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Abstract

An algorithm is presented allowing the construction of fast Fourier
transforms for any solvable group on a classical computer. The
special structure of the recursion formula being the core of this
algorithm makes it a good starting point to obtain systematically
fast Fourier transforms for solvable groups on a quantum computer.
The inherent structure of the Hilbert space imposed by the qubit
architecture suggests to consider groups of order 2n first (where n is
the number of qubits). As an example, fast quantum Fourier trans-
forms for all 4 classes of non-abelian 2-groups with cyclic normal
subgroup of index 2 are explicitly constructed in terms of quantum
circuits. The (quantum) complexity of the Fourier transform for
these groups of size 2n is O(n2) in all cases.
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1 Introduction

Quantum algorithms are a recent subject and of possibly central importance in
physics and computer science. It has been shown that there are problems on
which a putative quantum computer could outperform every classical computer.
A striking example is Shor’s factoring algorithm (see [22]).

Here we adress a problem used as a subroutine in almost all known quantum
algorithms: The quantum Fourier transform (QFT) and its generalization to
arbitrary finite groups.

In classical computation there exist elaborate methods for the construction of
Fourier transforms (see Beth [3], [4], Clausen [5], [6], and Diaconis/Rockmore [9])
so it is highly interesting to adapt and modify these methods to get a quantum
algorithm with a much better performance (with respect to the common quantum
complexity model) as on a classical computer.

First attempts in this direction have been proposed by Beals [2] and Høyer
[12]. In this paper we present an algebraic approach using representation theory
which can be seen as a first step towards the realization of a large class of QFTs
on a quantum computer.

2 Generalized Fourier Transforms

Fourier transforms for finite groups are an interesting and well studied topic
for classical computers. We refer to [3], [6], [15], [19] as representatives for a
vast number of publications. The reader not familiar with the standard notation
concerning group representations should refer to these publications or to standard
references as [8] or [21].

For the convenience of the reader we first recall the definition of the generalized
Fourier transforms for a finite group G and explain the representation theoretical
point of view we are going to take.

Each isomorphism

Φ : CG −→
k⊕

i=1

C
di×di

between the group algebra of G and the Wedderburn components is called a
Fourier transform for the group G. A particular isomorphism is fixed by picking
a system ρ1, . . . , ρk of representatives of irreducible representations of G and
defining Φ as the linear extension of the mapping g 7→ ⊕k

i=1 ρi(g), g ∈ G (of
course deg(ρi) = di). Any “fast” algorithm for the evaluation of Φ is called a fast
Fourier transform for G.

In order to obtain a matrix representation for the linear mapping Φ one usu-
ally fixes natural bases L in CG and L′ in

⊕k
i=1C

di×di. This is done by choosing
an ordering L = (g1, . . . , g|G|) on the elements of G and an ordering L′ on the
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elementary matrices Ek,l (1 at position (k, l), 0 else) which correspond to the coef-
ficients of the irreducible representations appearing in the Wedderburn decompo-
sition. The Fourier transform Φ then is represented by a matrix ML,L′ ∈ C

|G|×|G|.
Since ML,L′ is a base change between two orthonormal bases (with respect to the
standard hermitean scalar product on CG) it must be unitary.

The matrix ML,L′ can also be characterized by another property. Let φ be the
regular representation obtained by right multiplication of G on L. Conjugating
φ with ML,L′ yields (up to a permutation matrix P ) a direct sum of irreducible
representations with the property that equivalent irreducibles are equal, i.e.

φML,L′ = (ρ1 ⊕ . . .⊕ ρk)
P fulfilling ρi ∼= ρj ⇒ ρi = ρj .

On the other hand every matrix with this property corresponds to a Fourier
transform with respect to natural bases.

As an example letG = Zn = 〈x | xn = 1〉 be the cyclic group of order n with ir-
reducible representations ρi = (x 7→ ωi

n), i = 0 . . . n−1, where ωn denotes a prim-
itive n-th root of unity. With respect to the natural bases L = (xi | i = 0 . . . n−1)
and L′ = (E1,1, . . . , En,n) the matrix ML,L′ = 1√

n
[ωi·j

n | i, j = 0 . . . n− 1] = DFTn

is the discrete Fourier transform well-known from signal processing.
We will refer to the notion of a fast Fourier transform as a fast algorithm

for the multiplication with ML,L′ . Of course, the term “fast” depends on the
chosen complexity model. Since we are primarily interested in the realization of
a fast Fourier transform on a quantum computer (QFT) we first have to define
the measure of complexity on this architecture.

3 The Complexity Model

In this paper we think of a quantum computer to consist of a quantum register
which in turn consists of n qubits each of which provides a 2-dimensional Hilbert
space. Thus the possible operations this computer can perform are given by the
unitary group U(2n).

To study the complexity of unitary operators on n-qubit quantum systems we
introduce the following two types of building blocks:

• Local unitary operations on the qubit i are of the form

U (i) := 12i−1 ⊗ U ⊗ 12n−i ,

where U is an element of the unitary group U(2) of 2× 2-matrices.

• The controlled NOT gate (also called measurement gate) between the qubits
i (control) and j (target) is defined by

CNOT(i,j) :=





1
1

1
1
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U (i) =

..

.

..

.

U i

..

.

..

.

CNOT(i,j) =

..

.

..

.

..

.

•

✐ j

i

..

.

..

.

..

.

Figure 1: Elementary quantum gates

when restricted to the tensor component of the Hilbert space which is
spanned by the qubits i and j. Note that the controlled not is nothing
but an XOR on the resp. components.

In the graphical notation using quantum wires these transforms are written as
shown in figure 1. The lines represent the qubits and the least significant bit is
the lowest. We assume that these so-called elementary quantum gates can be
performed with cost O(1).

These two types of gates suffice to generate all unitary transformations, which
is the content of the following theorem from [1].

Theorem 3.1 The set G = {U (i),CNOT(i,j) | U ∈ U(2), i, j = 1 . . . n, i 6= j} is
a generating set for the unitary group U(2n).

This means that for each U ∈ U(2n) there is a word w1w2 . . . wk (where wi ∈ G
for i = 1 . . . k is an elementary gate) such that U factorizes as U = w1w2 . . . wk.

In general only exponential upper bounds for the minimal length occuring in
factorizations have been proved (see [1]) but there are many interesting classes
of unitary matrices in U(2n) affording only polylogarithmic word length, which
means, that the minimal length k is asymptotically O(p(n)) where p is a polyno-
mial.

In the following we give examples of some particular unitary transforms ad-
mitting short factorizations which will be useful in the rest of the paper.

• The symmetric group Sn is embedded in U(2n) by the natural operation of
Sn on the tensor components (qubits). Let τ ∈ Sn and Πτ the correspond-
ing permutation matrix on 2n points. Then Πτ has a O(n) factorization
as shown in [18]. As an example in figure 2 the permutation (1, 3, 2) of
the qubits (which corresponds to the permutation (2, 5, 3)(4, 6, 7) on the
register) is factored according to (1, 3, 2) = (1, 2)(2, 3).

• Following the notation of [1] we denote a k-times controlled U by Λk(U).
Lemma 7.2 and lemma 7.5 in [1] show that for U ∈ U(2) the gate Λn−1(U)
can be realized with gate complexity O(n2) and Λk(U) with O(n) for k <
n− 1 on n qubits.
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❅
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✁
✁
✁
✁

=

✐

• ✐

• ✐

• ✐

• ✐

• ✐

•

Figure 2: Factorization (1, 3, 2) = (1, 2)(2, 3)

• The Fourier transform DFT2n can be performed in O(n2) elementary oper-
ations on a quantum computer (see [22], [7]).

• Let Pn ∈ S2n be the cyclic shift permutation which acts on the states of
the quantum register as x 7→ x + 1 mod 2n. Obviously the corresponding
permutation matrix is the 2n-cycle

Pn =










0 1
0 1
. . .

. . .
0 1

1 0










.

A factorization of Pn as a product of multiple controlled NOTs as shown in
figure 3 needs O(n2) basic operations1.

s

s

s

s

✐

s

s

s

✐

s

s

✐

· · ·
· · ·
. . .

· · ·
· · ·
· · ·

s

✐

✐

Figure 3: Quantum circuit for the 2n-cycle Pn

• Let U ∈ U(2n). The cost for a (single) controlled U is settled by the
following lemma.

Lemma 3.2 If U ∈ U(2n) can be realized in O(p(n)) elementary operations
then Λ1(U) ∈ U(2n+1) can also be realized in O(p(n)) basic operations.

1This quantum circuit, similar to the classical carry-look-ahead logic, has been found by
Markus Grassl following discussions with Amir Fijany in May 1998
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Proof: First we assume without loss of generality that U is written in
elementary gates. Therefore we have to show that a doubly controlled
NOT and a single controlled U ∈ U(2) can be realized with a constant
increase of length. This follows from [1]. �

4 Creating Fast Fourier Transforms

In section 2 we have explained that calculating a Fourier transform for a group G
is the same as decomposing a regular representation φ of G with a matrix A into
irreducibles ρi up to a permutation P such that equivalent irreducible summands
are equal, i.e.

φA = A−1 · φ · A = (ρ1 ⊕ . . .⊕ ρk)
P fulfilling ρi ∼= ρj ⇒ ρi = ρj .

A “fast” Fourier transform (on a classical computer) is given by a factoriza-
tion of A into a product of sparse (w.r.t. the architectural complexity measure)
matrices.

In this section we present (without proof) a number of theorems and lemmata
yielding an algorithm to calculate fast Fourier transforms for any solvable groupG
(on a classical computer). The same algorithm serves as a good starting point to
obtain quantum Fourier transforms if we assume the “quantum wires” to possess
a suitable number of states.

The statements in this section all are taken from the first chapter of [19]
where decomposition matrices and constructive representation theory in general
is investigated. There the objective is the construction of decomposition matrices
for monomial representations which can be viewed as a generalization of Fourier
transforms.

The following theorem provides the crucial formula needed to obtain a fast
Fourier transform of G by decomposing a regular representation stepwise along
a composition series of G. The formula has been known (see [3]) to yield fast
Fourier transforms for solvable groups on a classical computer (counting addi-
tions and multiplications). Their tensor structure, however, also fits well to the
special architecture of a quantum computer. The general constructive form of
the following theorem as presented is due to [19] where furthermore an improved
recursion formula for the classical architecture can be found.

We use the following convention for the induction of a representation φ of
H ≤ G with transversal (i.e. a system of representatives for the right cosets)
T = (t1, . . . , tn):

(φ ↑T G)(x) =
[

φ̇(tixt
−1
j ) | i, j = 1 . . . n

]

,

where φ̇(y) = φ(y) for y ∈ H and the all-zero matrix else. A regular represen-
tation φ is given by an induction φ = (1E ↑T G) where 1E denotes the trivial
representation of the trivial subgroup E ≤ G.
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Theorem 4.1 Let N E G a normal subgroup of prime index p with (cyclic)
transversal T = (t0, t1, . . . , t(p−1)) and φ a representation of degree d of N which
has an extension φ to G (see figure 4). Suppose that A is matrix decomposing φ
into irreducibles, i.e. φA = ρ = ρ1 ⊕ . . .⊕ ρk and that ρ is an extension of ρ to
G. Then

B = (1p ⊗ A) ·D · (DFTp ⊗ 1d), where D =
p−1
⊕

i=0

ρ(t)i,

is a decomposition matrix for φ ↑T G, more precisely

(φ ↑T G)B =
p−1
⊕

i=0

λi · ρ,

where λi : t 7→ ωi
p, i = 0 . . . p− 1, are the p 1-dimensional representations of G

arising from the factor group G/N .

✻

N

G

✻

φ

φ

ext

✲A

dec

✻

ρ

ρ

ext

Figure 4: Situation in theorem 4.1

In the case of an abelian group G the formula yields exactly the well-known
Cooley-Tukey decomposition, hence D can be viewed as a generalized Twiddle
factor. In the case of G being a direct product G ∼= N×G/N the Twiddle matrix
D vanishes. Since we want to apply theorem 4.1 to a regular representation we
need the following lemma.

Lemma 4.2 Let N E G a normal subgroup of prime index p and φ any regular
representation of N . Then φ (and hence all of its conjugates) has an extension
φ to G. Furthermore φ ∼= φt for all t ∈ G. (φt : x 7→ φ(txt−1) is called the inner
conjugate of φ by t).

In order to obtain an algorithm from theorem 4.1 we are faced with two problems.
The first is the calculation of the Twiddle matrix D which is essentially the
problem of extending ρ to ρ and evaluating it at t. Suppose we are given A
and ρ which is a direct sum of irreducibles, ρ = ρ1 ⊕ . . . ⊕ ρk, with equivalent
summands being equal. Because of lemma 4.2 G/N operates on the irreducibles
ρi via inner conjugation (explained in the lemma above). According to Clifford’s
Theorem (see e.g. [6], pp. 88) exactly one of the following two cases applies
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to each summand ρi: Either ρi ∼= ρti and ρi can be extended to G or ρi 6∼= ρti
and ρi ↑T G is irreducible. In the first case the extension may be calculated by
Minkwitz’ formula (see [17]), in the latter case the direct sum ρi⊕ρti⊕ . . .⊕ρt

(p−1)

i

can be extended to G by ρi ↑T G. We do not state Minkwitz’ formula here since
we will not need it in the special cases treated in section 5.

The second problem arises from the fact that the decomposition
⊕p−1

i=0 λi ·ρ in
theorem 4.1 does not satisfy the property of equivalent summands being equal.
This can be achieved using the following lemma.

Lemma 4.3 Let N E G a normal subgroup of prime index p with transversal
T = (t0, t1, . . . , t(p−1)). Suppose that ρ is an irreducible representation of degree
d of N satisfying ρ 6∼= ρt and λi : t 7→ ωi

p is an irreducible representation of G
arising from G/N . Then

(λi · (ρ ↑T G))D⊗1d = ρ ↑T G, D = diag(1, ωp, . . . , ω
(p−1)
p )i.

Now we are ready to formulate the algorithm which constructs a fast Fourier
transform for G from a fast Fourier transform of a normal subgroup of prime
index.

Algorithm 4.4 Let N E G a normal subgroup of prime index p with transversal
T = (t0, t1, . . . , t(p−1)). Suppose that φ is a regular representation of N with
decomposition matrix A:

φA = ρ1 ⊕ . . .⊕ ρk fulfilling ρi ∼= ρj ⇒ ρi = ρj.

A decomposition matrix B for the regular representation φ ↑T G can be obtained
as follows.

1. Determine a permutation matrix P rearranging the ρi, i = 1 . . . k, such
that the extendable ρi (i.e. those satisfying ρi = ρti) come first followed by

the others ordered into sequences of length p equivalent to ρi, ρ
t
i, . . . , ρ

t(p−1)

i .

(Note: These sequences we need to equal ρi, ρ
t
i, . . . , ρ

t(p−1)

i which is estab-
lished in the next step).

2. Calculate a matrix M which is the identity on the extendables and conju-
gates the sequences of length p to make them equal to ρi, ρ

t
i, . . . , ρ

t(p−1)

i .

3. Note that A ·P ·M is a decomposition matrix for φ, too, and let ρ = φA·P ·M .
Extend ρ to G summandwise. For the extendable summands use Minkwitz’
formula, the sequences ρi, ρ

t
i, . . . , ρ

t(p−1)

i can be extended by ρi ↑T G as stated
above.

4. Evaluate ρ at t and build D =
p−1
⊕

i=0

ρ(t)i.

8



..

.
A ..

.
P ..

.
M ..

. D

DFT2

..

. C
..
.

Figure 5: Coarse Quantum circuit visualizing algorithm 4.4

5. Construct a blockdiagonal matrix C with lemma 4.3 conjugating
⊕p−1

i=0 λi · ρ
such that equivalent irreducibles are equal. C is the identity on the extended
summands.

Then

B = (1p ⊗A · P ·M) ·D · (DFTp ⊗ 1|N |) · C (1)

is a decomposition matrix for φ ↑T G. �

It is obviously possible to construct fast Fourier transforms on a classical com-
puter for any solvable group by recursive use of this algorithm. Note that the
consideration of T-adapted representations (see [6]) here is unnecessary: The
irreducibles are constructed along with the decomposition matrices.

Since we restrict ourselves to the case of a quantum computer consisting of
qubits, i.e. two-level systems, we apply algorithm 4.4 to obtain QFTs for 2-groups
(size is a 2-power). In this case the two tensor products occuring in (1) fit very
well to yield a coarse factorization as shown in figure 5. The remaining problem,
however, is the realization of the matrices A, P,M,D,C in terms of elementary
building blocks as presented in section 3. At present this realization remains
a creative process which might be performed by hand if an arbitrary class of
groups is given. In section 5 we will apply algorithm 4.4 to a class of non-abelian
2-groups.

5 Generating QFTs for a class of 2-groups

In the case of G being an abelian 2-group the realization of a fast quantum
Fourier transform has been settled by [14]. Clearly, this case is covered by the
method presented here (see the remarks following theorem 4.1). In this section we
will apply algorithm 4.4 to the class of non-abelian 2-groups containing a cyclic
normal subgroup of index 2. Fast quantum Fourier transforms for these groups
have already been constructed by Høyer in [12].
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According to [13], p. 90/91 there are for n ≥ 3 exactly four isomorphism types
of non-abelian groups of order 2n+1 affording a cyclic normal subgroup of order
2n:

(i) The dihedral group D2n+1 = 〈x, y | x2n = y2 = 1, xy = x−1〉.

(ii) The quaternion group Q2n+1 = 〈x, y | x2n = y4 = 1, xy = x−1〉.

(iii) The group QP2n+1 = 〈x, y | x2n = y2 = 1, xy = x2n−1+1〉.

(iv) The quasidihedral group QD2n+1 = 〈x, y | x2n = y2 = 1, xy = x2n−1−1〉.

Observe that the extensions (i), (iii), and (iv) of the cyclic subgroup Z2n = 〈x〉
split, i. e. the groups have the structure of a semidirect product of Z2n by Z2.
The three isomorphism types correspond to the three different embeddings of
Z2 = 〈y〉 into (Z2n)

× ∼= Z2 × Z2n−2 .

5.1 QFT for the dihedral groups D2n+1

In this section we construct a QFT for the dihedral groups D2n+1 step by step
according to algorithm 4.4 and explicitly state the occuring quantum circuits.

Let G = D2n+1 = 〈x, y | x2n = y2 = 1, xy = x−1〉 with normal subgroup
N = 〈x〉 E G of index 2 and transversal T = (1, y). We consider the regular
representation φ = (1E ↑S N) ↑T G of G with S = (1, x, . . . , x2n−1). Obviously
the regular representation (1E ↑S N) of N is decomposed by A = DFT2n into
ρ0 ⊕ . . .⊕ ρ2n−1 where ρi = (x 7→ ωi

2n). Now we are ready to apply algorithm 4.4
to obtain a decomposition matrix B for φ. For convenience we denote ω2n simply
as ω and the Hadamard matrix as

H = DFT2 =
1√
2

(

1 1
1 −1

)

.

1. Since ρyi (x) = ρi(yxy
−1) = ρi(x

−1) = ρ2n−i(x) we see that there are exactly
two extendable ρi namely for i = 0, 2n−1. The sequences of inner conjugates
are given by ρi, ρ2n−i, i 6= 0, 2n−1. We need a permutation P reordering the
ρi as

ρ0, ρ2n−1
︸ ︷︷ ︸

extendables

, ρ1, ρ2n−1, . . . , ρi, ρ2n−i, . . . , ρ2n−1−1, ρ2n−1+1
︸ ︷︷ ︸

pairs of inner conjugates

.

This can be accomplished by the circuit given in figure 6 since the n-cycle
on the qubits which is performed first yields a decimation by two on the
indices, i. e. the indices 0, . . . , 2n−1 − 1 have found their correct position.
The only thing which remains to do is to perform the operation x 7→ −x
on the odd positions. This can be done by an inversion of all (odd) bits
followed by a x 7→ x+ 1 shift Pn−1 on the odd states of the register.
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.
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❉
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❉
❉
❉
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�
�

�
�

�
�

�
�

❤

❤

❤

❤

•

Pn−1

•

..

.

Figure 6: Ordering the irreducibles of Z2n E D2n+1

2. M can be omitted since all the ρi are of degree 1.

3. Let φA·P = ρ. We extend ρ summandwise to ρ:

• ρ0 = 1N can be extended by 1G.

• ρ2n−1 can be extended through ρ2n−1(y) = 1.

• The sequences ρi ⊕ ρ2n−i, i 6= 0, 2n−1 can be extended by ρi ↑T G:

ρi ↑T G : x 7→
(

ωi 0
0 ω−i

)

, y 7→
(

0 1
1 0

)

.

4. Evaluation of ρ at the transversal T yields the Twiddle matrix

D = ρ(1)⊕ ρ(y)

= 12n ⊕










1
1

1
1

. . .
1

1










.

D is realized by the quantum circuit given in figure 7.

..

.

✐

s

✐

s

❝

❝

❝

..

.

Figure 7: Twiddle matrix for D2n+1

H

..

.

✐

s

✐

s

❝

❝

❝

H

..

.

Figure 8: Equalizing inductions
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❤

r

❤

r

❜

❜

❜

❜

H

H ❤

r

❤

r

❜

❜

❜

❜

H

..

.

Figure 9: Complete QFT circuit for the dihedral group D2n+1

5. According to lemma 4.3 the matrix C has the following diagonal form:

C = 12n ⊕ diag(1, 1, 1,−1, . . . , 1,−1
︸ ︷︷ ︸

2n−1−1 pairs

),

which is realized by the quantum circuit given in figure 8.

Summarizing we obtain that

B = (1p ⊗A · P ·M) ·D · (DFTp ⊗ 1|N |) · C

is a decomposition matrix for φ and a fast quantum Fourier transform for G. The
whole circuit is shown in figure 9.

