
The Computational Limits to the Cognitive Power of the Neuroidal Tabula Rasa

Wiedermann, Jiřı́
1999

Dostupný z http://www.nusl.cz/ntk/nusl-33854

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 20.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33854
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

The Computational Limits

to the Cognitive Power of the Neuroidal Tabula

Rasa

Ji�r�� Wiedermann

Technical report No� ���

July� ����

Institute of Computer Science� Academy of Sciences of the Czech Republic
Pod vod�renskou v��� �� �	�
� Prague 	� Czech Republic

phone� ���
�� ��
� �� �
 fax� ���
�� 	� 	� �	�
e�mail� wieder�uivt�cas�cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

The Computational Limits

to the Cognitive Power of the Neuroidal Tabula

Rasa

Ji�r�� Wiedermann
�

Technical report No� ���
July� ����

Abstract

The neuroidal tabula rasa 	NTR
 as a hypothetical device which is capable of perform�
ing tasks related to cognitive processes in the brain was introduced by L�G� Valiant in
����� Neuroidal nets represent a computational model of the NTR� Their basic com�
putational element is a kind of a programmable neuron called neuroid� Essentially it is
a combination of a standard threshold element with a mechanism that allows modica�
tion of the neuroid�s computational behaviour� This is done by changing its state and
the settings of its weights and of threshold in the course of computation� The compu�
tational power of an NTR crucially depends both on the functional properties of the
underlying update mechanism that allows changing of neuroidal parameters and on the
universe of allowable weights� We will dene instances of neuroids for which the com�
putational power of the respective nite�size NTR ranges from that of nite automata�
through Turing machines� upto that of a certain restricted type of BSS machines that
possess super�Turing computational power� The latter two results are surprising since
similar results were known to hold only for certain kinds of analog neural networks�

Keywords

�This research was supported by GA �CR Grant No� ��������	�	

� Introduction

Nowadays� we are witnessing a steadily increasing interest towards understanding the
algorithmic principles of cognition� The respective branch of computer science has
been recently appropriately named as cognitive computing� This notion� coined by
L�G� Valiant ���� denotes any computation whose computational mechanism is based on
our ideas about brain computational mechanisms and whose goal is to model cognitive
abilities of living organisms� There is no surprise that most of the corresponding
computational models are based on formal models of neural nets�
Numerous variants of neural nets have been proposed and studied� They di�er in

the computational properties of their basic building elements� viz� neurons� Usually�
two basic kinds of neurons are distinguished� discrete ones that compute with Boolean
values� and analog 	or continuous
 ones that compute with any real or rational number
between � and ��
As far as the computational power of the respective neural nets is concerned� it is

known that the nite nets consisting of discrete neurons are computationally equivalent
to nite automata 	cf� ���
� On the other hand� nite nets of analog neurons with
rational weights� computing in discrete steps with rational values� are computationally
equivalent to Turing machines 	cf� ���
� If weights and computations with real values
are allowed then the respective analog nets possess even super�Turing computational
abilities ���� No types of nite discrete neural nets are known that would be more
powerful than the nite automata�
An important aspect of all interesting cognitive computations is learning� Neural

nets learn by adjusting the weights on neural interconnections according to a certain
learning algorithm� This algorithm and the corresponding mechanism of weight ad�
justment are not considered as part of the network�
Inspired by real biological neurons� Valiant suggested in ���� ��� a special kind of

programmable discrete neurons� called neuroids� in order to make the learning mecha�
nism a part of neural nets� Based on its current state and current excitation from rings
of the neighboring neuroids� a neuroid can change in the next step all its computational
parameters 	i�e�� can change its state� threshold� and weights
� In his monograph ���
Valiant introduced the notion of a neuroidal tabula rasa 	NTR
� It is a hypothetical
device which is capable of performing tasks related to cognitive processes� Neuroidal
nets serve as a computational model of the NTR� Valiant described a number of neu�
roidal learning algorithms demonstrating a viability of neuroidal nets to model the
NTR� Nevertheless� insu�cient attention has been paid to the computational power of
the respective nets� Without pursuing this idea any further Valiant merely mentioned
that the computational power of neuroids depends on the restriction put upon their
possibilities to self�modify their computational parameters�
It is clear that by identifying a computational power of any learning device we get

an upper qualitative limit on its learning or cognitive abilities� Depending on this
limit� we can make conclusions concerning the e�ciency of the device at hand and
those related to its appropriateness to serve as a realistic model of its real� biological
counterpart�
In this paper we will study the computational power of the neuroidal tabula rasa

�

which is represented by neuroidal nets� The computational limits will be studied w�r�t
the various restrictions on the update abilities of neuroidal computational parameters�
In Section � we will describe a broad class of neuroidal networks as introduced by

Valiant in ����
Next� in Section �� three restricted classes of neuroidal nets will be introduced�

They will include nets with a nite� innite countable 	i�e� integer
� and uncountable
	i�e�� real
 universe of weights� respectively�
Section � will brie�y sketch the equivalence of the most restricted version of nite

neuroidal nets � namely those with a nite set of parameters� with the nite automata�
In Section � we further show the computational equivalence of the latter neuroidal

nets with the standard neural nets�
The next variant of neuroidal nets� viz� those with integer weights� will be consid�

ered in Section �� We will prove that nite neuroidal nets with weights of size S	n
�
which allow a simple arithmetic over their weights 	i�e�� adding or subtracting of the
weights
� are computationally equivalent to computations of any S	n
�space bounded
Turing machine�
In Section � we will increase the computational power of the previously considered

model of neuroidal nets by allowing their weights to be real numbers� The resulting
model will turn to be computationally equivalent to the so�called additive BSS machine
	���
� This machine model is known for its ability to solve some undecidable problems�
Finally� in the conclusions we will discuss the merits of the results presented�

� Neuroidal Nets

In what follows we will dene neuroidal nets making use of the original Valiant�s pro�
posal ���� essentially including his notation�

De�nition ��� A neuroidal net N is a quintuple N � 	G�W�X� �� �
� where
� G � 	V�E
 is the directed graph describing the topology of the network� V is a

�nite set of N nodes called neuroids labeled by distinct integers �� �� � � � � N � and E is

a set of M directed edges between the nodes� The edge 	i� j
 for i� j � f�� � � � � Ng is an

edge directed from node i to node j�
� W is the set of numbers called weights� To each edge 	i� j
 � E there is a value

wi�j � W assigned at each instant of time�

� X is the �nite set of the modes of neuroids which a neuroid can be in each instant�

Each mode is speci�ed as a pair 	q� p
 of values where q is the member of a �nite set

Q of states� and p is an integer from a �nite set T called the set of thresholds of the
neuroid�

Q consists of two kinds of states called ring and quiescent states�
To each node i there is also a Boolean variable fi having value one or zero depending

on whether the node i is in a �ring state or not�

� � is the recursive mode update function of form � � X �W � X�
Let wi � W be the sum of those weights wki of neuroid i that are on edges 	k� i

coming from neuroids which are currently �ring� i�e�� formally wi �
P

k �ring
�k�i��E

wki �

�

P
j

�j�i��E
fjwji� The value of wi is called the excitation of i at that time�

The mode update function � de�nes for each combination 	si� wi
 holding at time t
the mode s� � X that neuroid i will transit to at time t� �� �	si� wi
 � s��

� � is the recursive weight update function of form � � X �W �W �f�� �g � W �

It de�nes for each weight wji at time t the weight w�
ji to which it will transit at time

t��� where the new weight can depend on the values of each si� wi� wji� and fj at time

t� �	si� wi� wji� fj
 � w�
ji

The elements of sets Q� T � W � and fi�s are called parameters of net N �
A con�guration of N at time t is a list of modes of all neurons followed by a list of

weights of all edges in N at that time� The respective lists of parameters are pertinent
to neuroids ordered by their labels and to edges ordered lexicographically w�r�t� the pair
of labels 	of neuroids
 that identify the edge at hand� Thus at any time a conguration
is an element from XN �WM �
The computation of a neuroidal network is determined by the initial conditions and

the input sequence� The initial conditions specify the initial values of weights and modes
of the neuroids� These are represented by the initial conguration� The input sequence
is an innite sequence of inputs or stimuli which species for each t � �� �� �� � � � a set
of neuroids along with the states into which these neuroids are forced to enter 	and
hence forced to re or prevented from ring
 at that time by mechanisms outside the
net 	by peripherals
�
Formally� each stimulus is an N�tuple from the set fQ � �gN � If there is a symbol

q at i�th position in the t�th N�tuple st� then this denotes the fact that the neuroid i
is forced to enter state q at time t� The special symbol � is used as don�t�care symbol
at positions which are not in�uenced by peripherals at that time�
A computational step of neuroidal net N � which nds itself in a conguration ct

and receives its input st at time t� is performed as follows� First� neuroids are forced
to enter into states as dictated by the current stimuli� Neurons not in�uenced by
peripherals at that time retain their original state as in conguration ct� In this way
a new conguration c�

t is obtained� Excitation wi is computed for this conguration
now and the mode and weight updates are realized for each neuroid i in parallel� in
accordance with the respective function � and �� In this way a new conguration ct��
is entered�
The result of the computation after the t�th step is the N�tuple of states of all

neuroids in ct��� This N�tuple is called the action at time t� Obviously� any action is
an element in QN � Then the next computational step can begin�
The output of the whole computation can be seen as an innite sequence of actions�
From the computational point of view any neuroidal net can be seen as a transducer

which reads an innite sequence of inputs 	stimuli
 and produces an innite sequence
of outputs 	actions
�
For more details about the model see ����

�

� Variants of neuroidal nets

In the previous denition of neuroidal nets we allowed set W to be any set of numbers
and the weight and mode update functions to be arbitrary recursive functions� Intu�
itively it is clear that by restricting these conditions we will get variants of neural nets
di�ering in their expressiveness as well as in their computing power� In his monograph
Valiant ��� discusses this problem and suggests two extreme possibilities�
The rst one considers such neuroidal nets where the set of weights of individual

neuroids is nite� This is called a �simple complexity�theoretic model� in Valiant�s
terminology� We will also call the respective model of a neuroid as a �nite weight�
neuroid� Note that in this case functions � and � can both be described by nite tables�
The next possibility we will study are neuroidal nets where the universe of allowable

weights and thresholds is represented by the innite set of all integers� In this case it
is no longer possible to describe the weight update function by a nite table� What we
rather need is a simple recursive function that will allow e�cient weight modications�
Therefore we will consider a weight update function which allows setting a weight to
some constant value� adding or subtracting the weights� and assigning existing weights
to other inputs edges� Such a weight update function will be called a simple�arithmetic

update function� The respective neuroid will be called an �integer weight� neuroid� The
size of each weight will be given by the number of bits needed to specify the respective
weight value� This is essentially a model that is considered in ��� as the counterpart of
the previous model�
The nal variant of neuroidal nets which we will investigate is the variant of the

previously mentioned model with real weights� The resulting model will be called an

additive real neuroidal net�

� Finite weight neuroidal nets and �nite automata

It is obvious that in the case of neuroidal nets with nite weights there is but a nal
number of di�erent congurations a single neuroid can enter� Hence its computational
activities like those of any nite neuroidal net� can be described by a single nite
automaton 	or more precisely� by a nite transducer
� In order to get some insight into
the relation between the sizes of the respective devices we will describe the construction
of the respective transducer in more detail in the next theorem� In fact this transducer
will be a Moore machine 	i�e�� the type of a nite automaton producing an output
after each transition
 since there is an output 	action
 produced by N after each
computational move�

Theorem ��� Let N be a �nite neuroidal net consisting of N neuroids with a �nite

set of weights� Then there is a constant c � � and a �nite Moore automaton A of size

�	cN
 that simulates N �

Sketch of the proof� We will describe the construction of the Moore automaton
A � 	I� S� q�� O�
� Here I denotes the input alphabet whose elements are N �tuples
of the stimuli� I � fQ � �gN � Set S is a set of states consisting of all congurations

�

of N � i�e�� S � XN � WM � State q� is the initial state and it is equal to the initial
conguration of N � Set O denotes a set of outputs of A� It will consist of all possible
actions of N � O � QN �
The transition function � I�S � S�O is dened as follows� 	i� s�
 � 	s�� o
 if

and only if the neuroid N in conguration s� and with input i will enter conguration
s� and produce output o in one computational move� It is clear that the input�output
behaviour of both N and A is equivalent� �

