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Abstract 

We present two efficient constructions aimed at making public key systems se- 
cure against chosen ciphertext attacks. The first one applies to any deterministic 
public key system and modifies it into a system that is provably a8 hard to break 
under a passive attack as the original one, but has the potential of making a chosen 
ciphertext attack useless to an enemy. The second construction applies to the El 
Gamal/Diffie-Hellman public key system. Again, the modified system is provably 
as hard to break.under a passive attack as the original one, and under an additional 
cryptographic assumption, a chosen ciphertext attack is provably useless to an en- 
emy. We also point out a connection between such public-key systems and efficient 
identification schemes. 

1 Introduction 

The question of whether public key encryption schemes can be secure against chosen 
ciphertext attacks has received at lot of attention in the last 12 years. The problem first 
came up when Rabin presented his variant of RSA in 1978 based on modular squaring 
[Ra]. He proved that decrypting a random ciphertext in this system is reducable to  
factoring. The good news here is that consequently &bins system has maximal security 
against passive attacks: the problem of decryption can never be  harder than that of 
finding the private key from the public one. The bad new8 is that this also implies that  
the system breaks down completely under a chosen ciphertext attack.This fact mislead 
many researchers into thinking that no public key system could be secure against a 
chosen ciphertext attack if the problem of decrypting was reducable to the problem of 
finding the private key from the public one. A similar "paradox" for public key signature 
schemes was also discussed in the folklore. 

The folkore "proof? of these "theorems", however, implicitely relied on the assump- 
tion that only one trapdoor is used in the system. Goldwasser, Micali and Rivest were 
the first to observe that the problem could be solved if two independently chosen trap- 
doors were used. This lead to construction of the first signature scheme secure against an 
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adaptive chosen message attack [GMR]. Later, Naor and Yung [NY] combined the use of 
two trapdoors with non-interactive zero-knowledge proof systems to  build the first public 
key encryption scheme provably as hard to  break under a chosen ciphertext attack as 
under a passive attack, where the enemy simply observes ciphertexts and tries to decrypt 
them. 

Thus, as far as theoretical results are concerned, the matter is closed. For practical 
schemes, however, we are still very far from a satisfactory solution. The scheme of [NY] 
relies heavily on non-interactive zero-knowledge, which is a very nice theoretical tool, but 
in general leads to schemes that no one would try to implement because of the enormous 
expansion that takes place when going from plaintext to ciphertext. 

This paper makes a first step in the direction of finding truely practical public key 
encryption schemes with optimal security. This will be done by showing how to make 
modifications of any deterministic public key system (which includes RSA and Rabin), 
and of the El Gamal/Diffie-Hellman public key system. All the modifications preserve the 
security of the original system under a passive attack, while extra assumptions are needed 
to ensure that a chosen ciphertext attack will not help an enemy. The modifications 
typically require 1 extra encryption/decryption operation of the system in question, and 
communication of 1 extra multiprecision number. 

The model of a chosen ciphertext attack that we will consider here follows that of 
[NY]: the enemy may specify any (polynomial) number of ciphertexts and receives the 
corresponding plaintexts. Then he gets a ciphertext a8 input and must try to  decrypt 
it by himself. Other researchers have suggested different models [Rs], where the enemy 
knows in advance the ciphertext he must attack, but where his choice of ciphertexts to 
ask for decryptions of is limited in various ways. This model requires that also senders 
of messages possess secret/public key pairs. 

2 Deterministic Public Key Systems 

A public key encryption scheme is said to be deterministic, when the ciphertext 
uniquely determined from the cleartext and the public encryption key. Thus the ba- 
sic form of the RSA and Rabin systems are deterministic. 

For simplicity, we think of determinktic public key systems as trapdoor one-way 
permutations of bit strings of a given length, although systems like RSA actually are 
injections into such a set (using injections would complicate the notation, but not change 
any of the results). 
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Saying something meaningful about the security of a deterministic system requkw 
that one specifies a distribution of the cleartexts. Throughout this paper, we will a- 
sume that the encryption operates on &bit blocks, and that the cleartexts are uniformly 
distributed k-bit strings. This is a natural assumption if no particular application is 
considered, and is the only reasonable in several cases, e.g. when the system is being 
used for exchange of keys to  a conventional cryptosystem. 

Definition 1 

A family of one-way trapdoor permutations is a countably infinite family of finite sets 
F = { I k } g o .  An element of I k  is a permutation on the set of k-bit strings and is called 
an instance of size k. F must satisfy the following: 

1. There exists a probablistic poynomial time algorithm GenF called a generator for 
F ,  which on input k outputs a pair (f, f-'). f is a polynomial time algorithm for 
computing a permutation randomly chosen from l k ,  while f-' is a polynomial t h e  
algorithm for computing the inverse of that permutation. 

1 

I 
, 

2. For any probabilistic polynomial time algorithm A ,  let p A ( k )  be the probability 
that A on input f E Ik chosen randomly by GenF and a uniformly chosen k-bit x 
manages to compute f - ' ( z ) .  Then p ~ ( k )  is superpolynomially small as a function 
of k. 

It should be clear that this is just a formalization of the properties that we hope 
for example RSA has: the permutations would be exponentiations modulo It-bit RSA- 
moduli, and the generator would output randomly chosen k-bit moduli, together with 
the public, resp. secret exponent. 

~ 

~ 

In a chosen ciphertext attack against a system like this, an enemy effectively gets 
an oracle for f-', for example he may have been able t o  get temporary access to  the 
deciphering equipment, without being able to get to  the secret key itself. By choosing 
cleverly the ciphertexts to decrypt, he may be able to  figure out the entire description of 
f-1,  That i3 p-. .n:--l . .  LLLL3c.J z h a t  happens ii the Rabin system. 

A standard practitioner's way of protecting against this would be to require that all 
cleartexts satisfy a certain redundancy rule, and program the deciphering algorithm such 
that it refuses to answer, if the cleartext produced does not satisfy this rule. The idea 
would be that an enemy now cannot produce ciphertexts that he can get decrypted unless 
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he starts by choosing the cleartext, in which case the attack becomes useless: the enemy 
already knows the cleartexts he gets. 

However, such a redundancy rule will be of no use, unless it ensures that a uniformly 
chosen bit string satisfies the rule with only negligible probability. The problem now is 
that even if our permutation family satisfies the above Definition 1, the permutations 
might still become easy to invert, if we restrict the input to the negligibly small subset 
of messages satisfying the redundancy rule! For example, using this idea on the Rabin 
system would mean that we would loose the proof of the equivalence of decryption to  
factoring. Hence we would like to  have a solution that makes a chosen ciphertext attack 
difficult to  exploit, without having to change the cleartext distribution. 

Consider therefore the following public key encryption scheme, which is constructed 
from two (not necessarily distinct) families F and G as above: 

To generate keys, run the generators Genp and GenG on input k to  get outputs 
(f, f - l ) ,  (9 ,  g-'), respectively. Let h be an arbitrary but fixed easy-to-invert permutation 
on k-bit strings (we assume for simplicity that h is a generic description of a permutation 
algorithm that works for any k). Let f , g ,  h be the public key and store f-' aa the secret 
key (g-' may be discarded). The enciphering function E operates on k-bit strings and 
is defined by: 

E(m) = ( f ( T ) l  g ( h ( p ) )  63 m), 
where r is a uniformly chosen k-bit string. To deciper, we have the function D, defined 
by : 

D(c ,  4 = ! W 1 ( r 1 ( c ) ) )  

It is clear that D ( E ( m ) )  = m. We then have the following definition and result: 

Definition 2 

An algorithm A is said to break (F ,G,  h )  under a passive attack, if A finds m with 
probability more than a polynomial fraction on input a description of E and E(m).  The 
probabiiicy IS Latien over a ranaom cnoice of E it9 above, and a uniform choice of k-bit 
string m. 

Theorem 1 

If the family F satisfies Definition 1, then no probabilistic polynomial time algorithm 
breaks ( F ,  G, h)  under a passive attack. 
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Proof 

Suppose A breaks ( F , G , h ) ,  and let f and x be chosen as in condition 2 of Definition 1. 
Run Geno to get an algorithm for a permutation y and its inverse. Choose a uniform 
k-bit string 8, and give to A the description of E constructed from f and g and the 
ciphertext (z,s). Let rn be the output of A .  Then as our guess a t  f - l ( ~ ) ,  we output 
h-'(g- ' (rn @ s)). It is clear that the distribution of the public key f,g,h and the 
ciphertext ( I ,  s) is precisely the one A expects to  see. Therefore we get a correct answer 
m with nonnegligible probability. Finally, it is trivial that if rn is correct, then our answer 
is also correctn 

This theorem says that modifying the public key system defined by F ,  by using G 
and h as above, does not hurt the security against passive attacks. However, we may 
hope that the security of ( F ,  G, h)  is even better than that of F against chosen ciphertext 
attacks: suppose that there exists an algorithm that will find the secret key f-' if it is 
given the public f and a black box that evaluates f - l ,  i.e. the F-system has maximal 
security under a passive attack, but is breakable under a chosen ciphertext attack. 

TO see how the ( F ,  G ,  h)  system behaves in this respect, observe that what the enemy 
gets in a chosen ciphertext attack against (F ,G,h)  is the ability t o  specify any 3: to 
a black box and get back g(h( f - ' ( z ) ) ) .  Since y is one-way, it is not at all clear that 
the enemy can find f-'(z) from this information, and therefore ( F ,  GI h)  may be secure 
against a chosen ciphertext attack, even though it provably has maximal security against 
a passive attack. 

I t  is tempting to conjecture that as long as f and y are independently chosen, seeing 
g(h ( f - ' ( z ) ) )  does not give the enemy any useful extra knowledge, and might in fact as 
well be a random value, as far as a polynomial time enemy is concerned. This is too 
optimistic however: suppose we wanted to  improve the Rabin system in a simplistic way 
by letting both F and G be modular squaring and h be the identity. Then an enemy 
could from a chosen ciphertext attack obtain residues of the same value r2 modulo two 
different moduli, where T is the square root he is looking for. But from this, the integer 
r2 (and hence r) can easily be found by the Chinese Fkmainder theorem, and we are no 
better off than for the original Rabin system! 

Thus the functions must be chosen with more care: for example we can define h to 
be some efficient easy-to-invert bit-scrambling function. One nice way to construct such 
a function would use a pseudo-random bit generator 4 taking bit strings of length 1 < 
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as seed. Then we can define 

h(r )  = T L - l  a3 4(rI-)llrI-, 

where n-1, resp. r k  are the most significant k - I ,  resp. the least significant k bits of r ,  
and ( 1  denotes concatenation. For concreteness, one can think of I = 56 and 4 = DES 
in output feedback mode, but many ideas are possible here. Another idea is to simply 
encrypt r under a random, but fixed key using your favorite conventional cipher. 

With such a construction, it seems quite resonable to conjecture that r and h(r)  will 
appear to be unrelated as far as modular arithmetic is concerned, and that therefore the 
above problem will go away. Alternatively, one could let h = id ,  but define G to be MA 
with random (large) public exponent. 

This leads to the following concrete suggestion for an encryption function E:  

E(m)  = (r' mod nl,  m @ (h(r)' mod nz)),  

where h is constructed as above, nl, nz are Blum-integers and r is a rmdom square 
modulo 721 (this ensures that the receiver can reconstruct r from r2 mod . I ) .  Decryption 
is left to the reader. For this construction, the extra security potential comes at a price 
of very little extra computation - evaluation of h and a modular squaring for both sender 
and receiver. The bandwidth required is twice that of ordinary Rabin encryption. For 
applications such as exchange of conventional keys this will often be perfectly acceptable. 

Of course, proving chosen ciphertext security for such concrete constructions is prob- 
ably difficult. Even defining precisely what properties we should demand for F and G is 
non-trivial. We suggest the construction of F ,  G and h such that security against chosen 
ciphertext attacks of ( F ,  G, h)  can be proved as an  interesting open problem. 

3 The El Gamal/Diffie-Hellman System 

This public key encryption scheme was suggested by El Gamai [ElGa] as a variant of the 
Diffie-Hellman key exchange. The system requires an infinite family of cyclic groups {GI-}  
such that discrete logarithms are hard to compute in G t .  One can use the  multiplicative 
groups modulo large primes here, but also other groups might be used, e.g. the groups 
on some elliptic curves, or the multiplicative groups of extension fields. 

To run the system, we are given a generator g of GI, of order d ,  where d is in O(2'), 
such that group elements may be represented as k-bit strings. The  secret key in the 
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system is a number 2, chosen uniformly in [O..d - 11. The public key is y = 9s. k t  E 
denote the enciphering operation, D the deciphering. Then 

In this description, the $-operation may be replaced by any easy to invert group op- 
eration on k-bit strings. It is clear that this system is not deterministic, but probabilistic: 
the encryption involves a random choice. For such systems, one may sometimes be able 
to prove that the system is secure against passive attacks, independently of the plaintext 
distribution. See for example the system of Blum and Goldwasser [BlGo]. However, such 
a result is not known for the El Gamal system. Moreover, although its security against 
chosen ciphertext attacks is unknown in general, Bert den Boer (Bo] has shown that for 
some primes, the Diffie-Hellman problem modulo these primes is equivalent to discrete 
log, and hence that in these cases the system is breakable under a chosen ciphertext 
attack. 

Hence also for this system, it is of interest to improve its security against chosen 
ciphertext attacks, without having to change the plaintext distribution. TO this end, we 
propose the following modified version of El Gamal: 

The private key consists of 2 and z ,  chosen uniformly in [O..d - 11. The public key 
is y = g2 and w = g * .  Let E' and D' denote the encryption and decryption operations, 
resp. Then 

E ( m ) =  ( W P 1 ! f , , @ B y P ) ,  

where r is uniform in [O..d - 11. 

D ( c ~ , c z , c ~ )  = cg @ c ; ,  if c1 = c;, N U L L  otherwise. 

Here, N U L L  is a special symbol which can be distinguished from ordinary plaintext, and 
can be thought of as meaning "no answer". 

Security against passive attacks for El Gamal and Modified El Gamal is defined in 
the same way as in Definition 2, except that the probabilities are also taken over the 
random coins used in the enciphering. We first have the following easy lemma: 
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Lemma 1 

Modified El Gamal is as hard to break as El Gamal under a passive attack. 

Proof 

Suppose algorithm A breaks Modified El Gamal. Then given an El Gamal public key y 
and a ciphertext (CI, cz), choose z at  random in [O..d - 11, and give y,g* as public key 
to A and (c;, c1,cz) as ciphertext. It is trivial to  see that the input we generate for A 
will have the distribution it expects, and that if A is successful, it decrypts the original 
El Gamal ciphertext. 

Intuitively, the reason why this variant may be more secure against a chosen ciphertext 
attack, is that given only w ,  g, it seems hard to generate a pair of the form wr,gr ,  unless 
one starts by simply choosing r .  Hence i t  will be hard for an enemy to come up with 
a ciphertext that will produce a non-null output from D, unless he already knows the 
plaintext. Formalizing this, we suggest the following assumption: 

Assumption 1 

Let A be a probabilistic polynomial (in k) time algorithm which receives aa input w,g E 
Gk and outputs a pair of group elements a, b .  Then there exists another probabilistic 
polynomial time algorithm A', which uses the same input and the same random coins 
as A .  Except with superpolynomially small probability taken over the random coins, A' 
will output a ,  b,  T ,  whenever A on the same input produces (a ,  b )  = (wr, g'). 

The function that maps r to ( w r , g r )  is an example of what one could call one-way 
,knctions with sparse image: only a very small fraction of the pairs of numbers are in 
the image, and an element in the image cannot be found in any other way than by 
computing the function on some input value. Such functions would be extremely useful 
in other contexts too, e.g. identification protocols, and it is an interesting open problem 
to find out whether they can be proved to exist. 
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Definition 3 

A chosen ciphertezl enemy is a probabilistic polynomial time algorithm that repeatedly 
gets to choose a ciphertext and receive the output from the decryption algorithm on 
this ciphertext. It finally takes a random ciphertext as input and tries to decrypt it. 
The cryptosystem is said to be secure against chosen ciphertext attacks, if any chosen 
ciphertext enemy succeeds with only superpolynomially small (in k )  probability. 

Assumption 1 is enough to prove this type of security for Modified El Gamal: 

Theorem 2 

Assume Assumption 1 and that El Gamal is secure under a passive attack. Then Modified 
El Gamal is secure under a chosen ciphertext attack. 

Proof 

By contradiction, let A be a successful chosen ciphertext enemy. Let CI, C2, ... be the 
sequence of ciphertexts of which A requests the decryption. Let Ai be the algorithm that 
simulates A until the output of Ci and then stops. We can now show by induction that for 
all i, Ai can be simulated without access to a decryption oracle: A1 is clear. TO do Aj+l, 
observe that by induction, Ai can be simulated without the oracle. Therefore Assumption 
1 guarantees us the existence of an algorithm A$ that outputs a quadrouple (q, c2, C Q ,  T ) ,  

such that C; = (c1, cg, c g ) ,  and that with large probability, ( c l ,  c2) = (w‘ ,  g ‘ )  whmever 
Ci produces a non-null output from the decryption. Knowledge of r suffices to decrypt 
Ci, and therefore we can simulate also the last steps of A;+l .  From A we can therefore 
build an algorithm that breaks the system under a passive attack, and we are done by 
Lemma 1. 

Note that, contrary to Theorem 1, this result works for any plaintext distribution. 
Note also that we are talking about the ability of an enemy to decrypt entire messages, 
not whether he can get partial information about the cleutext. However, if we had a 
result about security of single bits in El Gamd encryption similar to the one for FtSA and 
b b i n  bits, it would be easy t o  reformulate and prove Theorem 2 in terms of probabilistic 
public key systems, following [NY]. 
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A final remark concerns the model for chosen ciphertext attacks: at  first sight, i t  may 
seem like a strange condition that the enemy does not get to see the ciphertext he is 
to decrypt until after his usage of the decryption oracle is over. However, if he knows 
initally that he eventually wants to decrypt ciphertext C, then he might as well give c 
to the oracle in stead of trying to figure it out himself! 

In [RS], it is argued that one could solve this problem in a natural way by allawing 
the enemy to know C initiaily, but introduce a restriction on his choice of ciphertexts 
for decryption in the first phase. One concrete possibility is to demand that he asks 
the oracle for anything but C. It is not clear, however, that this makes the model more 
natural or realistic: the enemy may well be the only player who knows which ciphertext 
he is attacking, and in this case, how could the rest of the system possibly impme on 
him the restriction required by the model? 

It is quite possible that we have not yet found the best model to describe this type of 
problem, and that a final solution would have to include some conditions on the timeliness 
of messages. 

4 Connection to Identification Protocols 

In this section we point out an interesting duality between the conditions of Definition 3 
and the properties of a secure identification system a8 defined Feige, Fiat and Shamir in 
[FFS]. 

Concretely, from any public key encryption scheme that satisfies Definition 3, it 
easy to build an efficient identification system: each individual knows a secret key for 
which the corresponding public key is known by everybody. A prover can identify himself 
by demonstrating his ability to decrypt messages that were encrypted under the corre- 
sponding public key, i.e. the verifier encrypts a random message m,  sends the encryption 
to the prover, who decrypts and returns m. 

BY Definition 3, even a cheating verifier who interacts with the honest prover P a 
polynomial number of times will not afterwards be able to impersonate P with lion- 
negligible probability of success. 

Such systems are very efficient in terms of the number of rounds used: only two mes- 
sages have to be sent. This adds to the interest of solving the open problems listed below: 
their solution would also lead to construction of very efficient identification schemes. 
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Note that if Assumption 1 holds, then the protocol in which a verifier receives a public 
key for the Modified El Gamal system, chooses a ciphertext and receives the decryption, 
would in fact be zero-knowledge. Despite the small number of messages sent, this does 
not contradict the result of Goldreich and Krawzyk [GK] because the simulation we get 
from Assumption 1 is not black-box: it depends on the verifier that participates. 

5 Conclusion and Open Problems 

We have seen that truely practical public key systems can be constructed, for which 
chosen ciphertext attacks seem totally useless for an enemy, and for which security against 
passive attacks is provably equivalent to that of well known systems like RSA, Rabin and 
El Gama.l/Diffie-Hellman. 

Open problems: prove or disprove Assumption 1. Construct other functions that 
satisfy an assumption similar to Assumption 1. Find permutation families F and G 
for which the ( F ,  GI h )  system of Section 2 is provably secure against chosen ciphertext 
attacks. 
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