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Abstract

The diversity of application areas relying on tree�structured data results in a wide

interest in algorithms which determine di�erences or similarities among trees� One way

of measuring the similarity between trees is to �nd the smallest common superstructure

or supertree� where common elements are typically de�ned in terms of a mapping or

embedding� In the simplest case� a supertree will contain exact copies of each input

tree� so that for each input tree� each vertex of a tree can be mapped to a vertex in the

supertree such that each edge maps to the corresponding edge� More general mappings

allow for the extraction of more subtle common elements captured by looser de�nitions

of similarity�

We consider supertrees under the general mapping of minor containment� Minor

containment generalizes both subgraph isomorphism and topological embedding� as a

consequence of this generality� however� it is NP�complete to determine whether or not

G is a minor of H � even for general trees� By focusing on trees of bounded degree�

we obtain an O�n�	 algorithm which determines the smallest tree T such that both of

the input trees are minors of T � even when the trees are assumed to be unrooted and

unordered�
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� Introduction

The breadth of algorithmic research on trees stems from both the simplicity of the structure

and the variety of application domains� When information about a data set can be derived

from its tree structure� comparisons among two or more data sets can entail determining

similarities among two or more trees� Algorithms of this type have been developed in areas

such as compiler design� structured text databases� theory of natural languages� computer

vision ����� and computational biology �the reader is directed to a previous paper on trees ����

for further references	�

Comparisons of trees range from the classical tree pattern matching problem �
nding

an exact copy of one tree in another	 to numerous variants� including problems on multiple

trees and inexact matches� Each problem can be viewed as 
nding a way to relate trees

by mappings� where trees are related if it is possible to map vertices to sets of vertices and

edges to sets of edges subject to certain constraints� Researchers have considered di�er�

ent types of trees �ordered� unordered� labeled� unlabeled	 and di�erent mappings between

pairs of trees �exact matching� approximate matching� subgraph isomorphism� topological

embedding� minor containment	 �
� �� �� �
� ���� In addition� researchers have measured the

similarity between trees by 
nding the largest common subtree or smallest common supertree

under various constraints ��� �� �� �� ��� ��� ����

In this paper we consider the problem of 
nding the smallest common supertree under

minor containment� Concisely� a graph G is a minor of a graph H if it is possible to map

all the vertices in G to mutually disjoint connected subgraphs in H and there exists a

bijection� from the edges of G to the edges of H that are not in any of these subgraphs� such

that the images of the endpoints of any edge e in G contain the endpoints of the image of e

through this bijection� equivalently we can view the mapping as taking edges to paths� Minor

containment is of interest due to its generality� it encompasses both subgraph isomorphism

and topological embedding and is fundamental in the work of Robertson and Seymour on

graph minors ����� However� due in large part to the generality� many problems which

are tractable under subgraph isomorphism and topological embedding are NP�complete for

minor containment� In particular� it is NP�complete to determine whether or not one tree is

a minor of another ���� but this can be determined in polynomial time when there is a degree

bound of O�log n� log log n	 ���� We thus restrict our attention to trees of bounded degree�

noting that the resultant supertree will also be of bounded degree �in contrast� a common

subtree of two bounded degree trees may not have bounded degree	�

Interest in supertrees under minor containment arises from their applications to editing�

image clustering� genetics� chemical structure analysis� and evolution ���� ���� Previous algo�
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rithms to 
nd supertrees have been limited to special cases� in ordered minor containment�

there is an order imposed on the children of each node in each input tree� and this order

must be preserved by the mapping ����� for evolutionary trees� the leaves have distinct labels

and are constrained to map to other leaves �����

� Preliminaries

Each input to our algorithm is a bounded�degree tree �an undirected graph with no cycles	�

V �T 	 denotes the vertices of T and E�T 	 the edges of T � A tree T may be rooted at a

distinguished vertex r� in this case we can view the rooted tree as a directed graph� with

children and parents de
ned as in standard graph�theoretic references ���� When processing

rooted trees we will consider a subtree Tv of T � de
ned to be the subgraph of T induced by

v and all its descendants� More generally� for A a subset of the children of some node v� we

de
ne TA to be the subgraph induced by v� the vertices in A� and all descendants of nodes

in A� For A an arbitrary subset of vertices� T �A� is de
ned to be the subgraph of T induced

by A�

Given input trees Q and R� we wish to 
nd a tree T such that both Q and R are minors

of T and T is as small as possible� There are several equivalent de
nitions of minors� the

most relevant one for our purposes is given below� Intuitively� a graph G is a minor of a

graph H �or H is a major of G	 if H can be obtained from G by a series of vertex and edge

deletions and edge contractions� where a contraction of an edge �u� v	 in G is the operation

that replaces u and v by a new vertex whose neighbors are the vertices that were adjacent

to u or v� It is not di�cult to see that� for trees� the following de
nition is equivalent�

De�nition� A tree Q is a minor of a tree T if and only if there exists a surjection f �

V �T 	� V �Q	 such that

�� for each a � V �Q	� T �f���a	� is connected�

�� for each pair a� b � V �Q	� f���a	 � f���b	 � �� and


� for S � f�u� v	 � E�T 	 j f�u	 �� f�v	g� there exists a bijection � � S � E�Q	 such that

for each e � �s� t	 � S� ��e	 � �f�s	� f�t		�

We call f a minor embedding of T into Q� Intuitively� f���a	 is the set of vertices of T

contracted into a� ��	 captures the notion that each vertex of T corresponds to exactly one

vertex of Q� and �
	 captures the notion that uncontracted edges of T are preserved in Q�






The problem we wish to solve is that of determining the smallest common acyclic major of

Q and R� henceforth called the smallest common tree major� For sctmj�Q�R	 the minimum

number of vertices in a common tree major of Q and R� it is not di�cult to see that

maxfjV �Q	j� jV �R	jg � sctmj�Q�R	 � jV �Q	j� jV �R	j� We observe that sctmj�Q�R	 � jQj

if and only if R is a minor of Q� Duchet ��� proved that it is NP�complete to determine

whether one tree is a minor of another� It is now easy to prove that deciding whether

sctmj�Q�R	 � k for two general trees Q�R is NP�complete� In view of this� we will restrict

our attention to the case where the input graphs are both trees with maximum degree

bounded by a 
xed constant�

In the remainder of the paper we will make use of the following notational conventions�

Since we will be 
nding a graph T such that Q and R are both minors of T � we will use f

to denote the minor embedding of T into Q and g to denote the minor embedding of T into

R� We will use letters near the beginning of the alphabet for vertices of Q and letters near

the end of the alphabet for vertices of R�

� Expansions

To facilitate understanding of the algorithm� it is bene
cial to consider the mappings between

Q� R� and a common tree major T � The edges of T correspond to edges in the input trees

Q and R� we distinguish between strong edges� which correspond to edges in both Q and R�

and weak edges� each of which corresponds to an edge in only one of Q and R� For f and g

the minor embeddings of T into Q and R� respectively� f���a	 and g���u	 describe connected

subgraphs of T � Since for a � V �G	 each vertex in f���a	 is in g���u	 for some u � V �R	�

we can associate a with a set of vertices in V �R	 with overlapping preimages� This notion is

formalized in a graph called an expansion of Q and R consisting of edges between associated

vertices� More formally�

De�nition� For Q and R trees on disjoint sets of vertices� an expansion of Q and R is a

bipartite graph E � �V �E	� E�E		 with bipartition �V �Q	� V �R		 such that

�� the neighborhood in E of any vertex of V �R	 �respectively� V �Q		 induces a connected

subgraph of Q �respectively� R	�

�� E has no isolated vertices�


� the neighborhoods in E of two vertices in V �Q	 �respectively� V �R		 intersect in at

most one vertex� and
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�� for every edge �a� b	 in E�Q	� either there are edges �a� u	 and �b� u	 in E for some

u � V �R	� or there are edges �a� u	 and �b� v	 in E for some edge �u� v	 � E�R	 �and

symmetrically for edges in R	�

Given an expansion E of Q and R� we de
ne TE to be a graph whose vertices are edges in E

and whose edges are formed by condition � in the de
nition above� For an edge �a� b	 � E�Q	�

if there are edges �a� u	 and �b� u	 in E� then f�a� u	� �b� u	g is an edge in TE� and if there are

edges �a� u	 and �b� v	 in E for some �u� v	 � E�R	� and neither �a� v	 nor �b� u	 is in E� then

f�a� u	� �b� v	g is in TE� Edges �u� v	 � E�R	 de
ne edges in TE in a similar fashion� In the

former case we call the edge �a� b	 weak� in the latter case� �a� b	 and �u� v	 are strong�

We will denote the weak �strong	 edges of Q as weak�Q	 �strong�Q		 and we will use the

analogous notation for R as well� Note that there is a natural bijection fE between strong

edges in E�Q	 and strong edges in E�R	� We call the edges of TE that are de
ned on the

basis of weak edges of Q �R	� Q�weak �R�weak	� If an edge of TE is not Q or R�weak� then

we call it strong� There exist a natural bijection between the weak edges of Q �R	 and the

Q�weak �R�weak	 edges of TE and a natural bijection between the strong edges of Q �R	 and

the strong edges of TE � Finally� as direct consequences of the de
nition of weak and strong

edges� jstrong�Q	j � jstrong�R	j and jE�TE	j � jweak�Q	j � jweak�R	j � jstrong�Q	j� We

de
ne jE�TE	j to be the size of the expansion E�

For convenience� if E is an expansion of two trees Q and R� �a� b	 is a strong edge of Q�

and �u� v	 � fE��a� b		� we will say that �a� b	 and �u� v	 are E�counterparts of each other and

conclude that �a� u	� �b� v	 � E� Finally� given a vertex t in TE which corresponds to an edge

�a� u	 of E where a � V �Q	 and u � V �R	� a is the Q�side of t and u is the R�side of t�

The proof of the following lemma is a direct consequence of the de
nition of an expansion

and is omitted�

Lemma ���� Let Ei be a minimum size expansion of two trees Qi and Ri for i � �� ��

V �Q�	 � V �Q�	 � fag� V �R�	 � V �R�	 � fug� and �a� u	 � E� � E�� Then E� � E� is an

expansion of minimum size �among those containing �a� u	� of Q� �Q� and R� �R��

The following two lemmas are direct applications of Lemma 
���

Lemma ���� Let Ei be a minimum size expansion of two trees Qi and Ri� ai � Qi for

i � �� �� V �Q�	 � V �Q�	 � �� V �R�	 � V �R�	 � fug� �a�� u	 � E�� and �a�� u	 � E�� Then

E� � E� is an expansion of minimum size �among those containing at least one of �a�� u	 and

�a�� u	� of the graph with vertex set V �Q�	� V �Q�	 and edge set E�Q�	�E�Q�	� f�a�� a�	g

and R� �R��
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Lemma ���� Let Ei be a minimum size expansion of two disjoint trees Qi and Ri� ai �

V �Qi	� ui � V �Ri	� and �ai� ui	 � Ei for i � �� �� Then E� � E� is an expansion of minimum

size �among those containing at least one of �a�� u�	 and �a�� u�	� of the graph with vertex

set V �Q�	 � V �Q�	 and edge set E�Q�	 � E�Q�	 � f�a�� a�	g and the graph with vertex set

V �R�	 � V �R�	 and edge set E�R�	 � E�R�	 � f�u�� u�	g�

Our algorithm will rely on relationships between neighborhoods of sets� We use NG�v	

to denote the neighborhood of the vertex v in the graph G� We say that two subsets S�� S�

of the vertex set of a graph G are touching if either S� � S� �� � or there exists an edge

�v�� v�	 � E�G	 for vi � Si� i � �� ��

Lemma ���� For any expansion E of Q and R and any edge e � �a�� a�	 � E�Q	 �e �

E�R	�� NE�a�	 and NE�a�	 are touching�

Proof� By condition � of the de
nition of E� for any edge �a�� a�	 � E�Q	 there will exist

either a vertex u in R where �a�� u	� �a�� u	 � E�E	 or there will exist an edge �u�� u�	 � E�R	

such that �a�� u�	� �a�� u�	 � E�E	� In the 
rst case the connected graphs R�NE�a�	� and

R�NE�a�	� have a common point u and in the second that they contain u� and u� respectively

and �u�� u�	 � E�R	� Therefore� in both cases� their vertex sets are touching�

The lemma below is a useful tool in proving properties of expansions� it shows that if

two pairs of nodes are related by an expansion� the paths joining the nodes are also related�

In the remainder of the paper we use PG�p�� p�	 to denote the set of nodes in the �unique	

path between vertices p� and p� in the tree G�

Lemma ��	� For any expansion E of Q and R� if �ai� ui	 � E� i � �� �� then any vertex in

PQ�a�� a�	 has a neighbor in E in PR�u�� u�	�

Proof� We will prove the lemmaby contradiction� using induction on j� the size of PQ�a�� a�	�

Since the lemma holds trivially for j � �� it su�ces to show that the lemma holds for j � k

assuming that it holds for all values j � k�

Suppose that there exist vertices in PQ�a�� a�	 whose sets of neighbors in E do not intersect

PR�u�� u�	� We will call such vertices bad vertices and all other vertices in PQ�a�� a�	 good�

We 
rst observe that if any interior vertex in PQ�a�� a�	 is a good vertex� then we can

show that every vertex on the path has a neighbor in PR�u�� u�	� That is� if b is a good vertex

with neighbor v in PR�u�� u�	� then we can apply the induction hypothesis on the smaller

problem PQ�a�� b	 and PR�u�� v	 and also the smaller problem PQ�b� u�	 and PR�v� u�	 to

reach our conclusion� We can now assume that every interior vertex in PQ�a�� a�	 is bad�
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Furthermore� we can assume that there is no node in PR�u�� u�	 which is a neighbor of

both a� and a�� since if there were such a node v� then by property � in the de
nition of E�

every node in PQ�a�� a�	 would also be in the neighborhood of v� Thus� NE�a�	 � NE�a�	 �

PR�u�� u�	 is empty�

For each bad node a� we can de
ne a vertex v�a	 in PR�u�� u�	 which is the vertex in

PR�u�� u�	 closest to NE�a	 in R� this vertex is unique due to property � in the de
nition of

E� We let bi be the neighbor of ai in PQ�a�� a�	 and show that v�bi	 � NE�ai	 � PR�u�� u�	�

Suppose instead v�bi	 �� NE�ai	 � PR�u�� u�	� As R is a tree� we can partition the vertices

of R n PR�u�� u�	 into connected subgraphs on the basis of the closest vertex in PR�u�� u�	�

SinceNE�bi	�PR�u�� u�	 � �� NE�bi	 must be contained entirely in one partition� namely that

associated with v�bi	� We observe that v�bi	 is a cutset separating NE�ai	 and NE�bi	 and not

contained in either set� This contradicts Lemma 
��� which states that since �ai� bi	 � E�Q	�

NE�ai	 and NE�bi	 are touching�

By a similar argument we can show that if a and b are bad neighbors in Q� then v�a	 �

v�b	� Since there is a path from b� to b�� v�b�	 � v�b�	� Since for i � �� �� v�bi	 � NE�ai	 �

PR�u�� u�	� then v�b�	 � NE�a�	 �NE�a�	 � PR�u�� u�	� which we proved to be empty�

Lemma ��
� If E is an expansion of two trees Q and R� then TE is a common tree major

of Q and R�

Proof� We will prove 
rst that TE is a tree� By property � of the de
nition of E� for any

vertex a in Q� NE�a	 induces in R a tree T a� and hence the number of edges of E with a as

endpoint is equal to jE�T a	j��� Moreover� all the edges in T a are weak edges of R and any

weak edge e of R is in some tree T b where b is the vertex of Q adjacent to both endpoints of

e� In addition� any edge of R belongs to only one tree T a induced by the neighborhood� in

E� of some vertex a of Q� As a consequence of the above observations�

jV �TE	j � jE�E	j �
X

a�V �Q�

�jweak edges in R�NE�a	�j� �	

� jV �Q	j� jweak�R	j � � � jE�Q	j� jweak�R	j

� � � jweak�Q	j� jstrong�Q	j� jweak�R	j

� � � jE�TE	j

To show that T is a tree� it remains to show that TE is connected� Let t�� t� be two

vertices in TE and let a� and a� be their Q�sides� We will use induction on j � jPQ�a�� a�	j�

Suppose 
rst that j � � and let �a�� u�	 and �a�� u�	 be the edges of E corresponding to t�

and t� respectively� By Lemma 
��� NE�a�	 and NE�a�	 are touching� Therefore� there will
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be in PR�u�� u�	 either a vertex u � NE�a�	 � NE�a�	 or an edge �u� u�	 where u � NE�a�	

and u� � NE�a�	� In the 
rst case �a�� u	 and �a�� u	 and in the second �a�� u	 and �a�� u�	

de
ne two adjacent vertices t and t� of TE� In order to show that there exists a path in TE

connecting t� and t�� we will prove that there exist two paths in TE� one connecting t� with t

and the other connecting t� with t�� For any pair of edges �v�� v�	� �v�� v�	 of PR�u�� u	� there

is a pair of edges �r�� r�	 and �r�� r�	 in E�TE	 where r�� r�� r� correspond to �a�� v�	� �a�� v�	�

and �a�� v�	 respectively� Using this observation� it is easy to see that t� and t are connected

in TE� The proof of the existence of a path connecting t and t� in TE is similar and the base

case of the induction holds�

Suppose now that the claim holds for j � k� k � 
 and let t� and t� be two vertices in TE

whose Q�sides are a� and a� and jPQ�a�� a�	j � k� Let a� be the vertex in PQ�a�� a�	 that is

adjacent to a�� According to the de
nitions� there are two cases� ��	 �a�� a�	 is a strong edge

with E�counterpart �u�� u�	 and thus there exist in TE two adjacent vertices r� t� corresponding

to the edges �a�� u�	 and �a�� u�	 respectively� or ��	 �a�� a�	 is a weak edge whose endpoints

are both connected to some vertex u� in R� and there exist in TE two adjacent vertices r� t�

corresponding to the edges �a�� u�	 and �a�� u�	� respectively�

In either case� we can apply the induction hypothesis for t� and t� since jPQ�a�� a�	j � k�

Therefore� there exists a path in TE connecting t� and t� to which we can add edge �t�� r	 to

form a path from r to t� as well� It now remains to prove that there exists a path in TE

connecting r and t� in the case where r is di�erent from t�� The crucial property of r and

t� is that the edges of E corresponding to them� �a�� u�	 and �a�� u
�	� both contain a� as the

Q�side� Since the neighborhood of a� induces a tree R� there exists a path in this tree that

connects u� and u�� Using the same arguments on t� and r as we did for t� and t in the

base case� we can prove that there is a path in TE connecting t� and r and therefore a path

connecting t� and t�� Thus TE is connected and is a tree�

In order to prove that TE is a common major of Q and R we have to provide functions f

and � as in de
nition �� We de
ne f � V �TE	� V �Q	� such that f maps every vertex of TE

to its Q�side and any edge in TE whose endpoints have di�erent Q�sides to the edge of Q that

connects them� The fact that condition � holds follows easily from the fact� observed above�

that the vertices in TE with the same Q�side induce a connected subgraph of TE � Conditions

� and 
 are direct consequences of the way TE is de
ned� The intuition behind the above

de
nition of f is that a graph isomorphic to Q can be obtained from TE if we contract all

the R�weak edges of TE� This proves that Q is a minor of TE� The proof that R is a minor

of TE is symmetric�

Lemma ���� For T a smallest common tree major of Q and R� there exists an expansion
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E such that TE is isomorphic to T �

Proof� Given minor embeddings f and g of T into Q and R� for each a � V �Q	 and each

u � V �R	� jf���a	 � g���u	j � �� since otherwise the minor of T obtained after contracting

the edges in the graph induced by ff���a	� g���u	g would be a smaller common tree major

of Q and R� We de
ne the expansion E to be the set f�a� u	 � jf���a	 � g���u	j � �g� It is

straightforward to verify the claim that E is an expansion of Q and R�

As a corollary of Lemmas 
�� and 
��� we can conclude that sctmj�Q�R	 is the number of

edges in the minimum expansion of Q and R� The following straightforward lemma reduces

the problem to the computation of the rooted version of expansions�

Lemma ���� For trees Q and R and for any a � V �Q	� sctmj�Q�R	 is the minimum over

all u � V �R	 of the number of edges in the smallest expansion E of Q and R such that �a� u	

is an edge in E�

We 
nish this section with the following useful observation�

Lemma ��
� For any trees Q and R where jE�Q	j� jE�R	j � � and for any a � V �Q	 and

u � V �R	� the smallest expansion of Q and R that contains �a� u	 as an edge has size smaller

than jE�Q	j� jE�R	j�

Proof� As jE�Q	j� jE�R	j � �� there exist edges �a� b	 and �u� v	 with a and u as endpoints�

Let Q� and Q� �R� and R�	 be the connected components of the graph formed by removing

the edge �a� b	 from Q �the graph formed by removing the edge �u� v	 from R	 that contain

a and b �u and v	 respectively� It is easy to verify that E � �V �Q	 � V �R	� E	 where

E � f�c� u	 j c � V �Q�	g � f�c� v	 j c � V �Q�	g �

f�a�w	 j w � V �R�	g � f�b� w	 j w � V �R�	g	

is an expansion of Q and R containing �a� u	� Since jEj � jE�Q	j � jE�R	j� jE�TE	j �

jE�Q	j� jE�R	j 	 ��

� Smallest common tree major algorithm

��� Algorithm overview

For algorithmic convenience� we construct a rooted tree major� where any node of either

input tree could be associated with the root� We 
x a root for one tree and then try all
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possible rootings of the other tree� the following description concerns one possible choice of

a root�

Our algorithm proceeds by dynamic programming� at each stage building tree majors

of various subtrees of our inputs� After topologically sorting each tree with respect to the

chosen root� we process each vertex a in V �Q	 in order from leaves to root� pairing a with

each u in V �R	 in order from leaves to root�

For a given pair �a� u	 we wish to determine the size of the largest common tree major

T such that Qa is a minor of T and Ru is a minor of T where for r the root of T � f�r	 � a

and g�r	 � u� We solve this problem using subproblems involving children of a and u� where

in each subproblem we specify not only the roots of the subtrees of Q and R� but also the

subsets of the children included thus far in the mapping�

Expansions� as de
ned in the previous section� give a convenient framework for express�

ing the progress of the algorithm� where expansions involving subgraphs of Q and R are

augmented to form expansions of larger subgraphs of Q and R� The dynamic programming

formulation of the problem relies on a set of subproblems at a � V �Q	 and u � V �R	� where

each subproblem corresponds to one choice of how the children of a and the children of u

are related� assuming that �a� u	 is to be an edge in the expansion and that all subproblems

rooted at children have already been solved�

��� Technical lemmas

When processing �a� u	� we are assuming that �a� u	 � E�E	 and attempting to see where

subsets of the children of a and u can map� To build our intuition� we consider the process

from the point of view of Q �viewing from R is symmetric and hence the reasoning identical	�

Each child b of a must eventually be involved in E� There are four di�erent cases for a child

b of a� re�ecting four di�erent possible smaller expansions involving subtrees rooted at the

children of a and u �for an illustration of the case analysis that follows� see Figure �	�

�� �epsilon child	 The subtree rooted at b is not involved in any previous expansion� It

will be included by creating an edge in E from each vertex in the subtree to u�

�� �terminal child	 The subtree rooted at b has been mapped to a subtree rooted at a

child v of u� where �a� v	 is not an edge in any previous expansion� In this case the

edges �a� b	 and �u� v	 will be strong edges that are E�counterparts�


� �one�many child	 The subtree rooted at b is mapped to subtrees rooted at a set of

children of u� where �b� u	 is an edge in a previous expansion� In this case �a� b	 is a

weak edge�
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Figure �� The di�erent ways possible smaller expansions involving subtrees rooted at the

children of a and u can be combined in a general expansion�

�� �many�one child	 A set of subtrees rooted at children of a is mapped to a subtree rooted

at a child v of u� where �a� v	 is an edge in a previous expansion� In this case �u� v	 is

a weak edge�

We formalize the possible associations of children by a tuple for each possible pair of

subsets A of children of a and X of children of u and each possible mapping among vertices�

De�nition� Given two sets A�X we de
ne ��A�X	 as the set containing all tuples

�fAe� At� Ao� Amg� fXe�X t�Xo�Xmg� �� �� �	

that satisfy the following properties�

�� fAe� At� Ao� Amg is a partition of A�

�� fXe�X t�Xo�Xmg is a partition of X�


� � � At � X t is a bijection�

�� � � Xm � Ao is a surjection� and

�� � � Am � Xo is a surjection�

It is not di�cult to show that in the trees Q rooted at a and R rooted at u� fE preserves

the parent�child orientation of the strong edges� Suppose instead that �a�� a�	 and �u�� u�	

are E�counterparts where a� is in the path between a and a� in Q but� in R� u� is in the path

connecting u and u�� Applying Lemma 
�� for paths PQ�a� a�	 and PR�u� u�	� we conclude

a� � PQ�a� a�	 is adjacent� in E� to a vertex in PR�u� u�	� But a� is also adjacent to u� �in

��



E	� and hence by property � of the de
nition of E a� must be adjacent to u�� a contradiction

as �a�� a�	 and �u�� u�	 are strong edges� Using this observation we will always assume from

now on that if �a�� a�	 is strong and �u�� u�	 is its E�counterpart� then a� �u�	 is the endpoint

closer to a �u	 in Q �R	� In general� whenever we mention an edge� the 
rst endpoint of the

pair will be the one that it is closer to the root of the tree to which it belongs�

We call two edges of a rooted tree comparable if one of them is in the path connecting the

other with the root� If we have three mutually incomparable edges such that exactly two of

them have a vertex di�erent from the root as a common predecessor� we call the two edges

the close pair of the triple�

Lemma ���� For any expansion E of two trees Q � Qa and R � Ru such that �a� u	 � E� if

e�� e� are strong edges of Q and e�� and e
�
� are their E�counterparts in R� then e� is comparable

with e� if and only if e�� is comparable with e���

Proof� We prove the lemma by contradiction� Without loss of generality� e� � �a�� a�	

is in the path connecting e� � �a�� a�	 and a� and e�� � �u�� u�	 and e�� � �u�� u�	 are

not comparable� The incomparability of e�� and e�� means that u� is not in PR�u�� u�	� By

applying Lemma 
�� for paths PQ�a�� a�	 and PR�u�� u�	� a� � PQ�a�� a�	 will be adjacent� in

E� to some vertex in PR�u�� u�	� As a� is also adjacent to u� in E� property � of the de
nition

of E requires that a� be adjacent to u�� Since e� and e�� are strong edges we have obtained a

contradiction� The proof of the other direction is symmetric�

Lemma ���� For any expansion E of two trees Q � Qa and R � Ru such that �a� u	 � E�

if e�� e� and e� are strong mutually incomparable edges of Q and e��� e
�
� and e�� are their E�

counterparts in R� then e�� e� is the close pair of e�� e�� e� if and only if e��� e
�
� is the close

pair of e��� e
�
�� e

�
��

Proof� In a proof by contradiction� we let ei � �ai� bi	� i � �� �� 
� e�i � �ui� vi	� i � �� �� 
�

and suppose that e� and e� form a close pair and e�� and e�� form a close pair� Let b be

the common predecessor of e� and e� and v be the common predecessor of e�� and e��� As

a consequence of Lemma 
�� on PQ�b�� b�	 and PR�v�� v�	� b must be adjacent in E to some

vertex in PR�v�� v�	� Similarly� we can prove that b must be adjacent in E to some vertex in

PR�v�� v�	 and to some vertex in PR�v�� v�	� It is not hard to see that as a consequence of

these three facts and property � of the de
nition of E� b and v must be adjacent�

Using the same technique� by applying Lemma 
�� to PQ�b�� b�	 and PR�v�� v�	� we con�

clude that a � PQ�b�� b�	 will be adjacent� in E� to some vertex in PR�v�� v�	� As a is also

adjacent to u� by property � of the de
nition of E� a must be adjacent to v� By Lemma 
��

��



for PQ�b�� b�	 and PR�v�� v�	� by symmetry we can show that b is connected to u in E� We

have shown that �a� u	� �a� v	� �b� u	� �b� v	 � E�E	 which violates property 
 of the de
nition

of E� The proof of the other direction is symmetric�

Given a child b of a in Qa we denote as �Qb the graph Qb augmented with the edge �a� b	�

and given a child v of u in Ru we denote as �Rv the graph Rv augmented with the edge �u� v	�

Lemma ���� For any expansion E of two trees Q � Qa and R � Ru such that �a� u	 � E�

there exists a tuple �fAe� At� Ao� Amg� fXe�X t�Xo�Xmg� �� �� �	 in ��children�a	� children�u		�

such that the following hold�

�� there are no strong edges in QAe or RXe	


� all edges from a to vertices in At and from u to vertices in X t are strong	

�� all edges from a to vertices in Ao and from u to vertices in Xo are weak	

�� for all b � At� v � Xm� and c � Am� fE maps �a� b	 to �u� � �b		� the strong edges in Qb

to the strong edges in R��b�� the strong edges in Rv to the strong edges in Q��v�� and

the strong edges in Qc to the strong edges in R��c��

Proof� We let Ea be the set of edges induced in Q by a and its children and let Eu be the

set of edges induced in R by u and its children� To construct the desired partition� we 
rst

de
ne sets Ae� At� Xe� and X t as follows� Ae is the maximum subset of the children of a in

Q with the property that for each b in Ae� Qb contains no strong edges� At consists of the

the children b of a such that �a� b	 is the E�counterpart of an edge �u� v	 in Eu� Xe and X t

are de
ned analogously� We form the bijection � by setting � �b	 � v for �a� b	 and �u� v	 E�

counterparts� for b � At� We have now satis
ed conditions � and �� and it is straightforward

to see that� for all b � At� fE maps �a� b	 to �u� � �b		�

We now claim that for any b � At� the strong edges of Qb are mapped by fE to the strong

edges of R��b�� Suppose instead that edge �a� b	 � Ea� �c� d	 � E�Qb	� �u� v	 � fE��a� b		� and

�w� x	 � fE��c� d		 �� E�R��b�	 were a counterexample� Then� since �a� u	� �d� x	 � E�E	� we

can apply Lemma 
�� to PQ�a� d	 and PR�u� x	 in order to conclude that the neighborhood

of b in E contains a vertex in PR�u� x	� As �w� x	 is not an edge of R��b�� v � � �b	 is not a

vertex of this path� Since v is adjacent to b in E� by property � of the de
nition of E� u must

be a neighbor of b in E� This results in a contradiction� as �a� u	 and �b� v	 are strong edges

of Q and R respectively�

We now de
ne Ao to include any child b of a for which �Qb contains strong edges whose

E�counterparts are in more than one of the trees �Rw for children w of u� Notice that Ao and

�




At are disjoint� as for any b � At� the counterparts of the strong edges of �Qb are all in one

tree �Rw� namely �R��b��

We claim that for any b � Ao the edge �a� b	 is weak� Suppose instead that �a� b	 were

strong� since b �� At� its E�counterpart �x�w	 must be in �Qv for some child v of u� Since

b � Ao� the E�counterparts of the strong edges in �Qb are in more than one tree in Ru�

and thus there exists a tree �Rv� di�erent from �Rv which contains at least one E�counterpart

�y� z	 of a strong edge �c� d	 in �Qb� Clearly �a� b	 and �c� d	 are comparable� contradicting

Lemma ��� as �x�w	 and �y� z	 are incomparable� Therefore� all the edges connecting a with

vertices in Ao are weak�

For b � Ao� we let �Rv� � 	 	 	 � �Rvr be the trees that contain E�counterparts of strong edges

in �Qb�

We claim that the E�counterparts of the strong edges in the �Rvi�s are all in �Qb� Suppose

to the contrary that there exists a tree �Rvi � say �Rv� � containing a strong edge e�� with its

E�counterpart e� in �Qb� for some child b� �� b of a� By de
nition� �Rv� contains a strong edge

e�� di�erent from e�� that is the counterpart of a strong edge in �Qb� In addition� also by

de
nition� �Qb contains at least one strong edge e� di�erent from e� whose E�counterpart e��
is in a tree �Rvi di�erent from �Rv� � By Lemma ���� e� and e� �e�� and e��	 are incomparable

as their E�counterparts e�� and e�� �e� and e�	 are incomparable� Moreover� the close pair

of the 
rst triple is e� and e� and the close pair of the second triple is e�� and e��� violating

Lemma ���� We can conclude that E�counterparts of the strong edges in the �Rvi�s are all in
�Qb�

We can now de
ne Xm so that� for any b � Ao� Xm contains the children v�� 	 	 	 � vr of u

such that �Rv� � 	 	 	 �
�Rvr are the trees that contain E�counterparts of strong edges in �Qb� The

surjection � maps any vertex vi in Xm to the corresponding vertex b of Ao� Clearly� Xm and

X t are disjoint as for any vi � Xm the E�counterparts of the strong edges of �Rvi belong to

trees �Qb for children b of a such that �a� b	 is weak� This completes the proofs of conditions


 and � as far as sets Xm and Ao are concerned�

Working symmetrically� we can include in Xo all the children v of u such that the strong

edges of �Rv have E�counterparts in more than one tree in �Qb for children b of a� As before�Xo

and X t are disjoint� Moreover� Xo and Xm are also disjoint as� according to the discussion

above� for any vi � Xm the strong edges of �Qvi are all in a single �Qb� Applying the same

arguments as before� we can de
ne the set Am and surjection � � Am � Xo and verify that

conditions 
 and � are satis
ed for Xo� Am� and ��

The construction of the desired tuple is not yet complete� If b is a child of a that has not

yet been classi
ed as a member of Ae� At� Ao� or Am� then the E�counterparts of the strong

edges of �Qb are all in exactly one tree �Rv but �a� b	 and �u� v	 are not both strong edges�
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We can make a similar claim for unclassi
ed children v of u� Therefore� there is a bijection


 between the unclassi
ed children of a and the unclassi
ed children of u that allows us to

classify each one of them arbitrarily in Ao and Xm respectively or in Am and Xo respectively�

For each such arbitrary choice � or � is augmented by 
 on the new pair of elements� By

repeating the same arguments one can prove that� after this enhancement� the sets de
ned

still satisfy properties 
 and � while � and � remain surjections� In conclusion� the tuple

�fAe� At� Ao� Amg� fXe�X t�Xo�Xmg� �� �� �	 satis
es properties ��� and the lemma holds�

In order to de
ne the recurrence for our dynamic programming algorithm� we need to be

able to decompose a minimum size expansion of two trees into minimum size expansions of

pairs of subtrees� The following two lemmas do this for the subtrees needed when considering

decompositions induced by removal of a strong edge or a weak edge� respectively�

Lemma ���� If E is a minimum size expansion of Q � Qa and R � Ru� �a� b	 is a strong

edge of Q� and �u� v	 � f���a� b		 is its E�counterpart� then E is the union of a minimum size

expansion of Q nQb and R nRv containing �a� u	 and a minimum size expansion of Qb and

Rv containing �b� v	�

Proof� We 
rst claim that E� � E�V �Qb	� V �Rv	� is an expansion of Qb and Rv containing

�b� v	� In order to prove this� it is enough to show that all the neighbors in E of all the

vertices in V �Qb	 �V �Rv		 are in V �Rv	 �V �Qb		� Suppose to the contrary that there exists

an edge �c� w	 in E where c � V �Qb	 and w �� V �Rv	� If we now apply Lemma 
�� for PQ�a� c	

and PR�u�w	� b � PQ�a� c	 must be adjacent to some vertex not in Rv� As b is adjacent to v

in E� by property � of the de
nition of E� b must be adjacent to u� a contradiction as �a� b	

and �u� v	 are strong edges� By symmetry we can prove that E� � E�V �Q nQb	� V �R nRv	�

is an expansion of Q nQb and R nRv containing �a� u	�

It now remains to prove that E� and E� are both minimum size expansions� Suppose

instead that there is an expansion E � of one of the pairs Qb�Rv and Q n Qb�Q n Rv� Qb and

Rv� that has size smaller than the one of E�� Then� by Lemma 
�
� E � � E� is an expansion

of Q and R with size smaller than E� contradicting the minimality of E�

For notational convenience� we will use short forms for various subgraphs of Qa and Ru�

For b a child of a in Qa� we de
ne Q�b to be Qa n Qb� For any subset X of children of u in

Ru� we de
ne R�X to be R��V �R	 n V �RX		 � fug��

Lemma ��	� If E is a minimum size expansion of Q � Qa and R � Ru� �a� b	 is a weak

edge of Q� and �a� u	 and �b� u	 are edges of E� then
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�� there exists a subset X of the children of u such that E is the union of a minimum size

expansion of Qb and RX containing �b� u	 and a minimum size expansion of Q�b and

R�X containing �a� u	� and


� if Qb contains only weak edges� then for any vertex c � V �Qb	� NE�c	 � fug�

Proof� We let X be the set containing any child v of u for which Rv contains a neighbor�

in E� of a vertex in Qb� We then let E� � E�V �Qb	 � V �RX	� and E� � E�V �Q�b	 � V �R�X	��

To show that E� is an expansion of Qb and RX and that E� is an expansion of Q�b and

R�X by inheriting the properties of an expansion from E� it will su�ce to show that in E

all neighbors of vertices in V �Qb	 �V �RX	�V �Q�b	�and V �R�X	� respectively	 are in V �RX	

�V �Qb	�V �R�X	� and V �Q�b	� respectively	� The 
rst of the four statements follows from

the de
nition of X�

To prove the third claim by contradiction� suppose instead that a vertex c � Q�b is

adjacent in E to a vertex w outside of R�X� Clearly� X �� � and w is in one of the connected

components of RX 	 fug� Let v be the vertex of X such that w � Rv� In addition� by the

de
nition of X� Qb contains at least one vertex d adjacent� in E� to a vertex x in Rv� We now

apply Lemma 
�� to paths PQ�d� c	 and PR�w� x	 to conclude that a � PQ�d� c	 is adjacent�

in E� to some vertex in Rv� Since a is also adjacent to u in E� by property � of the de
nition

of E� a must be adjacent to v in E� Similarly� we can show that b is adjacent to v� Therefore�

the neighborhoods of a and b have two vertices� i�e� u and v� in common� This contradicts

property 
 of the de
nition of E and hence the claim holds� The remaining claims can be

proved in a similar manner�

To prove the 
rst statement in the lemma� it now remains to show that E� and E� are

both minimum size expansions� Suppose to the contrary that there is an expansion E � of

one of the pairs Qb and RX or Q�b and R�X that has size smaller than the one established

above� say Qb and RX have an expansion E � smaller than E�� Then� by Lemma 
��� E � � E�

is an expansion of Q and R with size smaller than E� contradicting the minimality of E�

To prove the second statement in the lemma� it su�ces to show that if Qb contains only

weak edges� then X � �� Suppose instead that jXj � �� Then jE�RX	j � �� Since E� is a

minimum size expansion of Qb and RX � and Qb contains only weak edges� RX contains only

weak edges� But then jE�TE�	j � jE�Qb	j� jE�RX	j� contradicting Lemma 
���

The following lemma uses the structural information of Lemma ��
� followed by repeated

applications of Lemmas ��� and ����

Lemma ��
� For any minimum size expansion E of two trees Q � Qa and R � Ru

such that �a� u	 � E� there exists a tuple �fAe� At� Ao� Amg� fXe�X t�Xo�Xmg� �� �� �	 in

��children�a	� children�u		 such that �Ee � Et � Ea � Eu	 is a partition of E where
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�� Ee relates epsilon children	 Ee � f�a� z	 j z � V �QAe	g � f�c� u	 j c � V �RXe	g�


� Et relates terminal children	 Et �
S

b�At Et�b where� for any vertex b � At� Et�b is a

minimum expansion of Qb and R��b� that contains �b� � �b		�

�� Ea relates one�many children	 Ea �
S

b�Ao Ea�b where� for any vertex b � Ao� Ea�b is a

minimum expansion of Qb and R����b� that contains �b� u	�

�� Eu relates many�one children	 Eu �
S

v�Xo Eu�v where� for any vertex v � Xo� Eu�v is a

minimum expansion of Q����v� and Rv that contains �a� v	�

Proof� We will prove the lemma by decomposing E in groups of subexpansions of the four

types described in Lemma ��
� This decomposition will proceed step by step by applying

inductively� Lemmas ��� and ��� as appropriate� depending on the type of subexpansion it

is possible to extract�

Let �fAe� At� Ao� Amg� fXe�X t�Xo�Xmg� �� �� �	 � ��children�a	� children�u		 be as de�

termined by Lemma ��
� We will extract the decomposition of E using induction on j �

jAej � jXej � jAtj � jAoj � jXoj� If j � �� the result is trivial� We assume that it holds if

j � k and we will prove that it also holds when j � k � �� Let b � Ae �Xe �At �Ao �Xo�

We may assume that b is a vertex in Ae �At�Ao� as the case where b is a vertex in Xe �Xo

is symmetric� We set E�b � E��V �Q n Qb	 � V �R n R��b�	� where� if b � Ae� �resp� b � At�

b � Ao	� then 
�b	 � �� �resp� 
�b	 � � �b	� 
�b	 � ����b		�

We now claim that E�b is a minimum size expansion of Q n Qb and R n R��b� and that

Eb � E�V �Qb	 � V �R��b�	� is a minimum size expansion of Qb and R��b�� When b � At� the

claim is a consequence of Lemma ��� and when b � Ae � Ao� the claim is a consequence of

Lemma ����

We can now apply the induction hypothesis on E�b and derive the tuple �fAe
�b� A

t
�b� A

o
�b�

Am
�bg� fX

e
�b�X

t
�b�X

o
�b�X

m
�bg� ��b� ��b� ��b	 � P �children�a	 	 fbg� children�u	 	 
�b		 and the

corresponding partition �Ee��b� Et��b� Ea��b� Eu��b	 of E�b satisfying conditions ���� If b � At�

and v is as de
ned in Lemma ���� for each member m of the tuple� m � m�b with the

following exceptions� At � At
�b � fbg� X

t � X t
�b � fvg� and � � ��b � f�b� v	g� Suppose now

that b � Ae � Ao and X is as de
ned in Lemma ���� In this case� it is easy to see that if

X � �� then Ae � Ae
�b � fbg� and for each other member m of the tuple m � m�b� Finally�

if X �� �� Ao � Ao
�b � fbg� X

m � Xm
�b �X� and � � ��b � f�w� b	 j w � Xg� with all other

members of the tuple unchanged� We construct the partition �Ee � Et � Ea � Eu	 of E as

follows�

If b � Ae� then� by Lemma ���� Eb � f�c� u	 j c � V �Qb	g� We set Ee � Eb � Ee��b�

Et � Et��b� Ea � Ea��b� and Eu � Eu��b�

��



If b � Ao� then� by Lemma ���� Eb is a minimum expansion of Qb and R����b��R��b�� We

set Ee � Ee��b� Et � Et��b� Ea � Eb � Ea��b� and Eu � Eu��b�

If b � At� then� by Lemma ���� Eb is a minimum expansion of Qb and R��b� � R��b�� We

set Ee � Ee��b� Et � Eb � Et��b� Ea � Ea��b� and Eu � Eu��b�

It now remains to verify that� in any case� the tuple

�fAe� At� Ao� Amg� fXe�X t�Xo�Xmg� �� �� �	

along with the partition �Ee�Et�Ea�Eu	 satisfy conditions ���� This check is straightforward

except for conditions � and 
 where we have to prove that the new expansions Et and Ea

are minimum� This follows from Lemmas 
�
 and 
�� as� by their construction� they are the

union of minimum expansions�

��� Algorithm details

Procedure Expansion�Q�R� a� u	

Input� Two trees Q� R and two vertices a � V �Q	� u � V �R	�

Output� minfjEj � E is an expansion of Q and R and �a� u	 � Eg�

�� Root Q and R at a and u respectively�

�� Topologically sort V �Q	� giving LQ �� fa�� 	 	 	 � ajV �Q�jg where a � ajV �Q�j�


� Topologically sort V �R	� giving LR �� fu�� 	 	 	 � ujV �R�jg where u � ujV �R�j�

�� for i �� � 	 	 	 jV �Q	j do

�� for j �� � 	 	 	 jV �R	j do

�� if ai and uj are leaves then I�ai� uj� �� �	 �� �

�� else

�� for all X 
 children�uj	 and A 
 children�ai	 do

�� x �� jV �Q	j� jV �R	j

��� for all �fAe� At� Ao� Amg� fXe�X t�Xo�Xmg� �� �� �	 � ��A�X	 do

��� x �� minfx� jV �QAe	j� jV �RXe	j 	 � � �i	
P

b�At I�b� ft�b	� children�b	� children�� �b			 � �ii	
P

b�Ao I�b� ui� children�b	� ����b		 � �iii	
P

v�Xo I�ai� v� ����v	� children�v		 g �iv	

��� I�ai� ui� A�X	 �� x

�
� return I�a� u� children�a	� children�u		

��



Theorem ���� For any trees Q and R rooted at a and u respectively� Expansion �Q�R� a� u	

returns the minimum number of edges in any expansion E containing �a� u	�

Proof� We prove that for Q and R rooted at a and u respectively� for any c � V �Q	�

z � V �R	� and any A 
 children�c	 and X 
 children�z	� the quantity I�c� z�A�X	 computed

by the algorithm is the minimum number of edges over all expansions E of QA and RX�

where �c� z	 � E� The proof is by induction on the order of computation�

Consider the computation of I�c� z�A�X	� As LQ and LR are topological sorts of V �Q	

and V �R	 respectively� we can conclude that I�d� y�Ad�Xy	 has already been computed in

the following three cases� which cover the expressions on the right�hand side of step ���

�� d � children�c	� y � children�z	� Ad 
 children�d	� and Xy 
 children�y	�

�� d � children�c	� y � z� Ad 
 children�d	� and Xy 
 children�z	�


� d � c� y � children�z	� Ad 
 children�c	� and Xy 
 children�y	�

If we assume by the inductive hypothesis that the values I�d� y� Ad� Xy	 are correct� then

by Lemma ��� there is a choice of �fAe� At� Ao� Amg� fXe�X t� Xo�Xmg� �� �� �	 that results�

at step ��� in x taking on the minimum number of edges in an expansion E of QA and RX

containing �c� z	� as required�

Theorem ���� For any pair of trees Q and R of bounded degree� sctmj�Q�R	 can be com�

puted in O�n�	 time where n � maxfjV �Q	j� jV �R	jg�

Proof� The if�statement at step � is invoked O�n�	 times� and because the maximum

degrees of Q and R are bounded by a constant� the loops at steps � and �� result in a

constant number of iterations of step ��� This quantity is multiplied by O�n	� the number

of rootings to check�

� Extensions of the algorithm

In this section we describe how our algorithm can be generalized to the problem of deter�

mining the edit distance �under certain conditions	 of a pair of a edge�labeled� unrooted�

unordered trees� The set of operations used is edge contraction� edge relabeling� and edge

insertion� In this last operation� a vertex v is chosen� replaced by a pair of vertices v� and v�

such that N�v�	 and N�v�	 partition N�v	� and a labeled edge �v�� v�	 is inserted� The 
nal

��



condition we impose on the edit sequence is that all insertions must be completed before any

other operations�

Let Q and R be edge�labeled trees� i�e� for some given alphabet �� there exist two

functions q � E�Q	 � � and r � E�R	 � �� We denote as g� h the cost functions where for

any 
 � �� g�
	 and h�
	 represent the cost of the contraction and the insertion respectively

of an edge labeled with 
� Finally� for 
� � � �� we denote as l�
� �	 the cost of changing

the label of an edge from 
 to �� We can now de
ne as dist�Q�R	 the smallest possible total

cost of a sequence of operations which transforms Q to R� subject to the constraint that all

insertions occur 
rst�

Given such a sequence� we can reorder it �without altering its cost	 so that the relabelings

precede the contractions and follow the expansions� Let T� be the tree after all expansions�

and T� the tree after all relabelings� Clearly� if labels are removed� T� is isomorphic to T��

and both are majors of both Q and R� Thus� for every edit sequence� there is a natural

common supertree�

Conversely� let T be a common major of Q and R corresponding to some extension E

of Q and R� It is easy to see that Q can be transformed to R after the following sequence

of operations� 
rst insert in Q all the edges in E�T 	 	 E�Q	� then relabel all the strong

edges of T to the labelings they should have in R� and� 
nally� contract all the edges in

E�T 	 	 E�R	� Notice that� if S�T 	 contains the strong edges of T � the total cost of this

sequence of operations is

X

e�E�T ��E�Q�

h�q�e		 �
X

e�E�T ��E�R�

g�r�e		 �
X

e�S�T �

l�q�e	� r�e		

which� in turn� is equal to

X

e�E�T �

h�q�e		 �
X

e�E�T �

g�r�e		 �
X

e�S�T �

l�q�e	� r�e			C�R�Q	 �

X

e�E�T �

�h�q�e		 � g�r�e			 �
X

e�S�T �

l�q�e	� r�e			 C�R�Q	

whereC�R�Q	 �
P

e�E�Q� h�q�e		�
P

e�E�R� g�r�e		� Therefore� in order to compute dist�Q�R	

we have to 
nd an expansion E with major T where the quantity

Q�T 	 �
X

e�E�T �

�h�q�e		 � g�r�e			 �
X

e�S�T �

l�q�e	� r�e		

is minimized� Following the methodology of the previous sections we set up a general version

of I�c� z�A�X	� representing the minimum value of Q�T 	 over the T �s corresponding to all

expansions E of QA and QX where �c� z	 � E� The only modi
cation required for Procedure

��



Expansion�Q�R� a� u	 concerns the way x is computed in line ��� which should change to the

following�

��� x �� minfx�
P

e�E�QAe�
h�q�e		 �

P
e�E�RXe� g�r�e		 � �i	

P
b�At� I�b� ft�b	� children�b	� children�� �b			�

l�q�fai� bg	� r�fui� ft�b	g		 	 � �ii	
P

b�Ao� I�b� ui� children�b	� ����b		 � h�q�fai� bg		 	 � �iii	
P

v�Xo� I�ai� v� ����v	� children�v		 � g�r�fuj � vg		 	 g �iv	

For completeness� in line �� x should now be initialized as C�R�Q	�

Clearly� the above modi
cations do not require more time asymptotically� and we have

the following�

Theorem 	��� The edit distance �under operations edge contraction� edge relabeling� and

edge insertion� where all insertions come 
rst� of any pair of edge�labeled trees Q and R of

bounded degree� can be computed in O�n�	 time where n � maxfjV �Q	j� jV �R	jg�

� Conclusions and further work

We have shown an O�n�	 algorithm for 
nding the smallest common tree major of two trees

Q and R� where both Q and R are unrooted and undirected� and have degree bounded by a


xed constant� The degree restriction can be relaxed to maximum degree O�log n� log log n	

while keeping the running time of the algorithm polynomial� since the multiplicative factor

is dO�d� for trees of maximumdegree d �this factor arises from the number of tuples examined

at line �� of the algorithm	� Our algorithm can be generalized to the problem of determin�

ing the edit distance �under the operations of edge contraction� edge relabeling� and edge

insertion� where all insertions come 
rst	 of a pair of a edge�labeled� unrooted� unordered

trees� by incorporating labels into the de
nition of the expansion� All of our algorithms can

be implemented in NC using the technique of Brent restructuring to parallelize dynamic

programming on trees ���� Our work is also related to work on intertwines ����� the value

sctmj�Q�R	 is the minimum size of an acyclic intertwine of Q and R�

Although the NP�completeness of minor containment for general trees suggests the in�

tractability of 
nding the largest common subgraph under minors� there is hope for solving

other related problems� The problem of determining whether or not G is a minor of H is

solvable in polynomial time for G and H both bounded�degree partial k�trees ���� or for G

and H both k�connected k�paths ����� solving the largest common supergraph problem for

��



each of these graph classes would be an obvious extension to our work� Another obvious

extension would be to solve the largest common tree major problem for three or more input

trees�
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