Note that the size of the automaton is exponential w�r�t the size of the neuroidal net�
In some cases such a size explosion seems to be unavoidable� For instance� a neuroidal
net consisting of N neuroids can implement a binary counter that can count up to cN �
where c � � is a constant which depends on the number of states of the respective
neuroids� The equivalent nite automaton would then require at least !	cN
 states�
Thus the advantage of using neuroidal nets instead of nite automata seems to lie in
the description economy of the former devices�
The reverse simulation of a nite automaton by a nite neuroidal net is trivial�

In fact� a single neuroid� with a single input� is enough� During the simulation� this
neuroid transits to the same states as the simulated automaton would� There is no
need for a neuroid to make use of its threshold mechanism�

� Simulating Neuroidal Nets by Neural Nets

Neural nets are a restricted kind of neuroidal networks in which the neuroids can modify
neither their weights nor their thresholds� The respective set of neuroidal states consists
of only two states � of a ring and quiescent state� Moreover� the neurons are forced
to re if and only if the excitation reaches the threshold value� The computational
behaviour of neural networks is dened similarly as that of the neuroidal ones�
It has been observed by several authors that neural nets are also computationally

equivalent to the nite automata 	cf� ���
� Thus� we get the following consequence of
the previous theorem�

Corollary ��� The computational power of neuroidal nets with a �nite set of weights

is equivalent to that of standard non�programmable neural nets�

In order to better appreciate the relationship between the sizes of the respective
neuroidal and neural nets� we will investigate the direct simulation of nite neuroidal
nets with nite weights by nite neural nets�

Theorem ��� Let N � 	G�W�X� �� �
 be a �nite neuroidal net consisting of N neu�

roids and M edges� Let the set of weights of N be �nite� Let jLj� and jDj� respectively�
be the number of all di	erent sets of arguments of the corresponding weight and mode

update function� Let jSj be the set of all possible excitation values� jSj 	 �jW j�
Then N can be simulated by a neural network N � consisting of O		jXj� jSj� jLj�

jDj
N � jW jM
 neurons�

�

Proof� It is enough to show that to any neuroid i of N an equivalent neural network Ci

can be constructed� At any time the neuroid i is described by its �instantaneous de�
scription�� viz� its mode and the corresponding set of weights� The idea of simulation
is to construct a neural net for all combinations of parameters that represent a possible
instantaneous description of i� The instantaneous value of each parameter will be rep�
resented by a special module� There will also be two extra modules to realize the mode
and weight update functions� Instead of changing the parameters the simulating neural
net will merely �switch� among the appropriate values representing the parameters of
the instantaneous description of the simulated neuroid� The details are as follows�

Ci will consist of ve di�erent modules�

����������������� ��������Ci ������������������module ������������������module ����������������Mo
Fig� �� Data �ow in module Ci simulating a single neuroid

First� there are three modules called mode module� excitation module� and weight

module� The purpose of each of these modules is to represent a set of possible values of
the respective quantity that represents� in order of their above enumeration� a possible
mode of a neuroid� a possible value of the total excitation coming from the rings of
adjacent neurons� and possible weights for all incoming edges�
Thus the mode moduleMi consists of jXj neurons� For each pair of form 	q� p
 � X�

with q � Q and p � T� there is a corresponding neuron in Mi� Moreover� the neuron
corresponding to the current mode of neuroid i is ring� while all the remaining neurons
in Mi are in a quiescent state�
The weight module Wi consists of a two�dimensional array of neurons� To each

incoming edge to i there is a row of jW j neurons� Each row contains neurons corre�
sponding to each possible value from the set W � If 	i� j
 � E is an incoming edge to i
carrying the weight wij � W � then the corresponding neuron in the corresponding row
of Wi is ring�
The excitation module Ei consists of O	jSj
 neurons� Among them� at each time

�

only one neuron is ring� namely the one that corresponds to the current excitation
wi of i� Let wi �

P
k �ring
�k�i��E

wk�i �
P

j
�j�i��E

fjwji at that time� In order to compute wi�

we have to add only those weights that occur at the connections from currently ring
neuroids� Therefore we shall rst check all pairs of form ffj"wjig to see which weight
value wji should participate in the computation of the total excitation� This will be
done by dedicating special neurons tijk to this task� with k ranging over all weights
in W� Each neuron tijk will receive � inputs� The rst one from a neuron from the
j�th row and k�th column in the weight module� which corresponds to some weight
w � W� This connection will carry weight w� The other connection will come from Cj

and will carry the weight �� Neuron tijk will re i� j is ring and the current weight
of connection fj� ig is equal to w� In other words� tijk will re i� its excitation equals
exactly w��� This calls for implementing an equality test which requires the presence
of some additional neurons� but we will skip the respective details� The outcomes from
all tijk are then again summed and tested for equality against all possible excitation
values� In this way the current value of wi is determined eventually and the respective
neurons serve as output neurons of the excitation module�
Besides these three modules there are two more modules that represent� and realize

the transition functions � and �� respectively�
The ��module contains one neuron for each set of arguments of the mode update

function �� Neuron d� responsible for the realization of the transition of form �	si� wi
 �
s�
i� has its threshold equal to �� Its incoming edges from each output neuron inMi and
from each output neuron from Ei carry the weight equal to �� Clearly� d res i� neurons
corresponding to both quantities si and wi re� Firing of e will subsequently inhibit the
ring of a neuron corresponding to si and excite the ring of a neuron corresponding
to s�

i� Moreover� if the state corresponding to s
�
i is a ring state of i then also a special

neuron out in Ci is made to re�
The ��module is constructed n a similar way� It also contains one neuron per each

set of arguments of the weight update function �� The neuron � responsible for the
realization of the transition of form �	si� wi� wji� fj
 � w�

ji has the threshold �� Its
incoming edges of weight � connect to it each output neuron in Mi� to each output
neuron in Wi� to each neuron from the row corresponding to the j�th incoming edge
of i� in Ei� and to the output from Cj� Clearly� � res i� neurons corresponding to all
four quantities si� wi� wji� and fj re� Firing of � will subsequently inhibit the ring
of a neuron corresponding to wji in Wi and excite the ring of a neuron corresponding
to w�

ji� also in Wi�
Schematically� the topology of network Ci is sketched in Fig��� For simplicity rea�

sons only the �ow of data is depicted by arrows�
The size of Ci is given by the sum of all sizes of all its modules� The whole net

N � thus contains N mode�� excitation�� �� and ��modules� of size jXj� jSj� jDj� and
jLj� respectively� Moreover� for each of M edges of N there is a complete row of jW j
neurons� This altogether leads to the size estimation as stated in the statement of the
theorem�

�

From the previous theorem we can see that the size of a simulating neural network
is larger than that of the original neuroidal network� It is linear in both the number of

�

neuroids and edges of the neuroidal network� The constant of proportionality depends
linearly on the size of �program� of individual neuroids� and exponentially on the size
of the universe of weights� However� note that the neural net constructed in the latter
theorem is much smaller than that obtained via the direct simulation of the nite
automaton corresponding to the simulated neuroidal net� A neural net� simulating the
automaton from the proof of theorem ���� would be of size �	cN
 for some constant
c � ��
To summarize the respective results� we see that when comparing nite neuroidal

nets to standard� non�programmable neural nets� the programmability of the former
does not increase their computational power" it merely contributes to their greater
descriptive expressiveness�

� Integer weight neuroidal nets and Turing ma�

chines

Now we will show that in the case of integer weights there exist neuroidal nets of the
nite size that can simulate any Turing machine�
Since we will be interested in space�bounded machines w�l�o�g� we will rst consider

a single�tape Turing machine in place of a simulated machine� In order to extend our
results also for sublinear space complexities we will later also consider single�tape
machines with separate input tapes�
First we show that even a single neuroid is enough for simulation of a single tape

