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Abstract 

We present a divertible zero-knowledge proof (argument) for SAT under the as­
sumption that probabilistic encryption homomorphisms exist. Our protocol uses a 
simple 'swapping' technique which can be applied to many zero knowledge proofs 
(arguments). In particular we obtain a divertible zero-knowledge proof for graph 
isomorphism. The consequences for abuse-free zero-knowledge proofs are also con­
sidered. 

I. Introduction 

Okamoto-Ohta defined divertible zero-knowledge proofs in [0089] and showed that com­
mutative random self-reducible relations have such proofs, provided certain conditions are 
satisfied. The first divertible zero-knowledge proof was given in [DGB88, pp. 37-38] in 
the context of an abuse-free zero-knowledge proof. 

In this paper we generalize this result to all problems in NP under cryptographic 
assumptions and consider the consequences for abuse-free proofs. We also remark that 
most divertible zero-knowledge proofs of membership presented here will not convince 
unconditionally two (independent) verifiers simultaneously. So the framework of divertible 
zero-knowledge has to be modified if it is to be used for this purpose. 

This paper is organized as follows. We first state our results. Then we present the 
protocol and finally we sketch the proofs. 
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II. Main results 

11.1. Notation and Definitions 

(A, B, C) is a divertible interactive triple of Turing machin~ [0089). For the definition of 
divertible proofs and abuse-free systems see [0089,Des90]; for the SAT proo~ (argument) 
see [BCC88,BC89]. A probabilistic encryption function f.(.) satisfies the properties that 
fr(b) can be computed in polynomial time when r, b are given, and that frCb) = fTI(b') => 
b = b'. Here r, r' are any random bit strings and b, b' are bits. f is a probabilistic 
homomorphism if frCb) . frl(bl ) = frll(b 6) b'), where r'1 can be computed from r, r', band 
11 in polynomial time, and $ is exclusive-or. A well-known example of an encryption 
homomorphism [GM84} is given by fT(b) == sbr 2(modn), where n is a Blum integer and 
s is an appropriate quadratic non-residue. (It is instructive to compute r" in this case, 
given s, n, and r, r', b = b' = 1.) The modulus nand s parameterize f. We shall assume 
that all the probabilistic encryption functions considered in this paper are parameterized, 
but for simplicity we ignore this in our notation. 

We denote by {z} a string which is a concatenation of strings of type z with delimiters. 

II.2. Theorems and implications for abuse-free proofs 

Theorem 1 If probabilistic encryption homomorphisms exist and are provided by an or­
acle, then all languages in NP have divertible zero-knowledge proofs. 

Corollary 1 If probabilistic encryption homomorphisms exist then all languages in NP 
have conditional abuse-free zero-knowledge proofs. 

Theorem 2 If probabilistic encryption functions exist then all languages in NP have 
unconditional abuse-free zero-knowledge proofs. 

Theorem 3 Given an oracle similar to the one in Theorem 1: If factoring is hard then 
all languages in NP have divertible statistical zero-knowledge arguments. 

Corollary 2 If probabilistic blob functions exist then all languages in NP have abuse-free 
zero-knowledge arguments. 

Theorem 4 There exists an 'unconditional' 1 divertible zero-knowledge proof for graph 
isomorphism. 

Remarks: We will describe a protocol which ca.n be used for many zero-knowledge 
proofs with slight modifications. This protocol does not require tha.t the structures in­
volved are commutative. Furthermore it can easily be adapted to make the authentication 
system [Des88} unconditionally divertible (so that two or more independent wardens can 
be used). 

lThe quotation marks are due to the unnatural condition (iii) of Definition 1 in [0089], which implies 
that the protocol is only divertible when graph isomorphism is not decidable in probabilistic polynomial 
time. In the final paper we will restate this definition but without this property. 
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III. Main approach 

Many interactive zero-knowledge proofs, as, [Blu87,CEvdG88,GMW86,GMR89,BCC88] 
(and a.rguments [BCC88,BC89]) have protocols with a loop in which: 

Step 1 the prover sends a 'commitment' (blob), 

Step 2 the verifier asks a. one bit question, 

Step 3 the prover replies to this, 

Step 4 the verifier checks the reply. 

These steps are repeated t times independently. In this paper we are only interested 
in such protocols. 

To prove the theorems in Section II. we will first adapt such a protocol and show 
that the resulting protocol is also a zero-knowledge proof (argument). We then apply 
this procedure to the SAT protocol(s). Finally we transform the adapted SAT protocol(s) 
and obtain a divertible zero-knowledge proof (argument). This transformation uses a 
'swapping'technique. 

II!.t. Adapting a zero-knowledge protocol 

In this section A is the prover and B the verifier. Consider a general protocol P of the 
type described above. 

Protocol P: input x. 
B checks that x has the appropriate form. Then the following steps are repeated t times in­
dependently: 

Step lA sends B: Z E 11., 

Step 2 B sends A: q ER {V, 1}, 

Step 3 A sends B: Y E (i, 

Step 4 B verifies that p(x, Z, q, Y) = 1, where p is an appropriate polynomial time 
predicate. 

(Here 'ER' means 'selected randomly with uniform distribution'). This protocol is adapted 
as follows: 

Protocol P': input x. 
B checks that x has the appropriate form. Then the following steps are repeated t times in­
dependently: 

Step 1 A sends B: (Zo, Zd E 11. x 11., 

Step 2 B sends A: q ER to, I}, 

Step 3 A sends B: (Yo, Yi) E (i x (i, 
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Step 4 B verifies that p(x, Zo,q, Yo) = 1 and that p(x, Zt,q, Y1) = 1. 

We assume that the honest prover chooses the Zo E 1t with the same distribution 
as the Z in the protocol P, and similarly for Zt. Let us study the relation between the 
protocols P and P'. Hereto let us consider the query of B in pI as a pair of queries (q, q). 
It is then easy to verify that Yo corresponds with an answe~ which would have been given 
in protocol P when Zo would have been the cover and q the query. A similar observation 
is valid for Yi, Zl, ij. 

Theorem 5 If for appropriate conditions P is a zero-knowledge proof (argument) then 
for the same conditions pi is also a zero-knowledge proof (argument). 

Proof. The completeness and soundness conditions are obvious. To prove that P' 
is zero-knowledge we describe a simulator ME' for any (possibly cheating) verifier B'. 
MEl uses the simulator MB of P, where B is the honest verifier (of P), as an oracle to 
obtain valid conversations T = (Z,q, Y). Clearly P and pi define the same language. 
When x E L, M8 outputs valid conversations T with a distribution which is identical 
to (indistinguishable from) the actual distribution. Suppose that MEl receives from M8 
the valid conversations To = (Zo, qo, Yo) and Tl = (Zl' qll Yi). ME' checks until it gets 
qo ::/:- qt. When this is SO, MEl 'submits' T' = «Zo, Zl), q, (Yo, Yi»), q = qo, to the verifier 
B'. If the query of B' is q then MEl outputs T'. Otherwise it resets B' and tries again 
with another pair To, Tt . Because the prover and the verifier of P are honest and because 
the distribution of M8 is equal to (indistinguishable from) the actual distribution, the 
conversations (Z, q, Y) are independent and have the appropriate distribution. 0 

IV. The divertible zero-knowledge protocols 

To show how the adaptation and swapping technique is used we will first apply it to 
the graph isomorphism protocol, making it divertible. Then we extend this and obtain a 
divertible protocol for SAT. A sketch of the proofs is given in the following section. 

IV.l. Graph isomorphism 

An introduction: The [GMW86] protocol 

Let r 0 and r t be graphs with vertex set V and (j : r 1 -j. robe an isomorphism (a is 
a permutation of the vertex set V). In the [GMW86] graph isomorphism protocol the 
verifier B first checks that the input (r 0, r 1) is a proper description of two graphs. Then, 
in Step 1, the prover A chooses a random permutation 1\'" and sends B the graph Z = 1\'"(ro). 
In Step 2, B asks the random bit-question q. In Step 3, A sends the permutation Y = 7raq

• 

In Step 4, B checks that Z = Y(r q). These steps are repeated t times (t is the length of 
the input). 
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A divertible protocol for graph isomorphism 

First B checks that the input (r 0, r 1) is a proper description of two graphs. Repeat 

t times, where t is the length of the input: 

Prover A 

7rJo ER SymV, 

Z,. := 7r,.(r 0), 

k = 0,1. 

Yo := 1I"0crQ1
, 

Yt := 11"1 crQ1 • 

B 

e ER {O, I}, 

7rk ER Sym V, 

Z~ := 1I"~(Zo), 

Z~:= 1I"HZt}. 

Y::= 1I"~Yo, 

Y; := 11"~l'1, 

B checks as C. 

Z~,Zf 

q 

Y~,Y{ 

Verifier C 

q ER {O,I}. 

C checks that: 

Z~ = y~(rq), 

Zf = Y{(rq). 

Observe that when e = 1, B 'swaps' the Z,. and the Y,. to obtain the Z;. and the Y:' 

IV.2. SAT 

An introduction: The [BCC88] protocol for SAT 

The [BCC88] protocol is a zero-knowledge proof (argument) for a satisfying assignment of 
a Boolean circuit. This circuit consists of h logic gates with truth tables T m , 1 ~ m ~ h, 
and the connecting lines (wires). A satisfying assignment can be regarded as a collection 
of pointers, one for each truth table, which point to the computation rows of the Tm. In 
Step 1 of the [BCC88] protocol, the prover, for each m: 

• complements some of the columns of Tm = (biJ)m using bits Cj (one for each line), 

• permutes the rows i of T:" = (b;,j EEl Cj)m using a permutation 11" (one for each truth 
table), 
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• 'commits' to each bit of T': = (b,..(i),j$Ci)m using a probabilistic encryption function. 

In Step 2 the verifier asks the bit-question q. In Step 3 the prover reveals to the verifier 
Y = Y(q) which, when q = 0 consists of opening all the commitments, and when q = 1 
consists of opening the commitments of the computation rows with the corresponding row 
pointers. In Step 4 the verifier checks if the corresponding commitments are appropriate 
(results of encryptions and content of tables). Therefore in Step 1 the prover sends to 
the verifier Z = Urw(;)) b,..(i),j $ Cj)}. Observe that if I is a probabilistic encryption 
homomorphism then 

(1) 

and r" can be computed given r, r', b"'(i)'; $ C;, and cj. 
We denote by X = HCi' ri,j, 11")} the strings which contain the complementation bits 

Cj, the random strings ri,j and the permutations 11". These form a direct product group g. 

A divertible protocol for SAT 

The protocol is described in Figure 1. In this protocol 

UI,j . Z""(/),j = Ir" (b"""'(i),; E9 Ci $ cj) 

by (1), since UI'; = Ir:)cj), Z"'(I)'; = Z",',..(i),j = Irtr'or(;),i (b""1I'(i)J E9 Cj), and since we are 
assuming that I is a probabilistic encryption homomorphism. Furthermore the Ys. consist 
of all, or part of the 

(r ... (i),i, b"'(i)'; $ Cj) , 

and the Yt consist of all, or part of the 

(r", b""1r(i),j $ Cj E9 cj) . 

(2) 

(3) 

Therefore the encryptions of Y: produce all, or part of the Z;.. The product {(e, r', 1I"')}k O 
Yk is obtained by applying the operator (e, r', 11") to the parts (2) of Yk to give strings of 
type (3). 

V. Sketch of proofs 

Proof of Theorem 1: In the final paper we shall show that the above protocol satisfies 
the conditions of Theorem 1. 0 
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First B checks that x (the input) is a proper description of a Boolean circuit. Then the 

protocol starts. Repeat t = 8(lxi) times: 

Prover A 

{(c,r,1I")h ER g, 

Z,J := Jf'i,j(b'J $ Cj), 

1:= 1I"(i), 

ZIc:= {zIJh, 

k = 0,1. 

Yo:= Yo(ql), 
Yi. := Yi.(ql). Yo, Yi. 

B 

e ER {0,1}, 

{(e, r', 1I"')h ER V, 
UIJ := Jr' (dJ.), 

I,J 

Z:J := UIJ . Z""(I)J , 

Z~ := {zL}o, 

Z~ := {zIJh. 

Y'·= e • 

{( e, r', 11"') }o 0 Yo, 

Y: := 

{( c' , r' , 11"') h 0 Yi., 
B checks as C. 

Z~,Zf 

q 

Yo,Y{ 

Figure 1: A divertible protocol for SAT 

I 

Verifier C 

q ER {O, 1}. 

Let p be a 

predicate as in 

[BCC88]. 

C checks that: 

p(x,Z~,q, Yo), 

p(x, Zi,q, YD, 
are satisfied. 
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Observe that Theorem 1 does not imply Theorem 2 since our protocol is only condi­
tionally abuse-free. Indeed suppose that only once during the execution of the protocol 
A decides to replace one row (e.g. the row (111) by (000)). The probability that B will 
detect this is only 1/2. If the encryption is insecure then the verifier C will find out that 
this has happened. 
Proof of Theorem 2: The prover A first commits to Xo, Xl by sending Zo, Zl. B then 
sends A: X~, X~. After having combined Xo with X~ and Xl with X~, A commits to 
those two combinations. So B obtains from A: Z~, Z~. Then A proves only to B (using 
another proof) that X~, X~ have been used in Zo, Z~ appropriately. B checks this proof. 
The prover A does not reveal Xo, Xl to (the warden) B, and B does not reveal e to A. 
Then the protocol continues as previously. So when e == 1, B switches components to get 
the Zf in Step 1, etc. Observe that the verifier C does not have to commit to his question. 
So the proof is unconditionally sound. 0 

Proof of Theorem 3: The proof is identical to that of Theorem 1 with the only difference 
that the encryption function is replaced by a blob function. 0 

VI. Conclusion and remarks 

For all so far proposed divertible zero-knowledge proofs, the question that B asks A is the 
exclusive-or of the question that Casks Band B's random bit. This may give one the 
impression that A can convince independently two verifiers simultaneously (B and C). 
However after careful analysis it is clear that when A and C collaborate the soundness 
related to B is conditional for many proofs of membership. 

To illustrate let us consider the graph isomorphism case. Let us assume that dishonest 
A and dishonest C have infinite computer power and that the graphs ro r l are not 
isomorphic. A now sends Zo isomorphic to r ° and Zl isomorphic to r 1. C is now able to 
calculate e (using exponential computer power). Then 6 can manipulate ql' 

The same remark is valid for some of the schemes presented earlier [DGB88,0089]. 
For some it is sufficient that C knows some trapdoor information to perform above fraud. 
This problem implies that the [0089] formal definition of divertible zero-knowledge has 
to be revised in this context. 

By analyzing Theorem 1 and Theorem 2 we see that even though divertibility and 
abuse-freeness have common aspects they are essentially different concepts. 
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