Skip to main content

Computing a Basis of \( \mathcal{L}(D) \) on an affine algebraic curve with one rational place at infinit

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1719))

Abstract

Under the assumption that we have defining equations of an affine algebraic curve in special position with respect to a rational place Q, we propose an algorithm computing a basis of \( \mathcal{L}(D) \) of a divisor D from an ideal basis of the ideal \( \mathcal{L}(D + \infty Q) \) of the affine coordinate ring \( \mathcal{L}(\infty Q) \) of the given algebraic curve, where \( \mathcal{L}(D + \infty Q): = \bigcup\nolimits_{i = 1}^\infty {\mathcal{L}(D + iQ)} \). Elements in the basis produced by our algorithm have pairwise distinct discrete valuations at Q, which is crucial in the construction of algebraic geometry codes. Our method is applicable to a curve embedded in an affine space of arbitrary dimension, and involves only the Gaussian elimination and the division of polynomials by the Gröbner basis of the ideal defining the curve.

2000 Mathematical Subject Classification. Primary 14Q05, 13P10; Secondary 94B27, 11T71, 14H05, 14C20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arita, Publickey cryptosystems with C ab curves (1), Technical Report ISEC97-54, Institute of Electronics, Information and Communication Engineers, December 1997, (Japanese).

    Google Scholar 

  2. T.G. Berry, Construction of linear systems on hyperelliptic curves, J. Symbolic Comput. 26 (1998), no. 3, 315–327.

    Article  MATH  MathSciNet  Google Scholar 

  3. V.A. Brill and M. Nöther, Ueber die algebraischen functionen und ihre anwendung in der geometrie, Math. Ann. 7 (1874), 269–310.

    Google Scholar 

  4. J. Coates, Construction of rational functions on a curve, Proc. Cambridge Phil. Soc. 68 (1970), 105–123.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, second ed., Springer-Verlag, Berlin, 1996.

    MATH  Google Scholar 

  6. J.H. Davenport, On the integration of algebraic functions, Lecture Notes in Computer Science, vol. 102, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  7. D. Eisenbud, Commutative algebra with a view towarda lgebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  8. G.L. Feng and T.R.N. Rao, Decoding algebraic geometric codes up to the designed minimum distance, IEEE Trans. Inform. Theory 39 (1993), 36–47.

    MathSciNet  Google Scholar 

  9. R. Ganong, On plane curves with one place at infinity, J. Reine Angew. Math. 307/308 (1979), 173–193.

    MathSciNet  Google Scholar 

  10. D.R. Grayson and M.E. Stillman, User’s manual of Macaulay2 version 0.8.41, http://www.math.uiuc.edu/Macaulay2, March 1998.

  11. G. Hach`e and D. Le Brigand, Effective construction of algebraic geometry codes, IEEE Trans. Inform. Theory 41 (1995), no. 6, 1615–1628.

    Article  MathSciNet  Google Scholar 

  12. M.-D. Huang and D. Ierardi, Efficient algorithms for the Riemann-Roch problem and for addition in the Jacobian of a curve, J. Symbolic Comput. 18 (1994), 519–539.

    MATH  MathSciNet  Google Scholar 

  13. D. Le Brigand and J.J. Risler, Algorithme de Brill-Noether et codes de Goppa,Bull. Soc. Math. France 116 (1988), no. 2, 231–253.

    MATH  Google Scholar 

  14. R. Matsumoto, The C ab curve, http://tskwww.ss.titech.ac.jp/~ryutaroh/cab.html, December 1998.

  15. R. Matsumoto and S. Miura, On the Feng-Rao bound for the L-construction of algebraic geometry codes, submitted to IEICE Trans. Fundamentals, 1999.

    Google Scholar 

  16. R. Matsumoto, M. Oishi, and K. Sakaniwa, Fast encoding of algebraic geometry codes, submitted to IEEE Trans. Inform. Theory, 1999.

    Google Scholar 

  17. S. Miura, Algebraic geometric codes on certain plane curves, Trans. IEICE J75-A (1992), no. 11, 1735–1745 (Japanese).

    Google Scholar 

  18. S. Miura, Constructive theory of algebraic curves, Proc. 17th. Symp. Inform. Theory and Its Appl., December 1994, pp. 461–464 (Japanese).

    Google Scholar 

  19. ,S. Miura, Ph.D. thesis, Univ. Tokyo, 1997 (Japanese).

    Google Scholar 

  20. S. Miura, Linear codes on affine algebraic curves, Trans. IEICE J81-A (1998), no. 10, 1398–1421 (Japanese).

    Google Scholar 

  21. S.C. Porter, Decoding codes arising from Goppa’s construction on algebraic curves, Ph.D. thesis, Yale Univ., New Heaven, CT, 1988.

    Google Scholar 

  22. S.C. Porter, B.-Z. Shen, and R. Pellikaan, Decoding geometric Goppa codes using an extra place, IEEE Trans. Inform. Theory 38 (1992), no. 6, 1663–1676.

    Article  MATH  MathSciNet  Google Scholar 

  23. K. Saints and C. Heegard, Algebraic-geometric codes and multidimensional cyclic codes: A unified theory and algorithms for decoding using Gröbner bases, IEEE Trans. Inform. Theory 41 (1995), no. 6, 1733–1751.

    MATH  MathSciNet  Google Scholar 

  24. H. Stichtenoth, Algebraic function fields and codes, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  25. E.J. Volcheck, Computing in the Jacobian of a plane algebraic curve, Proc. Algorithmic Number Theory I, Lecture Notes in Computer Science, vol. 877, Springer-Verlag, 1994, pp. 221–233.

    MathSciNet  Google Scholar 

  26. E.J. Volcheck, Addition in the Jacobian of a curve over a finite field, http://acm.org/~volcheck/, 1995.

  27. O. Zariski and P. Samuel, Commutative algebra, Graduate Texts in Mathematics, vol. 28,29, Springer-Verlag, Berlin, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matsumoto, R., Miura, S. (1999). Computing a Basis of \( \mathcal{L}(D) \) on an affine algebraic curve with one rational place at infinit. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999. Lecture Notes in Computer Science, vol 1719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46796-3_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-46796-3_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66723-0

  • Online ISBN: 978-3-540-46796-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics