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Abstract — We introduce a new class of quantum
error–correcting codes derived from (classical) Reed–
Solomon codes over finite fields of characteristic two.
Quantum circuits for encoding and decoding based on
the discrete cyclic Fourier transform over finite fields
are presented.

I. Introduction

During the last years it has been shown that computers tak-
ing advantage of quantum mechanical phenomena outperform
currently used computers. The striking examples are inte-
ger factoring in polynomial time (see [8]) and finding pre–
images of an n–ary Boolean function (“searching”) in time
O(

√
2n) (see [5]). Quantum computers are not only of theo-

retical nature—there are several suggestions how to physically
realize them (see, e. g., [2, 3]).

On the way towards building a quantum computer, one
very important problem is to stabilize quantum mechanical
systems since they are very vulnerable. A theory of quantum
error–correcting codes has already been established (see [6]).
Nevertheless, the problem of how to encode and decode quan-
tum error–correcting codes has hardly been addressed, yet.

We present the construction of quantum error–correcting
codes based on classical Reed–Solomon (RS) codes. For RS
codes, many classical decoding techniques exist. RS codes can
also be used in the context of erasures and for concatenated
codes. Encoding and decoding of quantum RS codes is based
on quantum circuits for the cyclic discrete Fourier transform
over finite fields which are presented in the full paper, together
with the quantum implementation of any linear transforma-
tion over finite fields. We start with a brief introduction to
quantum computation and quantum error–correcting codes,
followed by some results about binary codes obtained from
codes over extension fields.

II. Qubits and Quantum Registers

The basic unit of quantum information, a quantum bit (or
short qubit), is represented by the normalized linear combina-
tion

|q〉 = α|0〉 + β|1〉, where α, β ∈ C, |α|2 + |β|2 = 1. (1)

Here |0〉 and |1〉 are orthonormal basis states written in Dirac
notation. The normalization condition in Eq. (1) stems from
the fact that when extracting classical information from the
quantum system by a measurement, the results “0” and “1”
occur with probability |α|2 and |β|2, resp.

A quantum register of length n is obtained by combining
n qubits modelled by the n–fold tensor product (C 2)⊗n. The
canonical orthonormal basis of (C 2)⊗n is

B :=
{

|b1〉 ⊗ . . .⊗ |bn〉 =: |b1 . . . bn〉 = |b〉
∣

∣

∣
bi ∈ {0, 1}

}

.

Hence the state of an n qubit register is given by

|ψ〉 =
∑

b∈{0,1}n

cb |b〉, where cb ∈ C and
∑

b∈{0,1}n
|cb |2 = 1.

III. Quantum Error–Correcting Codes

One common assumption in the theory of quantum error–
correcting codes is that errors are local, i. e., only a small
number of qubits are disturbed when transmitting or storing
the state of an n qubit register. The basic types of errors are
bit–flip errors exchanging the states |0〉 and |1〉, phase–flip er-
rors changing the relative phase of |0〉 and |1〉 by π, and their
combination. The bit–flip error corresponds to the Pauli ma-
trix σx, the phase–flip error to σz, and their combination to
σy. It is sufficient to consider only this discrete set of errors
in order to cope with any possible local error (see [6]).

Errors operating on an n qubit system are represented by
tensor products of Pauli matrices and identity. The weight of
an error e = e1 ⊗ . . . ⊗ en, where ei ∈ {id, σx, σy, σz} is the
number of local errors ei that differ from identity.

The construction of quantum Reed–Solomon codes is based
on the construction of quantum error–correcting codes from
weakly self–dual binary codes (see, e. g., [9]). That construc-
tion is summarized by the following definition and theorem.

Definition 1 Let C = [N,K] be a weakly self–dual linear bi-
nary code, i. e., C ≤ C⊥, and let {wj | j = 1, . . . , 2N−2K}
be a system of representatives of the cosets C⊥/C. Then the
basis states of a quantum code C = [[N,N − 2K]] are given by

|ψj〉 = 1
√

|C|
∑

c∈C

|c +wj〉.

