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1. Introduction. Based on the work of Rothaus 1121, Olsen, Scholtz and Welch 

suggested the bent functions to be used as feed-forward functions to generate binary 
sequences which possess high linear complexity and very nearly optimum cross- 
correlation properties [lo]. In [7] M eier and Staffelbach discovered, that binary 
bent functions give a solution to the correlation problem when used as combining 
functions of several binary linear shiftregister sequences. One of their results is that 
bent functions are at maximum distance to the set of afhne functions. We refer to 
[7] for the cryptographic background and motivation. The general theory of the 
bent functions from 2; to Z, was developed by Kumar, Scholtz and Welch [Z]. 

The main purpose of this paper is to consider the cryptographic properties of 
generalized bent functions. In $2 we give the basic definitions and properties of 
bent functions. For more details we refer to [2]. Our main results are concerned 
with the value distributions of pary bent functions, p prime, and their distances to 
the set of afEne functions, and are given in $3. In 54 a method is given to produce 

all binary bent functions. We also consider the relation between difference sets and 
bent functions and review the previous construction methods and their properties. 

2. Generalized bent functions. Let q be a positive integer and denote the set 
of integers module q by Z,. Let 

u = c’? 

be the qth root of unity in C, where i = fl. Let f be a function from the set Zy 

of n-tuples of integers modulo q to Z,. Then the Fourier transform of uf is defined 
as follows 

-- F(w) - & & J(x)-w*x, w E z;. 

DEFINITION 2.1. A function f : Z; -+ Z, is bent if IF(w)1 = 1 for aI w E Z;. 

Let f and g be two functions from Zy to Z,. Then their convolution is 

(uf * u!7)(W) = c ufb)+d-), 
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and their shifted cross-correlation 

where gr(x) = -g(-x). 

THEOREM 2.1. A function f : Z; + Z, is bent if and only if 

From these definitions we easily obtain the following 

for all h e a x  (or f i e )  functions L : ZG --t Z, and w E Z;. 

Analogously to the binary case it then follows that the q-axy bent functions have 
the minimum correlation to the set of all afEne functions (see Theorem 3.5 in [TI). 

In [2] also the following result can be found. 

THEOREM 2.2. A fimction f : Zi --f Z,, is bent if and only if 

c(f,f)(w) = 0, for all w # 0 .  

This is in the binary case exactly the property of perfect nonlinearity used by 
Meier and StafFelbach to define bent functions. We make the following generaliza- 
tion. 

DEFINITION 2.2. A function f : Zi 3 Z, is perfect nodinear i f for all w E Z;, w # 
bf  0 and k E Z, 

for exactly q"-' d u e s  of x E Z;f. 

THEOREM 2.3. A perfect nonlinear function from Z; to Z, is bent. The converse 
is true if q is a prime.  

PROOF: Let f be a function from Zy to Z,. If f is perfect nonlinear, then 

f(x) = f(x + + k, 

for all w E Z;, hence f is bent by Theorem 2.2. 
Assume now that q is prime and f is bent. Then 
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where b k  = #{x E Zy I f(x + w) - f(x) = a}. Since {u,u2,. . . , u“’} is a basis for 
the qth cyclotomic field over the field of rational numbers (see, e.g., [4], Theorem 
2.47 and Exercise 2.53), it follows that the numbers bk  are all equal, or what is the 
same, f is a perfect nonlinear function. 

Example. Let q be an odd integer and f : Z, 3 Z, be the function f(x) = z2 
(mod q). Let w E Z, and take X E Z, such that w = 2X (mod q). Then 

For q odd, the Gaussian quadratic sum takes the absolute value fi. Hence IF(w) 1 = 
1 and f is bent. For w E Z,, w # 0, the difference 

takes every d u e  in 2, equally many times if and only if w and q are relative primes. 
Consequently f is perfect nonlinear if and only if Q is a prime. 

3. Constructions and properties. The values of a non-constant &e function 
from Zp” to Z, are evenly distributed when p is a prime. Since for the functions 

or 
2 2 2  f(x) = f ( q , 2 2 , .  . . ,Zn) = 2 1  + 2 2  + * - *  +%I 

x - f(x + w) - f(x) 
their difference functions 

are non-zero affine functions for all w # 0, it follows that these functions are perfect 
nonlinear. Hence bent functions from Zp” to Z, exist for every prime p when n is 
even, and for every prime p 2 3 when n is odd. 

DEFINITION 3.1. A function f : Zy + Z, is a regular bent function if there is a 
function g : Zi + Z, such that 

The following theorem is due to Kumar, Scholtz and Welch [2]. For Q = 2 it was 
first proved by Maiorana, see [I], generalizing the construction method of Rothaus 
[121* 
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THEOREM 3.1. Let g : ZT + Z, be any function and 7r : Zy + Zy any bijective 
transformation. Then the function 

f : z:“ = zp x zp + z,, f(x1,xz) = 7r(x1) - x 2  + g(x1) 
is a regular bent function. 

a lower bound 
Clearly, different choices of R and g yield different bent functions. Hence we have 

q q f  ( q ? ! )  

for the number of bent functions in Z y .  
Because of their good correlation properties with linear functions (see Theorem 

2.1) bent functions could be used to combine several independently generated se- 
quences. Then it would be important to know what is their distance to &he 
functions and how well balanced their value distributions are. 

Let us make the notation 

bk = #(X E zp” I f(X) = k), k E z,. 

Then we say that the value distribution of f : Zp” -t Z, is the ordered ptuple  

THEOREM 3.2.  Let n be even and p a prime. Then the value distribution of a bent 
function f : Zp” + 2, is ( b o ,  b l ,  . . . , b p - l ) ,  where 

(bo , bl , * . . 3 bp-1). 

bo = pn-’ f ( p  - I)p?-’ 
bk  = p n d l  ~ p p f - l ,  forX:=1,2 ,..., p - 1 ,  

or its cyclic shift. Here the f signs are talcen correspondingly. Moreover, a regular 
bent function has the upper signs. 

PROOF: According to [2], Property 8, there is an integer s such that 

F ( 0 )  = u:. 

Hence we have 
P--l  

k=O 

If s is even this equation gets the form 

0 - 1  

k=O 
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for some integer T .  This is always the case for a regular bent function. If s is odd, 
we choose T = to have 

E u:-r = uz = -1 .  

In this case the equation becomes 
P-1 

k=O 

for some integer T .  Since p is a prime it then follows that 
a bo pp2  = bl = b2 = - - *  = bp- l ,  

or a cyclic shift. On the other hand c ’ , r i b k  = pn, from where we obtain the 
solution 

n-l ‘F P+l.  bo T P ~  = bl = = = bp-1  = p  
P 

Let us give some examples of regular bent functions: 
(1) the functions given in Theorem 3.1; 
(2) all binary bent functions (which exist only for even dimensions); 
(3) f(x) = z: + 122 + - - .  + z’, for n even and p = 1 (mod 4); 
(4) f(x) = z: + s; + -.. + zz for n = 0 (mod 4) and p odd. 

An example of a function having the lower signs in Theorem 3.2. (and falling in the 
category (2) of Theorem 3.3 below) is f(x) = zf + zi +. for n = 2 (mod 4) 
and p = 3 (mod 4) and so is, more generally, the s u m  f + g  : Z; x 2; + 2,) where 
g : ZT + Z, is a regular bent function. 

THEOREM 3.3.  Let n be even and p a prime. Then the Hamming distance of a 
bent function f : Zp” -+ Z, to the nearest f i n e  function is either 

+ 

(1) ( p  - l ) (pn-’  - p + - l ) ;  or 
(2) ( p  - 1)pn-l - p$-1 .  

Regular bent functions have the distance (1) to the nearest &e function. 

PROOF: Let A : Zp” -+ Z,, A(x)  = w - x + r,  be an af€ine function and denote 

a k  = #{x E Zp” I f(x) - w a x - r  = k}. 
We now make use of [Z], Property 8, for w # 0 and proceed exactly as in the proof 
of the preceding theorem to obtain 

n 
a0 F p 2  = a1 = a2 = * = ap-l = p  ?l--l F P ? - I +  

The Hamming distance of f to the &ne function A is then C’,z:ak.  This is 
minimized over the totality of all a,f€ine functions when we choose r such that a0 

obtains its maximal d u e  which is either 
(I) pn-l  + ( p  - 1 ) p t - l )  or 
(2) pn-1 + p ? - ’ .  



156 

From this theorem and the above example it follows that for p = 3 (mod 4) 
there are two classes of bent functions and the first one, to which the regular bent 
functions belong, is closer to the set of f i e  functions than the second one, to 
which the square-sum function belongs. 

To study the case where n is odd we need the following lemma from the theory 
of cyclotomic fields. 

LEMMA. For a prime p there is a unique integer solution ( a l ,  a2, .  . . , ap--l) to the 
equation 

f i , f o r p  = 1 (mod 4) { z f i ,  forp = 3 (mod 4). 
a1u + a2u2 -I- . - - + ap--Iu- = 

This solution is 
ak= ( k ) ,  k = 1 , 2  ,..., p - 1 .  

PROOF: The proof is obtained by combining Gaussian quadratic sums, see, e.g., 
[2], formula (14), with the argument on the dimension of the pth cyclotomic field, 
[4], Theorem 2.47. 

THEOREM 3.4. Let n be odd and p an odd prime. The value distribution of a 
regular bent function &om Zp" to Z, is a cyclic permutation of (bo,  b l , .  . . , bp-r), 
where bo = pn-' and either 

b k  = pn-' -k (i) p*, for dl k = 1 ,2 , .  . . , p  - 1, or 

(2) 

PROOF: Let f : Zp" 4 Z, be a bent function. We consider first the case p = 1 
(mod 4). By [2], Property 8, there is an integer s such that 

bk = p*-1 - (a) p v ,  for all k = 1,2, .  . . , p - 1. 

Similarily as in the proof of Theorem 3.2. this equation becomes 

Now it follows from the preceding lemma that the solution is of the form 

b k  = bo f (a) p y ,  k = 1,2 , .  . . , p - 1. 

From bk = p" we then get that bo = p"-'. 
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Assume now that p = 3 (mod 4). Then by [2], Property 8, there is an integer s 
such that u F(O)=u  4 . 
Take T = 9 ( 2 s  + l), which is an integer. Then we have 

F(O) = U ~ ( 2 ~ + 1 ) . : - - r  - - f i  * U-, 

since p(2s  + 1) is odd. Now we proceed exactly as in the first case to obtain the 
soh tion. 

By repeating this proof for w # 0 we get the following 

THEOREM 3.5. For n odd and p an odd prime the Hamming distance of a bent 
function from Zp" to 2, to the nearest atfine function is 

n - 1  
( p  - qpn-1 - p 2 .  

4. Difference seks and constructions. From Maiorana's construction we obtain 
a lower bound 22 ' (2f!)  for the number of bent functions in Z;. If f is a bent 
function Z;l --t Z2 then so is f o A + L for every &e bijective transformation A 
of ZF and linear L : Z; --t Z2.  We call two bent functions f and g equivalent if they 
are related to each other in this way, i.e., g = f o A + L. This equivalence relation 
devides the set of bent functions into disjoint equivalence classes each containing at 
most 2n2t-n functions. The functions in a same class have the same nonlinear order 
which is bounded from above by f. It follows that for n large enough to satisfy 

i.e., for n 2 10 Maiorana's construction gives non-equivalent bent functions of the 
same (highest) nonlinear order. For cryptographic purposes and unpredictability 
this is a very desirable property. 
On the other hand, Rothaus made in [12] a complete list of bent functions in 2: 

and also verified using a computer program that all of them of nonlinear order 3 
are obtainable from each other by an f i e  transformation of coordinates and the 
addition of a linear function. To clarify the situation for n = 8 other construction 
methods, especially those that give more bent functions for small n, might be useful. 

The case n = 8 remains open also in[ll]. There is also given another construction 
method which yields the same number of bent functions as Maiorana's method. 

The following result can be used in the construction of the set of ones of a bent 
function. 

THEOREM 4.1. A function f : Z; --+ Z2 with 2"-' - 2f- l  ones is bent if and only if 
for every nonconstant linear function L : ZT --+ Z2 the product Lf has either 2"-2 
or 2n-2 - 2:-1 ones. 
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Hence to construct the set of ones of any bent function in 2; it is enough to find 
n vectors of length 2n-' - 23-1 each consisting of 2"-2 ones and 2n-2 - 2t- l  zeros 
such that every possible s u m  of these vectors has exactly 2"-2 or 2n-2 - 2 t - I  ones. 
It is an open problem whether this method of construction can be made feasible for 
large n. 

Example. The columns of the following matrix are constructed by means of the 
above principle. 

54 5 3  2 2  XI 

0 1 0 1  
0 1 1 0  
1 0 1 0  
1 0 1 1  
1 1 0 1  
1 1 1 1  

Hence the row vectors form the set of the ones of a bent function. This bent function 
is 5153 + 2253 + 22x4. 

In the above matrix the s u m  of the first and the third row equals to the sixth row 
and adding up the second row with the fourth one gives the fifth. Hence this set of 
rows break up into two triples and its easily checked that these axe the only existing 
triples. This implies that every row a can be expressed in two different ways as a 
difference of two other rows b and c,  i.e., a = b + c = c + b 

The rows of the above matrix form an example of a specific combinatorial struc- 
ture called difference set. 

DEFINITION 4.1. Let G be an additive Abelian group of order v .  A subset D of 
G is called a ( v ,  k, X)-Merence set if it is of order k and if every nonzero element 
a E D can be expressed in X different ways as a difference a = b - c, where b E D 
and c E D. 

The following result was already known to Dillon [l]. 
THEOREM 4.2 .  A function f : Z; -+ Z2 is bent if and only if it is a characteristic 
function of a difference set. 

Let us mention that it was proved by Mann, [5]  pp.72-73, that the parameters of 
a difference set in Z; are (2", 2"-l f 2f-', 2n-2 f 2?-l). 

There are some previous constructions of difference sets found in the literature. 
In [l] Dillon proved that the constructions of Menon [S] and [9] and that of Turyn 
[13] are special cases of Maiorana's binary bent functions. The main result of [I] 
is that for rn > 3 there exist bent functions in 2;" which we not equivalent to any 
Maiorana's functions. 

McFarland gave in 1971 the following construction of difference set. It can be 
easily checked that a function f is a Maiorana bent function if and only if either its 
set of zeros or set of ones can be constructed by the method of McFarland. 



159 

Let H I ,  H2, . . . 
nal subspaces in 
and let bj E ZF, 

, H ,  be the totality of different hyperplanes, i.e., (m-1)-dimensio- 
ZF; then r = 2m - 1. Let aj E Zy, j = 1,. . . ,r, be any elements 
j = 1,. . . ,r, be distinct elements. 

THEOREM 4.3 (MCFARLAND [S]). The union of the r subsets in Z i m  of the form 

is a difference set with parameters (22m, 22m-1 - 2m-1,22m-2 - 2m-1). 

In fact, when choosing the elements aj the only thing that matters is whether 
aj belongs to H j  or not. Moreover, we have the following property of McFarland's 
construct ion. 

THEOREM 4.4. The nonlinear order of a bent function constructed by McFarland's 
method is maximal if and only if the element aj is chosen from Hj for an odd 
number of indices j. 

PROOF: Assume that f is a bent function whose set of ones is of the form of 
McFarland. Let 7~ be a permutation which takes each element bj to the nonzero 
element which is orthogonal to Hj. Let us d e b e  a function g such that 

and set g(b) = 0 if r(b) = 0. Then 

and its nonlinear order is maximal if and onIy if the number of ones of g is odd. 

In the general pary case the connection between bent functions and difference 
sets is more complicated and remains to be studied. Let us only mention that the 
general constructions of McFarland do not produce difference sets in groups of order 
p". Under some conditions regular bent functions yield difference sets in Zp", n even, 
with parameters 

(Pn,pn--l + ( p  - l)p%-l,p"-2 + (p - l)p4-1). 

also for p > 2. 
Example. The zeros of the bent function f : 2; --f Z3, f(x) = 2 1 2 2  + 3 3 2 4 ,  

form a difference set with parameters (81,33,15). 

Acknowledgement. I wish to thank Rainer Rueppel for bringing [2] to my atten- 
tion. 
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