5.2 QFT for the groups Q2n+1, QP2n+1, and QD2n+1

In the following we give the circuits for the groups Q2n+1 , QP2n+1 , and QD2n+1 .
In all cases we have 〈x〉 = N E G so that algorithm 4.4 has to be performed only
once for the last step. For the sake of brevity we will state only those parts of
the circuit which differ from the dihedral group. Some of the essential properties
of the groups are summarized in tabular 1. We use the same notation as in the
last section.

No. of 1-dim No. of 2-dim
Group Inner conjugates of Z2n irreducibles irreducibles

D2n+1 ρi, ρ2n−i 4 2n−1 − 1

Q2n+1 ρi, ρ2n−i 4 2n−1 − 1

QP2n+1 ρi, ρi(2n−1+1)mod 2n 2n 2n−2

QD2n+1 ρi, ρi(2n−1−1)mod 2n 4 2n−1 − 1

Table 1: A class of non-abelian 2-groups
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s
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s

❝
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❝
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Figure 10: Twiddle matrix for Q2n+1
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.

✄
✄
✄
✄
✄
✄
✄
✄
✄
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❈
❈
❈
❈
❈
❈
❈
❈
❈

..

.

Figure 11: Permutation for QP2n+1

• Q2n+1 : The irreducibles ρi extend or induce in the same way as in the
dihedral case. Hence the QFT only differs in the Twiddle matrix D since
for a not extendable ρi we have

(ρi ↑T G)(y) =

(

0 1
−1 0

)

.

Thus the Twiddle matrix D is given by

D = 12n ⊕










1
1

1−1
. . .

1−1










and can be realized by the circuit in figure 10.

• QP2n+1 : To determine which ρi are extendable we use ρyi (x) = ρi(yxy
−1) =

ρi(x
2n−1+1). Hence

ρi = ρyi ⇔ ωi = ωi·(2n−1+1) ⇔ ωi·2n−1

= 1 ⇔ 2 | i

and there are exactly 2n−1 extendable ρi. The reordering permutation P
has the easy form shown in figure 11, and the matrix D is given by

D = 12n ⊕ 12n−1 ⊕







1
1

. . .
1

1







which is simply a doubly controlled not as visualized in figure 12.

The matrix C then is given by figure 13.

• QD2n+1 : Here we have ρyi (x) = ρi(x
2n−1−1) and

ρi = ρyi ⇔ ωi = ωi·(2n−1−1) ⇔ ωi·(2n−1−2) = 1 ⇔ i = 0, 2n−1.
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Figure 12: Twiddle matrix for
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Figure 13: Equalizing for QP2n+1
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Figure 14: The permutation for the QD2n+1

Thus everything is the same as in the dihedral case beside the ordering
permutation P which takes the more complicate form shown in figure 14.

Investigation of the quantum circuits yields the following theorem.

Theorem 5.1 The Fourier transforms for the groups G = D2n , Q2n , QP2n,
and QD2n can be performed on a quantum computer in O(log2 |G|) elementary
operations.

Proof: We can treat the four series uniformly, since the Fourier transforms all
have the same decomposition pattern. First, in all cases a Fourier transform for
the normal subgroup Z2n−1 is performed with cost of O(n2) basic operations. The
reordering permutation P , the Twiddle matrix D, and the equalizing matrix C
cost O(n2) in case of D2n , Q2n , and QD2n due to lemma 3.2 and example 3. For
QP2n we need only O(1) operations for P , D, and C. �

All presented Fourier transforms have been implemented by the authors in the
language GAP [20] using the package AREP [11] which will be available soon as
a GAP share package.
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6 Conclusions and Outlook

A constructive algorithm has been presented allowing to attack the problem of
constructing fast Fourier transforms for 2-groups G on a quantum computer built
up from qubits. For a certain class of non-abelian 2-groups the algorithm has
been successfully applied. All the QFTs created are of computational complexity
O(log2 |G|) like in the case of the cyclic group Z2n. The main problem imposed
by the implementation of certain permutation and block diagonal matrices has
been solved efficiently.

Using the recursion formula from theorem 4.1 it should be possible to con-
struct QFTs for other classes of groups as well as to realize certain signal trans-
forms on a quantum computer by means of symmetry-based decomposition (see
[19], [10], [16]).

We are indebted to Markus Grassl for helpful comments and discussions. Part
of this work was presented and completed during the 1998 Elsag-Bailey – I.S.I.
Foundation research meeting on quantum computation.
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