Theorem 2 Let d be the minimum distance of the dual code
C⊥ in Definition 1. Then the corresponding quantum code
is capable of detecting up to d − 1 errors or, equivalently, is
capable of correcting up to (d− 1)/2 errors.

IV. Main Results

The following definition and theorem show how to obtain
weakly self–dual binary codes from codes over extension fields.

Definition 3 Let C = [N,K,D] denote a linear code of
length N , dimension K, and minimum distance D over the
field F2k , and let B = (b1, . . . , bk) be a basis of F2k over F2.
Then the binary expansion of C with respect to the basis B, de-
noted by B(C), is the linear binary code C2 = [kN, kK, d ≥ D]
given by

C2 = B(C) :=
{

(cij)i,j ∈ F
kN
2

∣

∣

∣
c =

(

∑

j
cijbj

)

i
∈ C

}

.
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Theorem 4 Let C = [N,K] be a linear code over the field
F2k and let C⊥ be its dual. Then the dual code of the binary
expansion B(C) of C with respect to the basis B is the binary
expansion B⊥(C⊥) of the dual code C⊥ with respect to the dual
basis B⊥, i. e., the following diagram is commutative:

C −→ C⊥

basis B





y





y
dual basis B⊥

B(C) −→ B⊥(C⊥) = B(C)⊥

Using these results, we are ready to define quantum Reed–
Solomon codes, based on classical weakly self–dual RS codes.

Definition 5 Let C = [N,K, δ] where N = 2k − 1, K =
N − δ + 1, and δ > N/2 + 1 be a Reed–Solomon code over
F
2k

(with b = 0). Furthermore, let B be a self–dual basis
of F

2k
over F2. Then the quantum Reed–Solomon code is the

quantum error–correcting code C of length kN derived from the
weakly self–dual binary code B(C) according to Definition 1.

The parameters of the quantum Reed–Solomon code are given
by the following theorem.

Theorem 6 The quantum RS code C of Definition 5 encodes
k(N − 2K) qubits using kN qubits. It is able to detect at least
up to K errors, i. e., C = [[kN, k(N − 2K), d ≥ K + 1]].
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Fig. 1: Encoder for a quantum Reed–Solomon code.

In Figure 1 a quantum circuit for encoding quantum RS
codes is presented. The k(N − 2K) qubit input state |φ〉 is
transformed into a superposition of different cosets of the RS
code. These cosets are determined in the frequency domain,
followed by the quantum version of an inverse Fourier trans-
form DFT−1 over F

2k
. The DFT is also used for decoding.

The syndromes for bit–flip and phase–flip errors are computed
in the frequency domain (see Figure 2).

V. Conclusion

Most quantum error–correcting codes known so far are based
on classical binary codes or codes over GF (4) = F22 (see [1]).
We have demonstrated how codes over extension fields of
higher degree can be used. They might prove useful, e. g.,
for concatenated coding.

The spectral techniques for encoding and decoding pre-
sented do not only apply to Reed–Solomon codes, but in gen-
eral to all cyclic codes. The main advantage of Reed–Solomon
codes is that no field extension is necessary. The same is true
for all BCH codes of length n over the field F

2k
where n|2k−1.
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Fig. 2: Quantum circuit for computing the syndrome for a
quantum Reed–Solomon code.

In addition to the spectral techniques, cyclic codes provide a
great variety of encoding/decoding principles, e. g., based on
linear shift registers that can be translated into quantum al-
gorithms (see [4]).

The quantum implementation of linear mappings over fi-
nite fields presented in the full paper enlarges the set of effi-
cient quantum subroutines. In contrast, the transforms used
in most quantum algorithms—such as cyclic and generalized
Fourier transforms—are defined over the complex field (see,
e. g., [7]).

It has to be investigated how efficient fully quantum algo-
rithms for error–correction can be obtained, e. g., using quan-
tum versions of the Berlekamp–Massey algorithm or of the
Euclidean algorithm.
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