
ized
stems,

lan-
MG
m”
L

el
iles”

: this
iant,
First-Class Extensibility for UML —
Packaging of Profiles, Stereotypes, Patterns

Desmond D’Souza, Aamod Sane, Alan Birchenough

Abstract. We discuss a first-class extensibility mechanism for the UML
based on Catalysis packages and frameworks [3]. Packages define and
structure meta-model extensions for different modeling language “profiles”.
Package frameworks support lightweight extensions like stereotypes as well
as heavyweight extensions. OCL can be used to define constraints and rules
for profiles and frameworks. Our approach rationalizes and
consolidates some core concepts within the UML standard, uses a
simple general mechanism for layering facilities onto that core in a
precise and well-defined way, and offers a way to simplify and re-
factor the UML specification.

1 Introduction

The UML has become a family of modeling languages, each with its own special
stereotypes and other extensions. This is understandable, since rule-based sy
compilers, signal-processors, control-systems, etc. all want the end-user modeling
guage to simplify the expression of their own problems and solutions. The O
“green” paper document ad/99-04-07 titled “White Paper on the Profile Mechanis
[1], proposes a mechanism named “Profile” to add to UML 1.3 to structure UM
extensions and provide:

• Specialization, visibility, and selection of meta-models

• Context for stereotypes, tagged values, and constraints

• Heavy-weight extensions to the meta-model

• Miscellaneous extensions, such as rules and notations.

In this paper we show how to consolidate current UML facilities to improve mod
structuring and management, satisfying the requirements for meta-model “prof
while providing first-class extensibility, with a simple application of:

• the existing UML package and package-import/generalization mechanism

• frameworks - to describe recurring patterns in models and meta-models

• OCL - to express constraints on the meta-model

The argument is quite simple:

• Use packages to define and structure both the meta-model and its extensions
is how the meta-model is already structured. Packages and import (or its var



-

rent
files.

a
eed

od-
ans,

and
ight

cribe
CL
erit-

on)
that
liza-

ility
ve a
ity
into

ed.
nt

eta-
packagegeneralization) provide all that is required to control granularity of ele
ment grouping and visibility; profiles are just packages.

• Utilize package imports (or packagegeneralization) so an importing package can
extend the definition of an imported element: there are good reasons why diffe
aspects of a meta-element should be defined in different packages e.g. Pro
UML 1.3 ostensibly supports this for package generalization.

• Define the “join” rules by which such extended definitions are combined: if
given meta-element is extended in two different profile packages, then we n
clear rules for combining these two extensions.

• Use meta-model level frameworks to express common structural patterns in m
els: For example, a framework can express structural patterns like JavaBe
lightweight extensions like stereotypes, relationships such as “instantiation”
its implied constraints on the graphs of model elements, as well as heavywe
meta-model extensions.

• Use OCL at the meta-model level to describe constraints: For instance, to des
a constraint that the “Java” profile does not allow multiple inheritance, add O
expressions to the Generalization meta-model element to forbid multiple inh
ance.

2 Why use UML Packages as the Base?

All UML modeling is done in some package. Package import (via generalizati
define visibility of elements, so elements from another package are only visible if
package is transitively imported (or at least transitively used via package genera
tion relationship). The granularity of a package determines the granularity of visib
control. The UML meta-model is already defined in packages, so we already ha
mechanism for controlled granularity and visibility of meta-models. If the granular
is not adequate it simply means that the UML meta-model should be re-factored
smaller packages.

3 Packages for Structured Meta-Model Extension

A profile allows an element of the UML meta-model to be selected and specializ
Figure 1 shows how aReal Timeprofile may add new properties to the model eleme
namedActivation, such as an attributeduration; and aLoad Balancingprofile may
associate aNodewith an activation. These profiles define extensions to the same m



a

to it.
t
h as

level,
nts;

visi-
element,Activation, rather than defining sub-classes. In particular, if you work with
Load Balancing + Real-Timeprofile, every Activation would have both aduration as
well as aNode.

A given (meta) model element —Activation in this case — may be introduced in one
package, and then extended in other packages that have a generalization relation
As an analogy, note thatclassextension lets youextenda method (the mechanics migh
require “calling” the superclass method, or may offer an automatic mechanism suc
before:after: declarations); common sub-typing specification practices let youextend
an operation spec by adding more pre/post conditions. We want, at the package
to extendany model element: same class with new attributes, operations, or invaria
same operation with new pre/post specs; etc.

When this feature is used, there is a difference between these two queries:

(a) “What are the attributes of type Activation?”

and:

(b) “What are the attributes of Activation in package RealTime(or LoadBal)?”.

Naturally, (b) would return {propA, duration} for RealTime; and {propA,NODE } for
LoadBal. We might choose for (a) to return {propA }; or it could be an undefined
query. Thus, for a user, the result would depend upon which profile package was
ble to him at that time.

Activation

propA: Int

UML Profile

Activation

propA: Int
duration: Int

RealTime Profile

Activation

propA: Int
NODE: NODE

LOADBAL PROFILE

Activation

propA
duration: Int
NODE: NODE

RTLOADBAL PROFILE

Figure 1: Package extension to define multiple “profiles”

real-time activiations load balancing activations
run on a particular nodeneed a duration



am-

pub-
le to

nding
tions,
rties
pera-
ld all
pack-
we

own a
associ-
rali-
of a
men-
as to
3.1 UML 1.3 Compatibility

This approach is compatible with UML 1.3, and has no impact unless used. For ex
ple, UML 1.3 (Section 2.14.4) says:

“A package can have generalizations to other packages. This means that the
lic and protected elements owned or referenced by a package are also availab
its heirs,and can be used in the same way as any element ownedor referenced by
the heirs themselves. This visibility is transitive.”

If the element can be used in the same way as any owned element, then the exte
package can define additional properties e.g. new attributes, operations, associa
new specifications for existing operations, etc. This would suggest that the prope
of any model element (e.g. the attributes of a type, the supertypes of a type, the o
tions of a type, the specification of an operation, the transitions of a state, etc.) cou
be extended in another package exactly as though they were owned by that other
age itself. If this interpretation is correct, it already provides the extension facility
recommend.

UML 1.3 (Section 2.14.3) also says:

“A Package may only own or reference Packages, Classifiers, Associations,Gen-
eralizations, Dependencies, Constraints, Collaborations, Signals, and Stereo-
types.”

If a package owns generalizations, then package P3 can import package P2 and
generalization between classes P2::A and P2::B; hence some features become
ated with class P2::A only in package P3, by inheritance from P2::B via this gene
zation. This implies the UML must already deal with package-scoped properties
class. UML 1.3 also already permits the same model element to be defined incre
tally (with overlaps) across multiple diagrams in a given package, and so already h
compose incremental definitions from multiple places.



trast
our

classes;
mes

se if
oper-
ul-

ate
s you
ub-
3.2 Contrast with Subclassing Approach

UML recommends subclassing as the default mechanism for extensibility. Con
these two ways of accomplishing this in Figure 2: the one on the left is based on

approach, where each package describes a separate perspective on the (meta)
the one on the right uses subclasses with explicit multiple inheritance, and beco
unmaintainable very quickly. In fact, the subclassing approach becomes far wor
you consider extensions not just of (meta) classes, but of attributes, associations,
ations, etc. due to the combinatorial explosion of artificial sub-classes and explicit m
tiple-inheritance. The example in Figure 1 would not work correctly if two separ
subclasses were created for the RealTime and Load Balancing properties, unles
used explicit multiple-inheritance. Moreover, our approach supports an explicit s
class if needed.

3.3 But <my favorite language> Works Differently

Let’s start off by addressing a typical question:

A

a1

P1

Figure 2: Package extension vs. Subclassing approaches

B

b1

A

a1
a2

P2

B

b1
b2

A

a1
a3

P3

B

b1
b3

A

a1
a2
a3

P4

B

b1
b2
b3

A

a1

P1

B

b1

A

a1
a2

P2

B

b1
b2

A

a1
a3

P3

B

b1
b3

A

a1
a2
a3

P4

B

b1
b2
b3



de.
in a

is-
odies,
re,
. e.g.

too
you
.

t an
vel.
not
al

ties
eve
ies of

nt

ion

er this

lk
e
e”
of

ones.
ior
a

n
-

“C++, Java, IDL don’t let you define a class/interface in more than 1 place; why
do this with UML?”.

Implementation languages impose different limitations on physical structure of co
Source-file based systems might require a complete class implementation to be
contiguous section of a single file; modern-day IDEs offer direct manipulation of d
tinct program entities such as data members, methods signatures, and method b
with no underlying flat-file structure. Models and specifications, by their very natu
separate out different requirements or aspects of the same implementation unit
“all remote calls must be synchronous” and “database calls must be remote”and“the
place_order method must update the database”are three distinct specification frag-
ments that all influence theplace_ordermethod body. While certain UML packages
might correspond to implementation units like files, namespaces, or modules, it is
restrictive to equate every model package with a particular language unit since
then lose much of the flexibility of factoring and re-using models and specifications

One common question about Figure 1 is:“What happens if I have an implementation
of RealTime::Activation? Can someone else working with the model in the RTLOADBAL

package expect to use that implementation?”The answer comes in several parts:

• Firstly, package extension does not permit removing any statement abou
imported model element i.e. there are no “overrides” at the specification le
Package extension facility is first and foremost a way to structure models,
implementations. This form of structuring has been used for a long time in form
methods [4]. When defining the Integer type you will never state all the proper
of Integers in one “package” — just the basic ones like +, -, etc. that you beli
are always needed. In some other package you may define additional propert
integers, such asstatisticsor the fibonacci function. Even Internet standards like
XML [5] allow different properties of the same object to be defined in differe
documents.

• Secondly, when it comes to implementation, traditional implementat
approaches require that you providein a single placeall the implementation code
for a class. However, even here there are many approaches being used to def
restriction until absolutely necessary.

• ENVY/Developer — an environment for managing configurations of Smallta
code — defines its equivalent of a “package” to contain some subset of th
methods and instance variables from multiple classes; a different “packag
may define additional methods for those same classes; or newer versions
those same methods that should be loaded as a patch to replace existing
Envy recognizes very clearly that implementing some subset of the behav
of some (group of) classes, or patching some subset of their behaviors, is
semantically very different operation than creating new subclasses.

• Aspect-oriented programmingis based on the assumption that you want to
implement differentaspectsof a class (or a method, a collection of classes, a
object, etc.) in different places to improve separate evolution and maintain
ability of those aspects. There is a stage where these different aspects are



k-

this,
e-

t the

nt
ple,

ith-
ti-

r-
ltiple
he 1.3
ini-

in
bsti-
ing
ele-

, or
the
el.
not
“woven” together into the combined implementation — in our terms, a pac
age where the different implementations aspects are “joined”.

• The usual (IDL and C/C++) facility of#includeis one implementation coun-
terpart of package structure and imports. It is actually a very simple“join”
based on textual concatenation. There is no reason to restrict ourselves to
except at those selected package boundaries which must necessarily corr
spond to language boundaries (e.g. IDL modules).

• Thirdly, if you do have an implementation ofRealTime::Activationand a client
wanted to useRTLoadBal::Activationwith that existing implementation, then you
might use a delegation / wrapper around that implementation. Remember tha
full name for any type isPackageName::TypeName.

3.4 Define “Join” Rules to Combine Element Definitions

Since 2 profiles may each "say more" about the same meta-model element,X, and we
need to be able to combine profiles, when combined, you want meta-model elemeX
to be automatically "joined". These join rules must be defined carefully. For exam
when we are joining the two definitions ofActivation into the RTLOADBAL package,
the rule may include:

Join two type specs, the resulting attribute set is the unionof the two attribute sets.

Join two operation specs, the resulting spec is pre1 & pre2with post1 & post2.

Note the following points regarding “join”:

• The stereotype / sub-classing approach will not support this automatic "join" w
out combinatorial multiple inheritance; our "extension" approach will automa
cally perform the “join” (see Figure 2).

• The UML approach to multiple diagrams already requires “join”. UML 1.3 pe
mits a given model element to be defined across multiple appearances on mu
diagrams; hence the UML 1.3 already needs to combine these appearances (t
spec unfortunately omits these rules). We would utilize this behavior for def
tions that were introduced across more than 1 package.

• A “join” facility is already needed for UML patterns, supported notationally
UML 1.3. Since several patterns can be applied to a given model element, su
tuting for types, attributes, etc, you end up with parts of multiple patterns defin
a type, attribute, operation etc. These must be “joined” in the resulting model
ment.

• It is not possible to insist on global consistency across all profiles ever defined
to require that every pair of extensions be disjoint. Hence it is possible that
“joined” versions across two profiles will result in an inconsistent meta-mod
There are many different strategies to dealing with this situations, and we will
explore them here.



main

phical

ives,
ub-

or

n a
ch as
ly

origi-
ere

hould
how
l pat-

Stock
wo

tly
3.5 What can this be used for?

This facility can be used in many ways (subject to “join” rules, in Section 3.4).

• Tags: Separate tags into an importing package so basic model elements re
independent of those tags.

• Notations: Separate the notational aspects (e.g. stereotypes, specialized gra
or textual syntax) from the core model constructs they represent.

• Views: Support end-user structuring of models into separate views or perspect
without having to create combinatorial (and often semantically confusing) s
classes and multiple-inheritance.

• OCL extension: those using OCL today quickly reach its limits in readability. F
example, if you only have a fixed set of operations onSequenceit becomes very
awkward to define something likeshortestInitialSubsequencerepeatedly in terms
of the predefined set. However, in our approach all of the OCL is defined i
package (using packages as frameworks we routinely define generic types su
Seq(X)and instantiate them with framework application — Section 4). You simp
define your ownOCL Extensionpackage and extend the definition ofSequence;
and you can continue to re-use packages that were developed in terms of the
nal OCL package. Subclassing would not work correctly here either: since th
are existing packages which may use the originalSequencetype, creating a sepa-
rate subclassMySequencewill not help with using those existing packages.

4 Frameworks — Light and Heavyweight Extensions

Frameworks are packages that capture recurring patterns. We suggest that they s
be used at modeling as well as meta-modeling levels. The following sections show
frameworks help realize JavaBeans in a Java profile, stereotypes, and meta-leve
terns like instantiation.

4.1 JavaBeans for a Java Profile

JavaBean models are based on properties, methods, and event. For example, a
object might have aprice property; this means that the Stock class should have t
methods,getPrice() and setPrice(), and an instance variable,price. In the JavaBean
profile, you don’t want to work at the level of individual getters and setters, but direc
use the concept of property. This can be captured as thePropertyframework in Figure



on.

e

t the
ame

ining
3, in which we have used the UML pattern notation to show framework applicati

You import theProperty subpackage of theJavaBeanpackage (visible because you
have importedJavaBean), and substitute Stock for Bean, Dollar for T, and Stock::pric
for Bean::property. The methodsget<price> andset<price>, with their corresponding
OCL specifications, are generated as a result of framework application. Note tha
JavaBean Profile package provides the context for the Property pattern; the s
approach can be used to define a profile for the Corba Component model, conta
patterns such asPorts, Facets, Receptacles,andEvents.

Stock

price: Dollars

get<price>(): Dollars
set<price>(val: Dollars)

post: price = val

Stocks

Figure 3: JavaBean profile can be defined with packages and frameworks

Property

Bean

property : T

get<property>() : T
set<property>(val: T)

post: property = val

JavaBean Profile

Property

Bean
[property \ price] T

Dollars

T

In the JavaBean “profile” package...

a “property” pattern is defined as:

given any Bean

with an attribute which is a property:T

is equivalent to a get/set method pair

If user package Stocks
imports the JavaBean Profile ... then it can import the “Property

pattern and apply it to its own
“Bean” and “property”



ort-
ha-
s.

eta-
that

ts us

le,
.

4.2 Stereotypes as Framework Application

A simple, novel, and semantically-rich way to define stereotypes is as a direct sh
hand for framework application. Frameworks can simulate the default UML mec
nism of implicit meta-model subclasses, or patterns on existing meta-model classe

In UML, a stereotype is a meta-model element that is a subclass of a standard m
model element. When you apply a stereotype <<property>> to an Attribute,
Attribute Instance is an instance of theProperty subclass of Attribute. Frameworks
already provide the capability to define a stereotype, and framework application le
use a stereotype. We can make theProperty stereotype definition in the traditional
UML form explicit in a framework, as in Figure 4. Note that the JavaBean profi
imported byStocks, provides the context for the definition of the Property stereotype

Stock

price: Dollars

Stocks

Figure 4: Frameworks can realize traditional UML stereotypes

Property

Attribute

JavaBean Profile

Property

p

Property

getter: String
setter: String

Stock

price : Dollars <<property>>

p: Property

This stereotype notation means the same as
applying the property framework as shown below

UML style stereotypes:

a <<property>> stereotype on a model element

means the element is an instance of Property

defined as a subclass of Attribute

with 2 tagged values

i.e. substitute “price” for “p” in the framework



as we
r an
tion.

our
ation,
can

es.
ten-
dea
me
ces)

nces.
Rather than implicit sub-classes and tagged-values, we can apply stereotypes
would apply any modeling pattern: the stereotype serves as a short syntax fo
expanded form of that pattern, and additionally defines its semantics as a transla
For example, suppose we defineStockwith the stereotypepropertyas in Figure 5. We
can regard this as syntactic sugar for the framework application in Figure 3. This is
preferred means to give semantics to stereotype definition and stereotype applic
as framework application is grounded in very clear semantics. Still, frameworks
also support the subclassing style.

4.3 Framework for Heavyweight Extensions: Instantiation

According to UML 1.3, heavyweight extensions explicitly define new meta-class
The example in Figure 3 already shows the capability to support heavy-weight ex
sion. An even richer example is described in the following. Consider making the i
of “instantiation” explicit in the meta-model, and even the meta-meta-model: so
things (descriptors) declaring the kinds of properties that other things (occurren
can possess. We can describe this in theInstantiationframework, capturing a (simpli-
fied) constraint on the graphs of the descriptors and their corresponding occurre
This framework is used first to define the UML meta-typeType, its relationship to cor-
respondingTypeOccurrences(such asPerson); and then to define the instantiation
relation betweenPersonandp1.

Figure 5: Stereotype as syntax for pattern application

Stock

price : Dollars <<property>>

get<price>(): Dollars
set<price>(val: Dollars)

post: price = val



Class

name

Meta-with-UserType-with-Instance

Figure 6: Some frameworks apply across user, meta, and meta-meta levels

Descriptor

Instantiation

Occurrenceoccurrences *1

invariant Descriptor:: -- simplified constraint
children.occurrences->includesAll (occurrences.children)
-- every occurrence’s children must match the declared child type

children * children *

11

Meta-Meta

Person: Class
name = “Person”

p1: Person

Attribute

attrname
returnType

Person::surname: Attribute
attrname = “surname”

returnType = String

Person

surname: String

p1: Person
surname = “Smith”

Instantiation Instantiation

Descriptor

Descriptor
Occurrence

Occurrence

These UML class/instance notations mean the same as
the instantiation frameworks applied below

* a1: Person::surname

vallue = “Smith”



by
ava-

two
the
cific

able

men-

e-
aint
CL

s an

er-
ld be

ub-

as
tion
ntax

new
efi-

alysis
to-
cial-

, see
4.4 Constraints on Framework Application

A framework can also include design-time “pre-conditions” that must be satisfied
the elements that are substituted in any framework application. For example, a J
BeansProperty-Propertyconnector could be defined as an abstract way to connect
beans together keeping their properties continuously synchronized, but with
design-time condition that the corresponding attributes already have some spe
Propertyframeworks applied to them e.g. one of them is writable, the other is read
and raises an event when it changes.

5 Other Extensibility Mechanisms

We argue that the remaining semantic extensibility mechanisms do not add funda
tal new needs either.

• Constraints: We already showed an example (Figure 3) of using OCL in a fram
work application. At the meta-level, the profiles paper [1] describes a constr
that the Java profile does not allow multiple inheritance. For this, we can use O
at the meta level. The Java profile imports the basic meta model and add
invariant to the Generalization element, for instance “generalizations->size = 1”.

• Tagged values: With frameworks, and the ability to substitute attributes and gen
ate other model elements, tagged values are redundant. If desired they wou
untyped string-value pairs in a framework (Figure 4).

• Rules: OCL can be used to specify validation rules, and a functional-language s
set of OCL can be used to express transformation rules.

• Notation and Presentation: Notations and presentation rules can also be defined
frameworks if framework elements are allowed to range over sets of presenta
or syntactic elements. In general, extensions should include the concrete sy
that defines each newly introduced modeling construct. However, some
machinery may still be required to deal with this style of incremental syntax d
nition and syntactic ambiguities.

6 Proof of Concept

The mechanisms described in this paper are well understood and used in the Cat
approach to using the UML [3] and implemented successfully in modeling tool pro
types. In Catalysis, all modeling and meta-modeling notions, extensions, and spe
izations, are defined in a structure of packages and frameworks. For example
Section 9.8.2, Section 9.9.3, or Section 9.9.4 of the Catalysis book.



bility
.3
ather
al-
e gen-
ay.

ur
hile

4-

m-

.

7 Conclusions

We have shown how packages and frameworks can provide a first-class extensi
mechanism for UML, and to structure UML extensions into “profiles”. The UML 1
metamodel is already quite large and is known to contain some inconsistencies. R
than add yet more facilities to it for extensibility or profiles, our approach is to ration
ize and consolidate some core concepts within the standard, and then use a simpl
eral mechanism for layering facilities onto that core in a precise and well-defined w
In fact, the UML itself could be simplified considerably if re-factored, and o
approach makes it possible to re-factor the UML to a cleaner specification, w
retaining the original semantics of the UML constructs where needed.

References

[1] “White Paper on the Profile mechanism”, Version 1.0, OMG Document ad/99-0
07. Also available at http://uml.shl.com/u2wg/default.htm

[2] “OOAD and Corba/IDL - A Common Base”, D. D’Souza and A. Wills, http://
www.iconcomp.com/papers/omg-ooa-d/OMG-OOA-D-rfi.frm.html. This paper
outlined a semantic scheme for extensibility and a layered meta-model to acco
plish the goals that the Profiles paper raises.

[3] “Objects, Components, and Frameworks with UML - the Catalysis Approach”, D
D’Souza and A. Wills, Addison-Wesley, 1998.

[4] “Larch — Languages and Tools for Formal Specification”, http://www-the-
ory.dcs.st-and.ac.uk/~mnd/larch.html