Turing machine�

Theorem ��� Any S	n
�space and T 	n
�time�bounded single tape Turing machine�

can be simulated in time O	T 	n
S�	n

 by a single neuroid making use of integer

weights of size O	S	n

 and of a simple arithmetic weight update function�

Sketch of the proof� Since we are dealing with space�bounded Turing machines
	TMs
� w�l�o�g� we can consider only single�tape machines� Thus in what follows we
will describe simulation of one computational step of a single�tape Turing machineM
of space complexity S	n
 with tape alphabet f�� �g� It is known 	cf� ���
 that the tape
of such a machine can be replaced by two stacks� SL and SR� respectively� The rst
stack holds the contents ofM�s tape to the left from the current head position while
the second stack represents the rest of the tape� The left or the right end of the tape�
respectively� nd themselves at the bottoms of the respective stacks� Thus we assume
that M�s head always scans the top of the right stack� For technical reasons we will
add an extra symbol � to the bottom of each stack� During its computationM updates
merely the top� or pushes the symbols to� or pops the symbols from the top of these
stacks�
With the help of a neuroid n we will represent machine M in a conguration

described by the contents of its two stacks and by the state of the machine�s nite

�Note that in the case of single tape machines the input size is counted into the space complexity
and therefore we have S
n�� � n�

�

state control in the following way� The contents of both stacks will be represented by
two integers vL and vR� respectively� Note that both vL� vR � � thanks to ��s at the
bottoms of the respective stacks� The instantaneous state ofM is stored in the states
of n�
To simulateM we merely have to manipulate the above mentioned two stacks in

a way that corresponds to the actions of the simulated machine� Thus� the net has to
be able to read the top element of a stack� to delete it 	to pop the stack
� and to add
	to push
 a new element onto the top of the stack� W�r�t� our representation of a stack
by an integer v� say� reading the top of a stack asks for determining the parity of v�
Popping an element from or pushing it to a stack means computing of bv��c and �v�
respectively� All this must be done with the help of additions and subtractions�
The idea of the respective algorithm that computes the parity of any v � � is

as follows� From v we will successively subtract the largest possible power of �� not
greater than v� until the value of v drops to either � or �� Clearly� in the former case�
the original value of v was even while in the latter case� it was odd�
More formally� the resulting algorithm looks as follows�

while v � � do p� �� �" p� �� �"
while p� 	 v do p� �� p� � p�" p� �� p� � p� od"
v �� v
 p�

od"
if v � � then return	odd
 else return	even
 "

By a similar algorithm we can also compute the value of bv��c 	i�e�� the value of v
shifted by one position to the right� losing thus its rightmost digit
� This value is equal
to the sum of the halves of the respective powers 	as long as they are greater than �

computed in the course of previous algorithm�
The time complexity of both algorithms is O	S�	n

�
The �neuroidal� implementation of previous algorithms looks as follows� The al�

gorithms will have to make use of the values representing both stacks� vL and vR�
respectively� Furthermore� they will need access to the auxiliary values p�� p�� v� and
to the constant �� All the previously mentioned values will be �stored� as weights of
n� For technical reasons imposed by functionality restrictions of neuroids� which will
become clearer later� we will need to store also the inverse values of all previously
mentioned variables� These will be also stored in the weights of n�
Hencefore� the neuroid n will have �� inputs� These inputs are connected to n via

�� connections� Making use of the previously introduced notation� the rst six will
hold the weights w� � vL� w� � vR� w� � v� w� � p�� w� � p�� and w� � �� The
remaining six will carry the same but inverse values�
The output of n is connected to all �� inputs�
The neuroid simulates each move of M in a series of steps� Each series perform

one run of the previously mentioned 	or of a similar
 algorithm and therefore consists
of O	S�	n
 steps�
At the beginning of the series that will simulate the 	t � �
�st move of M� the

following invariant is preserved by n for any t � �� Weights w� and w� represent the

�

contents of the stacks after the t�th move and w	 �
w� and w
 �
w�� The remaining
weights are set to zero�
At the beginning of computation� the left stack is empty and the right stack con�

tains the input word ofM� We will assume that n will accept its input by entering a
designated state� Also� the threshold of n will be set to � all the time�
Assume that at time t the nite control of M is in state q� Until its change� this

state is stored in all forthcoming neuroidal states that n will enter�
In order to read the symbol from the top of the right stack the neuroid has to

determine the last binary digit of w� or� in other words� it has to determine the parity
of w�� To do so� we rst perform all the necessary initialization assignments to auxiliary
variables� and to their �counterparts� holding the negative values� In order to perform
the necessary tests 	comparisons
� the neuroid must enter a ring state� Due to the
neuroidal computational mechanism and thanks to the connection among the output
of n and all its inputs� all its non�zero weights will participate in the subsequent
comparison of the total excitation against n�s threshold� It is here that we will make a
proper use of weights with the opposite sign� the weights 	i�e�� variables
 that should
not be compared� and should not be forgotten� will participate in a comparison with
opposite signs�
For instance� to perform the comparison p� 	 v� we merely �switch o�� the positive

value of p� and the negative value of v from the comparison by temporarily setting
the respective weights w� and w� to zero� All the other weight values remain as they
were� As a result� after the ring step� n will compare v
 p� against its threshold
value 	which is permanently set to �
 and will enter a state corresponding to the result
of this comparison� After the comparison� the weights set temporarily to zero can be
restored to their previous values 	by assignments w� ��
w�� and w� ��
w�
�
The transition of M into a state as dictated by its transition function is realized

by N after updating the stacks appropriately� by storing the respective machine state
into the state of n� The simulation ends by entering into the nal state�
It is clear that the simulation runs in time as stated in the theorem� The size of

any stack� and hence of any variable� never exceeds the value S	n
 � �� Hence the size
of the weights of n will be bounded by the same value�

�

Note that a similar construction� still using only one neuroid� would also work in
case a multiple tape Turing machine should be simulated� In order to simulate a k�tape
machine� the resulting neuroid will represent each tape by �� weights as it did before�
This will lead to a neuroid with ��k incoming edges�
Next we will also show that a simulation of an o��line Turing machine by a nite

neuroidal network with unbounded weights is possible� This will enable us to prove a
similar theorem as before which holds for arbitrary space complexities�

Theorem ��� LetM be an o	�line multiple tape Turing machine of space complexity

S	n
 � �� Then M can be simulated in a cubic time by a �nite neuroidal net that

makes use of integer weights of size O	S	n

 and of a simple arithmetic weight update

function�

��

Sketch of the proof� In order to read the respective inputs the neuroidal net will
be equipped with the same input tape as the simulated Turing machine� Except the
neuroid n that takes care of a proper update of stacks that represent the respective
machine tapes� the simulating net will contain also two extra neuroids that implement
the control mechanism of the input head movement� For each move direction 	left or
right
 there will be a special � so�called move neuroid � which will re if and only
if the input head has to move in a respective direction� The symbol read by the input
head will represent an additional input to neuroid n simulating the moves ofM�
The information about the move direction will be inferred by neuroid n� As can be

seen from the description of the simulation in the previous theorem� n keeps track on
that particular transition of M that should be realized during each series of its steps
simulating one move ofM�
Since s can transmit this information to the respective move neuroids only via ring

and cannot distinguish between the two target neuroids� we will have to implement a
	nite
 counter in each move neuroid� The counter will count the number of rings of s
occurring in an uninterrupted sequence� Thus at the end of the last step ofM�s move
simulation 	see the proof of the previous theorem
 s will send two successive rings to
denote the left move and three rings for the right move� The respective signals will
reach both move neuroids� but with the help of counting they will nd which of them
is in charge for moving the head� Some care over synchronization of all three neuroids
must be taken�

�

It is clear that the computations of nite neuroidal nets with integer weights can
be simulated by Turing machines� Therefore the computational power of both devices
is the same�
In ����� Siegelmann and Sonntag ��� proved that the computational power of certain

analog neural nets is equivalent to that of Turing machines� They considered nite
neural nets with xed rational weights� At time t� the output of their analog neuron
i is a value between � and � which is determined by applying a so�called piecewise

linear activation function � to the excitation wi of i at that time 	see denition ���
�
� � wi � h�� �i� For negative excitation� � takes the value �� for excitation greater
than � value �� and for excitations between � and �� �	wi
 � wi� The respective net
computes synchronously� in discrete time steps�
We will call the respective nets as synchronous analog neural nets�
Siegelmann and Sonntag�s analog neural networks simulating a universal Turing

machine consisted of ��� neurons� This can be compared with the simple construction
from Theorem ��� requiring but a single neuroid� Nevertheless� the equivalency of both
types of networks with Turing machines proves the following corollary�

Corollary ��� Finite synchronous analog neural nets are computationally equivalent

to �nite neuroidal nets with integer weights�

��

	 Real weight neuroidal nets and the additive BSS

model

Now we will characterize the computational power of neuroidal nets with real param�
eters� We will compare their e�ciency towards a restricted variant of the BSS model�
The BSS model 	cf� ���
 is a model that is similar to RAM which computes with real
numbers under the unit cost model� In doing so� all four basic arithmetic operations
of additions� subtractions� multiplication and division are allowed� The additive BSS
model allows only for the former two arithmetic operations�

Theorem ��� The additive real model of neuroidal nets is computationally equivalent

to the additive BSS model working over binary inputs�

Sketch of the proof� The simulation of a nite additive real model of neuroidal net
N on the additive BSS model B is a straightforward matter�
For the reverse simulation� assume that the binary input to N is provided to B by

a mechanism similar to that from Theorem ���� One must rst refer to the theorem
	Theorem � in Chapter �� in ���
 that shows that by a suitable encoding a computation
of any additive machine can be done using a xed nite amount of memory 	in a nite
number of �registers�� each holding a real number
 without exponential increase in
the running time� The resulting machine F is then simulated by N in the following
way� The contents of nitely many registers of F are represented as 	real
 weights of a
single neuroid r� Addition or subtraction of weights� as necessary� is done directly by
weight update function� A comparison of weights is done with the help of r�s threshold
mechanism in a similar way to that in the proof of Theorem ���� To single out from
the comparison the weights that should not be compared one can use a similar trick as
in Theorem ���� to each such a weight a weight with the opposite sign is maintained�

�

The power of nite additive neuroidal nets with real weights comes from their
ability to simulate oracular or nonuniform computations� For instance� in ��� it is
shown that the additive real BSS machines decide all binary sets in exponential time�
Their polynomial time coincides with the nonuniform complexity class P#poly�

 Conclusions

The paper brings a relatively surprising result showing computational equivalence be�
tween certain kinds of discrete programmable and analog nite neural nets� This result
o�ers new insights into the nature of computations of neural nets�
First� it points to the fact that the ability of changing weights is not a condition

sine qua non for learning� A similar e�ect can be achieved by making use of reasonably
restricted kinds of analog neural nets�
Second� the result showing computational equivalency of the respective nets sup�

ports the idea that all reasonable computational models of the brain are equivalent
	cf� ���
�

��

Third� for modeling of cognitive or learning phenomena� the neuroidal nets seem to
be preferred over the analog ones� due to the transparency of their computational or
learning mechanism� As far as their appropriateness for the task at hand is concerned�
neuroidal nets with a nite set of weights seem to present the maximal functionality
that can be achieved by living organisms� As mathematical models also more powerful
variants are of interest�

��

Bibliography

��� Blum� M� � Cucker� F� � Shub� M� � Smale� M�� Complexity and Real Compu�
tation� Springer� New York� ����� ��� p�

��� Hopcroft� J�E� � Ullman� J� D�� Formal Languages and their Relation to Au�
tomata� Addison�Wesley� Reading� Mass�� ����

��� Indyk� P�� Optimal Simulation of Automata by Neural Nets� Proc� of the ��th
Annual Symp� on Theoretical Aspects of Computer Science STACS���� LNCS
Vol� ���� pp� �������� ����

��� Siegelmann� H� T� � Sonntag� E�D�� On Computational Power of Neural Networks�
J� Comput� Syst� Sci�� Vol� ��� No� �� ����� pp� �������

��� $S%&ma� J� � Wiedermann� J�� Theory of Neuromata� Journal of the ACM� Vol� ���
No� �� ����� pp� �������

��� Valiant� L�� Functionality in Neural Nets� Proc� of the �th Nat� Conf� on Art�
Intelligence� AAAI� Morgan Kaufmann� San Mateo� CA� ����� pp� �������

��� Valiant� L�G�� Circuits of the Mind� Oxford University Press� New York� Oxford�
����� ��� p�� ISBN ������������X

��� Valiant� L�G�� Cognitive Computation 	Extended Abstract
� In� Proc� of the ��th
IEEE Symp� on Fond� of Comp� Sci�� IEEE Press� ����� p� ���

��� Wiedermann� J�� Simulated Cognition� A Gauntlet Thrown to Computer Science�
To appear in ACM Computing Surveys� ����

��

