Skip to main content

Shape Models and Object Recognition

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1681))

Abstract

This paper discusses some problems that should be addressed by future object recognition systems.

In particular, there are things that we know how to do today, for example:

  1. 1.

    Computing the pose of a free-form three-dimensional object from its outline (e.g. [106]).

  2. 2.

    Identifying a polyhedral object from point and line features found in an image (e.g., [46, 89]).

  3. 3.

    Recognizing a solid of revolution from its outline (e.g., [59]).

  4. 4.

    Identifying a face with a fixed pose in a photograph (e.g., [10, 111]).

This work was partially supported by the National Science Foundation under grant IRI-9634312 and by the Beckman Institute at the University of Illinois at Urbana- Champaign. M. Cepeda is now with Qualcomm, Inc. and S. Sullivan is now with Industrial Light and Magic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.J. Agin. Representation and description of curved objects. PhD thesis, Stanford University, Stanford, CA, 1972.

    Book  Google Scholar 

  2. V.I. Arnol’d. Singularities of smooth mappings. Russian Math. Surveys, pages 3–44, 1969.

    Google Scholar 

  3. H. Asada and J.M. Brady. The curvature primal sketch. IEEE Trans. Patt. Anal. Mach. Intell., 8(1):2–14, 1986.

    Article  Google Scholar 

  4. N. Ayache and O. Faugeras. Hyper: a new approach for the recognition and positioning of two-dimensional objects. IEEE Trans. Patt. Anal. Mach. Intell., 8(1):44–54, January 1986.

    Article  Google Scholar 

  5. A.H. Barr. Superquadrics and angle preserving transformations. IEEE Computer Graphics and Applications, 1:11–23, January 1981.

    Article  Google Scholar 

  6. J. Barraquand and M. Berthod. A non-linear second order edge detector. In International Image Week, Second Image Symposium, Nice, France, 1986.

    Google Scholar 

  7. J. Barraquand, B. Langlois, and J.C. Latombe. Robot motion planning with many degrees of freedom and dynamic constraints. In Int. Symp. on Robotics Research, pages 74–83, Tokyo, Japan, 1989. Preprints.

    Google Scholar 

  8. R. Basri, D. Roth, and D. Jacobs. Clustering apperance of 3D objects. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages 414–420, Santa Barbara, CA, June 1998.

    Google Scholar 

  9. B.G. Baumgart. Geometric modeling for computer vision. Technical Report AIM-249, Stanford University, 1974. Ph.D. Thesis. Department of Computer Science.

    Google Scholar 

  10. P.N. Belhumeur, J.P. Hesphanha, and D.J. Kriegman. Eigengaces vs. Fisherfaces: recognition using class-specific linear projection. IEEE Trans. Patt. Anal. Mach. Intell., 19(7):711–720, 1997.

    Article  Google Scholar 

  11. R. Bergevin and M. Levine. Part decomposition of objects from single view line drawings. CVGIP: Image Understanding, 55(3):17–34, 1992.

    MATH  Google Scholar 

  12. I. Biederman. Human image understanding: Recent research and a theory. Comp. Vis. Graph. Im. Proc., 32(1):29–73, 1985.

    Article  Google Scholar 

  13. T.O. Binford. Visual perception by computer. In Proc. IEEE Conference on Systems and Control, 1971.

    Google Scholar 

  14. T.O. Binford. Body-centered representation and recognition. In M. Hebert, J. Ponce, T.E. Boult, and A. Gross, editors, Object Representation for Computer Vision, number 994 in Lecture Notes in Computer Science, pages 207–215. Springer-Verlag, 1995.

    Chapter  Google Scholar 

  15. T.O. Binford and T.S. Levitt. Quasi-invariants: theory and applications. In Proc. DARPA Image Understanding Workshop, pages 819–829, 1993.

    Google Scholar 

  16. H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn, editor, Models for perception of speech and visual form. MIT Press, Cambridge, MA, 1967.

    Google Scholar 

  17. R.A. Brooks. Symbolic reasoning among 3-D models and 2-D images. Artificial Intelligence, 17(1-3):285–348, 1981.

    Article  Google Scholar 

  18. R.A. Brooks, R. Greiner, and T.O. Binford. Model-based three-dimensional interpretation of two-dimensional images. In Proc. International Joint Conference on Artificial Intelligence, pages 105–113, Tokyo, Japan, Aug. 1979.

    Google Scholar 

  19. J.W. Bruce, P.J. Giblin, and F. Tari. Parabolic curves of evolving surfaces. Int. J. of Comp. Vision, 17(3):291–306, 1996.

    Article  Google Scholar 

  20. B. Burns, R. Weiss, and E. Riseman. The non-existence of general-case viewinvariants. In Geometric Invariance in Computer Vision, pages 120–131. MIT Press, 1992.

    Google Scholar 

  21. M. Cepeda.Generalized cylinders revisited: theoretical results and preliminary implementation. Master’s thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, 1998.

    Google Scholar 

  22. B. Chiyokura and F. Kimura. Design of solids with free-form surfaces. Computer Graphics, 17(3):289–298, Nov. 1983.

    Article  Google Scholar 

  23. D.T. Clemens and D.W. Jacobs. Model group indexing for recognition. IEEE Trans. Patt. Anal. Mach. Intell., 13(10):1007–1017, 1991.

    Article  Google Scholar 

  24. J.L Crowley and A.C. Parker. A representation of shape based on peaks and ridges in the difference of low-pass transform. IEEE Trans. Patt. Anal. Mach. Intell., 6:156–170, 1984.

    Article  Google Scholar 

  25. S. Dickinson, A.P Pentland, and A. Rosenfeld. 3D shape recovery using distributed aspect matching. IEEE Trans. Patt. Anal. Mach. Intell., 14(2):174–198, 1992.

    Article  Google Scholar 

  26. R. Duda and P. Hart. Pattern classification and scene analysis. Wiley, 1973.

    Google Scholar 

  27. G. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges for image analysis. Technical report, Univ. of North Carolina, Dept. of Comp. Sc., 1993.

    Google Scholar 

  28. D. Eggert and K. Bowyer. Computing the orthographic projection aspect graph of solids of revolution. In Proc. IEEE Workshop on Interpretation of 3D Scenes, pages 102–108, Austin, TX, November 1989.

    Google Scholar 

  29. D. Eggert, K. Bowyer, C. Dyer, H. Christensen, and D. Goldgof. The scale space aspect graph. IEEE Trans. Patt. Anal. Mach. Intell., 15(11):1114–1130, 1993.

    Article  Google Scholar 

  30. G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego, CA, 1993.

    MATH  Google Scholar 

  31. O.D. Faugeras and M. Hebert. The representation, recognition, and locating of 3-D objects. International Journal of Robotics Research, 5(3):27–52, Fall 1986.

    Article  Google Scholar 

  32. D. Forsyth. Recognizing an algebraic surface from its outline. Int. J. of Comp. Vision, 18(1):21–40, April 1996.

    Article  Google Scholar 

  33. D.A. Forsyth and M.M. Fleck. Body plans. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages 678–683, San Juan, PR, June 1997.

    Google Scholar 

  34. J.M. Gauch and S.M. Pizer. Multiresolution analysis of ridges and valleys in grey-scale images. IEEE Trans. Patt. Anal. Mach. Intell., 15(6), June 1993.

    Google Scholar 

  35. Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and representing aspect graphs of polyhedral objects. IEEE Trans. Patt. Anal. Mach. Intell., 13(6), June 1991.

    Google Scholar 

  36. W.E.L. Grimson and T. Lozano-Pérez. Localizing overlapping parts by searching the interpretation tree. IEEE Trans. Patt. Anal. Mach. Intell., 9(4):469–482, 1987

    Article  Google Scholar 

  37. R.M. Haralick. Ridges and valleys in digital images. Comp. Vis. Graph. Im. Proc., 22:28–38, 1983.

    Article  Google Scholar 

  38. R.M. Haralick and L.G. Shapiro. Computer and robot vision. Addison Wesley, 1992.

    Google Scholar 

  39. R.M. Haralick, L.T. Watson, and T.J. Laffey. The topographic primal sketch. International Journal of Robotics Research, 2:50–72, 1983.

    Article  Google Scholar 

  40. C. Harris and M. Stephens. A combined edge and corner detector. In 4th Alvey Vision Conference, pages 189–192, Manchester, UK, 1988.

    Google Scholar 

  41. G. Healey and D. Slater. Global color constancy. J. Opt. Soc. Am. A, 11(11):3003–3010, 1994.

    Article  Google Scholar 

  42. M. Hebert, J. Ponce, T.E. Boult, A. Gross, and D. Forsyth. Report on the NSF/ARPA workshop on 3D object representation for computer vision. In M. Hebert, J. Ponce, T.E. Boult, and A. Gross, editors, Object Representation for Computer Vision, Lecture Notes in Computer Science. Springer-Verlag, 1995. Also available through the World-Wide Web at the following address: //www.ius.cs.cmu.edu/usr/users/hebert/www/workshop/report.html.

    Chapter  Google Scholar 

  43. D.D. Hoffman and W. Richards. Parts of recognition. Cognition, 18:65–96, 1984.

    Article  Google Scholar 

  44. J. Hollerbach. Hierarchical shape description of objects by selection and modi-fication of prototypes. AI Lab. TR-346, MIT, 1975.

    Google Scholar 

  45. R. Horaud and J.M. Brady. On the geometric interpretation of image contours. In Proc. Int. Conf. Comp. Vision, London, U.K., June 1987.

    Google Scholar 

  46. D.P. Huttenlocher and S. Ullman. Object recognition using alignment. In Proc. Int. Conf. Comp. Vision, pages 102–111, London, U.K., June 1987.

    Google Scholar 

  47. Y.L. Kergosien. La famille des projections orthogonales d’une surface et ses singularités. C.R. Acad. Sc. Paris, 292:929–932, 1981.

    MathSciNet  MATH  Google Scholar 

  48. B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker. The shape triangle: parts, protrusions and bends. Technical Report TR-92-15, McGill University Research Center for Intelligent Machines, 1992.

    Google Scholar 

  49. B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker. Shapes, shocks, and deformations I: the components of shape and the reaction-diffusion space. Int. J. of Comp. Vision, 15:189–224, 1995.

    Article  Google Scholar 

  50. J.J. Koenderink. What does the occluding contour tell us about solid shape? Perception, 13:321–330, 1984.

    Article  Google Scholar 

  51. J.J. Koenderink. Solid Shape. MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  52. J.J. Koenderink and A.J. Van Doorn. The singularities of the visual mapping. Biological Cybernetics, 24:51–59, 1976.

    Article  MATH  Google Scholar 

  53. J.J. Koenderink and A.J. Van Doorn. The internal representation of solid shape with respect to vision. Biological Cybernetics, 32:211–216, 1979.

    Article  MATH  Google Scholar 

  54. J.J. Koenderink and A.J. Van Doorn. Representation of local geometry in the visual system. Biological Cybernetics, 55:367–375, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  55. J.J. Koenderink and A.J. Van Doorn. Local features of smooth shapes: Ridges and courses. In Geometric Methods in Computer Vision II, pages 2–13, 1993.

    Google Scholar 

  56. D.J. Kriegman and J. Ponce. Computing exact aspect graphs of curved objects: solids of revolution. Int. J. of Comp. Vision, 5(2):119–135, 1990.

    Article  Google Scholar 

  57. D.J. Kriegman and J. Ponce. A new curve tracing algorithm and some applications. In P.J. Laurent, A. Le Méhauté, and L.L. Schumaker, editors, Curves and Surfaces, pages 267–270. Academic Press, New York, 1991.

    Chapter  MATH  Google Scholar 

  58. M. Leyton. A process grammar for shape. Artificial Intelligence, 34:213–247, 1988.

    Article  Google Scholar 

  59. J. Liu, J.L. Mundy, D. Forsyth, A. Zisserman, and C. Rothwell. Efficient recognition of rotationally symmetric surfaces and straight homogeneous generalized cylinders. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages 123–128, New York City, NY, 1993.

    Google Scholar 

  60. C. Loop. Smooth spline surfaces over irregular meshes. Computer Graphics, pages 303–310, Aug. 1994.

    Google Scholar 

  61. W. Lorensen and H. Cline. Marching cubes: a high resolution 3D surface construction algorithm. Computer Graphics, 21:163–169, 1987.

    Article  Google Scholar 

  62. D. Lowe. The viewpoint consistency constraint. Int. J. of Comp. Vision, 1(1):57–72, 1987.

    Article  Google Scholar 

  63. D. Lowe and T.O. Binford. Segmentation and aggregation: An approach to figure-ground phenomena. In Proc. DARPA Image Understanding Workshop, pages 168–178, 1982.

    Google Scholar 

  64. A. Mackworth and F. Mokhtarian. The renormalized curvature scale space and the evolution properties of planar curves. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages 318–326, 1988.

    Google Scholar 

  65. D. Marr. Vision. Freeman, San Francisco, 1982.

    Google Scholar 

  66. D. Marr and K. Nishihara. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. Royal Society, London, B-200:269–294, 1978.

    Google Scholar 

  67. A.P. Morgan. SolvingPol ynomial Systems using Conti nuation for Engineering and Scientific Problems. Prentice Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  68. Y. Moses and S. Ullman. Limitations of non model-based recognition schemes. In Proc. European Conf. Comp. Vision, pages 820–828, 1992.

    Google Scholar 

  69. J.L. Mundy and A. Zisserman. Geometric Invariance in Computer Vision. MIT Press, Cambridge, Mass., 1992.

    Google Scholar 

  70. J.L. Mundy, A. Zisserman, and D. Forsyth. Applications of Invariance in Computer Vision, volume 825 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

    Google Scholar 

  71. H. Murase and S. Nayar. Visual learning and recognition of 3D objects from appearance. Int. J. of Comp. Vision, 14(1):5–24, 1995.

    Article  Google Scholar 

  72. V.S. Nalwa. Line-drawing interpretation: bilateral symmetry. In Proc. DARPA Image Understanding Workshop, pages 956–967, Los Angeles, CA, February 1987.

    Google Scholar 

  73. V.S. Nalwa. A guided tour of computer vision. Addison Wesley, 1993.

    Google Scholar 

  74. R. Nevatia and T.O. Binford. Description and recognition of complex curved objects. Artificial Intelligence, 8:77–98, 1977.

    Article  MATH  Google Scholar 

  75. Quang-Loc Nguyen and M.D. Levine. Representing 3D objects in range images using geons. Computer Vision and Image Understanding, 63(1):158–168, January 1996.

    Article  Google Scholar 

  76. A. Noble, D. Wilson, and J. Ponce. On Computing Aspect Graphs of Smooth Shapes from Volumetric Data. Computer Vision and Image Understanding: special issue on Mathematical Methods in Biomedical Image Analysis, 66(2):179–192, 1997.

    Article  Google Scholar 

  77. A.P. Pentland. Perceptual organization and the representation of natural form. Artificial Intelligence, 28:293–331, 1986.

    Article  MathSciNet  Google Scholar 

  78. S. Petitjean. Géométrie énumérative et contacts de variétés linéaires: application aux graphes d’aspects d’objets courbes. PhD thesis, Institut National Polytechnique de Lorraine, 1995.

    Google Scholar 

  79. S. Petitjean, J. Ponce, and D.J. Kriegman. Computing exact aspect graphs of curved objects: Algebraic surfaces. Int. J. of Comp. Vision, 9(3):231–255, 1992.

    Article  Google Scholar 

  80. J. Ponce. On characterizing ribbons and finding skewed symmetries. Comp. Vis. Graph. Im. Proc., 52:328–340, 1990.

    Article  Google Scholar 

  81. J. Ponce. Straight homogeneous generalized cylinders: differential geometry and uniqueness results. Int. J. of Comp. Vision, 4(1):79–100, 1990.

    Article  Google Scholar 

  82. J. Ponce and J.M. Brady. Toward a surface primal sketch. In T. Kanade, editor, Three-dimensional machine vision, pages 195–240. Kluwer Publishers, 1987.

    Google Scholar 

  83. J. Ponce and D. Chelberg. Finding the limbs and cusps of generalized cylinders. Int. J. of Comp. Vision, 1(3):195–210, October 1987.

    Article  Google Scholar 

  84. J. Ponce, D. Chelberg, and W. Mann. Invariant properties of straight homogeneous generalized cylinders and their contours. IEEE Trans. Patt. Anal. Mach. Intell., 11(9):951–966, September 1989.

    Article  Google Scholar 

  85. W. Richards, J.J. Koenderink, and D.D. Hoffman. Inferring 3D shapes from 2D codons. MIT AI Memo 840, MIT Artificial Intelligence Lab, 1985.

    Google Scholar 

  86. M. Richetin, M. Dhome, J.T. Lapresté, and G. Rives. Inverse perspective transform from zero-curvature curve points: Application to the localization of some generalized cylinders from a single view. IEEE Trans. Patt. Anal. Mach. Intell., 13(2):185–191, February 1991.

    Article  Google Scholar 

  87. J.H. Rieger. On the classification of views of piecewise-smooth objects. Image and Vision Computing, 5:91–97, 1987.

    Article  Google Scholar 

  88. J.H. Rieger. Global bifurcations sets and stable projections of non-singular algebraic surfaces. Int. J. of Comp. Vision, 7(3):171–194, 1992.

    Article  Google Scholar 

  89. L.G. Roberts. Machine perception of three-dimensional solids. In J.T. Tippett et al., editor, Optical and Electro-Optical Information Processing, pages 159–197. MIT Press, Cambridge, 1965.

    Google Scholar 

  90. A. Rosenfeld. Axial representations of shape. Comp. Vis. Graph. Im. Proc., 33:156–173, 1986.

    Article  MATH  Google Scholar 

  91. R. Rothe. Darstellende Geometrie des Geländes. 1914.

    Google Scholar 

  92. De Saint-Venant. Surfaces à plus grande pente constituées sur des lignes courbes. Bulletin de la soc. philomath. de Paris, March 1852.

    Google Scholar 

  93. H. Sato and T.O. Binford. Finding and recovering SHGC objects in an edge image. CVGIP: Image Understanding, 57:346–358, 1993.

    Article  Google Scholar 

  94. C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE Trans. Patt. Anal. Mach. Intell., 19(5):530–535, May 1997.

    Article  Google Scholar 

  95. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, New York, 1982.

    MATH  Google Scholar 

  96. J.A. Sethian. Level set methods: evolvingi nterfaces in geometry, fluid mechanics, computer vision and materials sciences. Cambridge University Press, 1996.

    Google Scholar 

  97. S.A. Shafer. Shadows and Silhouettes in Computer Vision. Kluwer Academic Publishers, 1985.

    Google Scholar 

  98. S.A. Shafer and T. Kanade. The theory of straight homogeneous generalized cylinders and a taxonomy of generalized cylinders. Technical Report CMU-CS-83–105, Carnegie-Mellon University, 1983.

    Google Scholar 

  99. I. Shimshoni and J. Ponce. Finite-resolution aspect graphs of polyhedral objects. IEEE Trans. Patt. Anal. Mach. Intell., 19(4):315–327, 1997.

    Article  Google Scholar 

  100. L. Shirman and C. Sequin. Local surface interpolation with Bezier patches. CAGD, 4:279–295, 1987.

    MATH  Google Scholar 

  101. K. Siddiqi and B.B. Kimia. Parts of visual form: computational aspects. IEEE Trans. Patt. Anal. Mach. Intell., 17(3):239–251, March 1995.

    Article  Google Scholar 

  102. D. Slater and G. Healey. Recognizing 3-d objects using local color invariants. IEEE Trans. Patt. Anal. Mach. Intell., 18(2):206–210, 1996.

    Article  Google Scholar 

  103. B.I Soroka and R. Bajcsy. Generalized cylinders from cross-sections. In Third Int. J. Conf. Patt. Recog., pages 734–735, 1976.

    Google Scholar 

  104. D. Stam. Distributed homotopy continuation and its application to robotic grasping. Master’s thesis, University of Illinois at Urbana-Champaign, 1992. Beckman Institute Tech. Report UIUC-BI-AI-RCV-92-03.

    Google Scholar 

  105. J. Stewman and K.W. Bowyer. Creating the perspective projection aspect graph of polyhedral objects. In Proc. Int. Conf. Comp. Vision, pages 495–500, Tampa, FL, 1988.

    Google Scholar 

  106. S. Sullivan and J. Ponce. Automatic model construction, pose estimation, and object recognition from photographs using triangular splines. In Proc. Int. Conf. Comp. Vision, pages 510–516, 1998.

    Google Scholar 

  107. S. Sullivan and J. Ponce. Automatic model construction, pose estimation, and object recognition from photographs using triangular splines. IEEE Trans. Patt. Anal. Mach. Intell., 20(10), Oct. 1998. In press.

    Google Scholar 

  108. S. Sullivan, L. Sandford, and J. Ponce. Using geometric distance fits for 3D object modelling and recognition. IEEE Trans. Patt. Anal. Mach. Intell., 16(12):1183–1196, December 1994.

    Article  Google Scholar 

  109. J.P. Thirion and G. Gourdon. The 3D marching lines algorithm: new results and proofs. Technical Report 1881-1, INRIA, 1993.

    Google Scholar 

  110. R.Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras. Journal of Robotics and Automation, RA-3(4):323–344, 1987.

    Article  Google Scholar 

  111. M. Turk and A.P. Pentland. Face recognition using eigenfaces. J. of Cognitive Neuroscience, 3(1), 1991.

    Google Scholar 

  112. S. Ullman and R. Basri. Recognition by linear combination of models. IEEE Trans. Patt. Anal. Mach. Intell., 13(10):992–1006, 1991.

    Article  Google Scholar 

  113. F. Ulupinar and R. Nevatia. Using symmetries for analysis of shape from contour. In Proc. Int. Conf. Comp. Vision, pages 414–426, Tampa, FL, December 1988.

    Google Scholar 

  114. C.E. Weatherburn. Differential geometry. Cambridge University Press, 1927.

    Google Scholar 

  115. I. Weiss. Projective invariants of shapes. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages 291–297, Ann Arbor, MI, 1988.

    Google Scholar 

  116. M. Wertheimer. Laws of organization in perceptual forms. Psychol. Forsch., 4:301–350, 1923. English translation in: W.B. Ellis, A source book of Gestalt psychology pages 71-88, 1973.

    Article  Google Scholar 

  117. A.P. Witkin. Scale-space filtering. In Proc. International Joint Conference on Artificial Intelligence, pages 1019–1022, Karlsruhe, Germany, 1983.

    Google Scholar 

  118. M. Zerroug and G. Medioni. The challenge of generic object recongnition. In M. Hebert, J. Ponce, T.E. Boult, and A. Gross, editors, Object Representation for Computer Vision, number 994 in Lecture Notes in Computer Science, pages 217–232. Springer-Verlag, 1995.

    Google Scholar 

  119. M. Zerroug and R. Nevatia. Using invariance and quasi-invariance for the segmentation and recovery of curved objects. In J.L. Mundy, A. Zisserman, and D. Forsyth, editors, Applications of Invariance in Computer Vision, volume 825 of Lecture Notes in Computer Science, pages 317–340. Springer-Verlag, 1994.

    Google Scholar 

  120. A. Zisserman, D.A. Forsyth, J.L. Mundy, and C.A. Rothwell. Recognizing general curved objects efficiently. In J. Mundy and A. Zisserman, editors, Geometric Invariance in Computer Vision, pages 228–251. MIT Press, Cambridge, Mass., 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ponce, J., Cepeda, M., Pae, Si., Sullivan, S. (1999). Shape Models and Object Recognition. In: Shape, Contour and Grouping in Computer Vision. Lecture Notes in Computer Science, vol 1681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46805-6_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-46805-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66722-3

  • Online ISBN: 978-3-540-46805-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics