will instead try to simulate one by means of
a protocol. The adversary cau still corrupt players, but this time a corruption will be much more
“rewarding.” For not only will she learn the private inputs of corrupted players, but also their
current computational state in the protocol (and a bit of additional information as well). She will
receive all future message addressed to them and she will get control of what messages they are
responsible for sending out.

Given the greater power of the adversary in this new setting, it is intuitively clear that a protocol
for function evaluation cannot perform “better” than an ideal function evaluation; but it can do
much worse! Roughly said, a secure function evaluation consists of simulating every important
aspect of an ideal function evaluation, to the mazimum extent possible, so that a secure protocol
does not perform “significantly worse” than the corresponding ideal protocol.

Setting the stage of security in terms of the above indistinguishability is an important insight of
the {[GMW87] work. The main difference with their work, though, and the real difficulty of ours, is
not so much in the spirit of the solution as in properly realizing what “maximum possible” should
mean, and identifying what are the important features, implicit (and perhaps hidden) in an ideal
function evaluation that should (and can!) be mimicked in a secure function evaluation.

We point out that none of the alternative definitions proposed for secure function evaluation
is motivated by attempting to mimic the ideal evaluation of a function in so direct and strong a
manner. Rather, they intend that a protocol should be called “secure” if and only if it is, intuitively,
a secure computation. We, instead, are willing to call “secure” only those protocols which mimic
the ideal evaluation extremely closely—even if this means exciuding “intuitively correct” pratocols
from being called “secure.”

Key Features of Our Definitions

Let us now highlight tle key features of our definitions. These we distinguish as choices and prop-
erites. The former are key technical ideas of our notion of security. The latter are key desiderata:
each one is a condition-sine-qua-non for calling a protocol secure. Notice, though, that we do not
force these necessary conditions into our definitions in an artificial manner; rather, we derive them

naturally as consequences (hence the name “properties”) of our notion of security, and thus of our
technical choices.

Key Chaices

BLENDING PRIVACY AND CORRECTNESS. Secure protocols are more than just correct and private.
Simply requiring simuitaneous meeting of these two requirements leads to several “embarrassing”
situations. In a secure protocol, correctness and privacy are blended a deeper manner. In particular,
privacy —a meaningful notion all by itself— is taken to mean that the protocol admits a certain type
of simulator, and correctness is a concept which we define through the same simulator proving the
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protocol private. This merging of privacy and correctness avoids calling secure protocols those which
clearly are not, and is a main contribution of this paper, as well as one of cur first achievements
in the course of this research. We are pleased to see that our idea has been adopted by other
researchers in the area.

ADVERSARIAL AWARENESS. In the idecal evaluation of f, not only is there a notion of what inputs
the adversary has substituted for the original ones of the corrupted players, but also that she is aware
of what these substituted inputs are! Similarly, she is aware of the outputs handed by the trusted
party to the corrupted players. We realize that this is a crucial aspect of ideal evaluation, and
thus one that should be preserved as closely as possible by secure evaluation. Indeed, adversariai
awareness is an essential ingredient in obtaiuing the crucial reducibility property discussed below.

TicuT MiMICrRY. Qur definition of a sccure protocol mimics the ideal evaluation of a function f
in a very “tight” manner. (For those familiar with the earlier definition of zero knowledge, the
definition of security relies less on “global” properties of ensembles of executions and more on
individual executions.) In each particular run of a secure protocol for evaluating f, one may
“put a finger on™ what inputs the adversary has effectively substituted for the original ones of the
corrupted players; when in the computation this has happened; whai the adversary and the players
get back {rom the joint computation, and when this happens; and these values are guaranteed
(almost certainly) to be exactly what they should be — based on f, the inputs the adversary has
effectively substituted, and the inputs the good players originally had.

Key Properties

MODEL INDEPENDENCE. As we said a secure protocol is one that “properly” replaces the trusted
external party of ideal evaluation with exchanging messages. There are, however, several possibil-
ities for exchanging messages. For instance, each pair of participants may be linked by a secure
communication channel (i.e., the adversary cannot hear messages exchanged by uncorrupted peo-
ple); alternatively, each pair of players may have a dedicated, but insecure, communication channel;
else, the only possible communication may consist of broadcasting messages, and so on. Though
for ease of presentation we develop our notion of security with respect to a particular, underlying
communication model, our notion of security is essentially independent of the underlying communi-
cation model. Indeed, we prove that the existence of secure protocol in one model of communication
entails their existence in all other “reasonable” models. This proof is highly constructive: we show
that, for any two rich-enough communication models, there exists a “compiler” that, given a pro-
tocol secure in the first model, generates a protocol for the same task which is secure in the second.
(Interestingly, the proof, though often considered folklore, turned out to be quite difficult!)

SYNTACTIC INDEPENDENCE. Qur definition of security is independent of the “syntax” in which a
protocol is written. Designing a secure protocol is easier if one adopts a syntactic structure  la
[GMW87]; that is, having the parties first execute a “committal phase” in which they pin down
their inputs while keeping them still secret® and then they compute on these committed inputs.
A different type of syntactic help consists of assuming that a primitive for securely computing
some simple function is given, and then reducing to it the secure computation of more complex
functions. This also simplifies the design of secure computation protocols (and actually presupposes
that secure protocols enjoy the reducibility property we discuss below.) While it is alright to use
a right syntax to lessen the difficulty of designing secure protocols, we insist that our definition of

3This secret commitment is called verifiable secret sharing, a notion introduced by [CGMAS5]. For a precise
definition and worked out example see {[FM90)
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securily be independent of any specific syntactic restriction for a protocol to be called secure. (Of
course, though we insist at remaining at an intuitive level here, being secure is itseif an enormous
restriction for a protocol, but of a different nature.)

INPUT INDEPENDENCE. There is vet a third, and crucial, type of independence property. In the
ideal evaluation of a function f, the fake values the adversary chooses are completely independent
of the values held by uncorrupted players. Of course, a secure protocol should have this property
too, as closely as is possible. (It is a rather subtle matter how to state this goal satisfactorily.) After
the proper definitions are in place, we show that our definition of security captures independence
in an extremely strong sense—not by “adding it in” as a desired goal, but, rather, by it being a
provable property of any sccure protocol.

REDUCIBILITY. Let us describe this goal. Suppose you have designed a secure protocol for some
complicated task—computing some function f, say. In an effort to make more manageable your
job as protocol designer, you assumed in designing the protocol that you had some primitive, g,
in hand. You proved that your protocol P? for computing f was secure in a “special” model of
computation — one in which an “ideal” evaluation of the primitive g was provided “for free.” One
would want that you obtain a secure protocol for f by inserting the code of a secure protocol for g
wherever il is necessary in P9 that g be computed. This key goal for any “good” definition of
security is surprisingly difficult to obtain, particularly if one adopts the most natural and innocent-
looking notion of adversarial awareness (namely, the result of applying a fixed algorithm to the
adversary’s entire computational state). Reducibility has always been a key desideratum for us,
and, to our knowi dge, this is the first definition which provably achieves it.

The Definition, in a Nutshell

Here we describe, at the highest possible level, our definition of secure function evaluation.

Qur notion owes much to the idea of a simulator, originally devised by Goldwasser, Micali and
Rackoff (GMRS9] in the context of interactive proofs. Recall that, in that context, a simulator which
establishes zero-knowledge is a probabilistic algorithm which, knowing only “what it is entitled to”
(whether or not z € L) manages to produce a “fake” adversary view drawn from a distribution
which closely resembles the distribution on “real” adversary views. To call a protocol secure, we,
too, will demand the existence of a simulator—but our simulators are of a different sort. In fact,
there are two major differences, which we now describe.

The first difference concerns specifying what information should be provided to the simulator:
it is entitled to exactly the information available in the ideal evaluation. This is straightforwardly
accomplished by equipping the simulator with a special type of oracle. Specifically, this oracle
responds to two types of queries: first, component queries, which ask for the values of particular
private inputs; and also a (single) output query, which asks the value of the function at a (partially)
specified input, 7.

The second major difference is that instead of being an algorithm which produces a certain
distribution on views, our simulator plays the role of the uncorrupted players. In fact, the adversary
interacts with a simulalor just as though she were interacting with the network. The “good”
simulators (those which show that a protocol is secure) manage to interact with any adversary
in a way which makes it indistinguishable to lier whether it is the simulator or the network with
whom she speaks. (This type of simulatar, which we call an “on-line simulator,” is not the same
restriction as “black-box” simulation.)

Demanding the existence of such a simulator defines a strong notion of privacy. To capture
securily as a whole we employ the same simulator demanded for a privacy, as we now describe.
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When the simulator asks the output query of its oracle, it computes this query—somehow. We
add in a simple restriction: that the adversary herself could compute this query as a function AZ
of information which she undeniably has assess to (the “message traflic” between herself and the
simulator, say). This function AZ—tle adversary input function—captures something important
in the ideal evaluation of a function f: that at some point in time the adversary inserts a value 7
into the collaborative computation, and she is necessarily aware of what this value is and when she
provides it.

Correctness is defined by looking at individual executions of the network in the presence of the
adversary. We demand that in a correct evaluation of f, what the good players compute is (almost
always) the function f evaluated at what the adversary input function indicates the adversary
regards herself as having used for substituted values on this particular execution on behalf of the
corrupted players, taken together with the good players’ private inputs.

Actually, there is more to correctness than that. As mentioned, in the ideal evaluation of a
function, not only is the adversary aware of what she contributes on behalf of corrupted players
and when, but she gets an output back from these corrupted players, too! A secure protocol must
mimic this. Thus the adversary must be able to compute, on behalf of the bad players, what is
their share of the correctly computed function value. This is formalized by demanding the existence
of an adversary output function AQO-—again, something easily computed by the adversary—and,
thinking of the output from a protocol execution being what the good players do output together
with what the adversary “could” output by evaluating AQ, the notion of correctness is as before.

(We comment that extra care must be exercised in ensuring that the adversary input and
output are properly co-ordinated with one another—roughly, that not only does the adversary
regard herself as having inserted a certain value into the collaborative computation, and gotten a
certain value back from it, but that these values are, in fact, the values the protocol has acted on.)

Other Scenarios

One last comment concerning the generality of our notions: that, though the full paper singles out
just a few models of computation, one particular adversary, and one particular ideal scenario to
mimic, it is the thesis underlying this work that the definition given here lifts to many other reason-
able scenarios as well, a great many being easy to describe and potentially interesting. Essentially,
the thesis is as follows: you specify the communications model, the ideal evaluation you are trying
to imitate, and the adversary’s capabilities, and we provide, making the right “syntactic modifica-
tions,” a definition of what it means for a communications protocol to imitate the corresponding
abstraction.
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