
On the Construction of
Run Permuted Sequences

CEES J.A. JANSEN
Philips Crypto B.V.

P.O. Box 218, 5600 MD Eindhoven
The Netherlands

Abstract

This paper describes the construction of classes of binary sequences, which
are obtained by permuting the runs of zeroes and ones of some given periodic
binary sequence 9 = (se, 31,. . . , +I)~, s; E GF(2). A large class of sequences
is constructed by permuting the runs of zeroes and ones of a DeBruijn sequence
of given order. The properties of the sequences in this class are discussed. As is
known, in this way aLl DeBmijn sequences of given order are obtained, but aho

many more sequences with higher complexities, all satisfying Golomb’s first and
second randomness postulates. It is shown how to generate the sequences in this
class with the use of enumerative coding techniques. A more efficient sequence
generator, employing shift registers is also introduced. The binary sequence
generator obtained in this way can be useful for cryptographic purposes, e.g.
in streamcipher systems.

1 Introduction

Run permuted sequences were introduced in [4] as sequences obtained through in-
dependently permuting the runs of ones and zeroes of a DeBruijn sequence of given
order. DeBruijn sequences are well-known for their properties, i.e. for order n their
period is 2”, every n-tuple occurs exactly once in the sequence and by a result of
DeBruijn [2] it is known that there are exactly 22”-1-n such sequences. We will recall
the properties of this sequence class, i.e. the maximum order complexities as intro-
duced in [4] and the number of sequences obtained in this way. We will show how to
generate the sequences in this class with the use of enumerative coding techniques.
Also, a more efficient sequence generator, using shift registers, is given.

2 The Sequence Class C,

In [4, Ch. 61 a class of sequences is constructed through permuting the runs of ones
and zeroes of a DeBruijn sequence of given order. The procedure described there is

I.B. Damgard (Ed.): Advances in Cryptology - EUROCRYPT ‘90, LNCS 473, pp. 196-203, 1991
0 Springer-Verlag Berlin Heidelberg 1991

197

the following: the given sequence is written in its run-length representation and then
the integers representing the runs of ones and the integers representing the runs of
zeroes are permuted independently. The new sequence of integers obtained in this
way is then transformed back into a binary sequence. The reason for doing this is
twofold:

0 The described procedure preserves the R1 and F?2 properties of the original
sequence ([3]), i.e. the number of ones and ze rw as well as the distribution of
the runs remain unaltered.

The sequences obtained in this way have interesting properties such as a good
maximum order complexity.

Definition 1 The class Cn of binary periodic sequences is defined as the class of
cyclicly inequivalent sequences obtained through independently permuting the rum of
ones and zeroes of a DeBruijn sequence of order n .

It can be shown that the number of sequences in this class is given by the following
equation:

2

lent = 2-n+2 5 (2;:l) . (1)
1=1

If the binomial coefficients in (1) are approximated using Stirling's approximation
formula, the result becomes:

where Gk = 22k-'-k the number of binary DeBruijn sequences of order k and pn is
a correction factor which is less than 1 for all n and which converges to 0.61 - - for
large n.

Equation (2) clearly shows that the fraction of DeBruijn sequences contained in
Cn goes to zero for large n. However, all DeBruijn sequences of order n are contained
in C,,, as DeBruijn sequences are by definition all those sequences in which all sub-
sequences of length n occur exactly once. Hence, it is demonstrated that Golomb's
statement [3, pg. 1131 that the number of sequences in this class "is slightly larger"
than the number of DeBruijn sequences of order n, is not very careful.

3 Complexity Properties of Sequences in C,
As all DeBruijn sequences of order IZ (i.e. maximum order complexity n) constitute
only a small fraction of the entire class, the other sequences in C,, must necessarily
have maximum order complexities higher than n. Concerning this complexity the
following results are given in [4].

Proposition 1 For all sequences a E C,,, n > 2, the mazimum order complexity c(&)
satisfies the inequality: R 5 c(a) 5 2"-l - 1.

198

C

#(a)

Clearly, the lowerbound is attained by the DeBruijn sequences. For n = 3 the lower-
bound coincides with the upperbound. For n > 3 the upperbound is obtained by
sequences constructed as follows. All runs are divided into two sets; this is possible
for all runs except for the two longest runs of both ones and zeroes, which are unique.
With these two sets two identical sequences are constructed. Then the longest runs
of ones and zeroes are placed in front of the first sequence and the longest but one
runs in front of the second sequence. The two sequences are now concatenated to one
sequence. The longest subsequence which occurs twice in this sequence has length
2,-’ - 2, as can be seen from the next example.

Example 1 9 E C5, c(s) = 15

Two constructions:

11111 00000 11001010 00000 11001010 11111

111 000 11001010 000 11001010 111

Corollary 2 For dl sequences s f C,, n > 2, the mazimum order complezity .(a)
cannot be equal to 2“-l - 2.

The number of sequences with maximum order complexity of 2”-’ - 1 (which is
the maximum value) is given by the next proposition.

Proposition 3 Lef M, C C,, denote the subset of sequences in C,, having maximum
order complezity of 2”-l - 1. The number of sequences in this set satisfies lMnl =
2-n+51Cn-ll, for all n >_ 4.

It appears not to be straightforward to find a general expression for the number of
sequences in Cn with given complexity, other than for the three values shown above.
However, some small numerical examples can give an impression of the distribution
of complexity.

Example 2

GS = 2 IC31 = 2 lM31= 2
G4 = 16 IC41 = 36 4
G5 = 2048 IC51 = 88200 lM51= 36
G6 = 67108864 lc6I = 7304587290000 lMgl = 44100

n = 4:

5 6 7 8 9 10 11 12 13 14 15
2048 17376 37824 19824 8048 1840 860 256 88 0 36

-1
Average complexity Z = 4.7778

n = 5:

Average complexity Z = 7.2892

199

Figure 1: Ternary code tree for all permutations of abcc

4 Generation of Run Permuted Sequences
The sequences we have discussed so far in this section can also be generated efficiently.
In order to be able to generate dl sequences in C,, enumerative coding techniques (as
in [l]) can be applied to generate the permutations.

An example demonstrates the enumerative encoding and decoding of permuta-
tions. Consider all sequences which comprise one a, one b and two 2s; clearly there
are 4!/2! = 12 of these sequences. Let us assume a lexicographic ordering a < b < c
and define the leftmost chxacter in the sequence to be the most significant character.
All 12 sequences are represented by the ternary tree of Figure 1. The numbers written
with the nodes of the tree, denote the number of leaves that can be reached from that
node, i.e. the number of sequences starting with a, 6, c, aa, ab, These numbers
can easily be determined. For example, if N, denotes the number of sequences start-
ing with an 2, where z is a sequence of length less than 4 from {a,b,c} , we have
N, = 3!/2!, Nb = 3!/2!, N, = 3!/1!, N4b = 2!/2!, and so on. From the code tree it can
be seen that cabc is coded into (3 + 3) + 0 + 0 = 6. The codewords are often called
the indices, written as i(cabc) = 6. The general expression for the indices is:

2

i(JOht2M = c c N € O . . . ~ n - , Y n)

n=O un<En

where v,,,t,, E (a , b , c) , for n = 0,1,2,3. Using the above expression we see that
i(abcc) = 0 and i(ccba) = 11.

The decoding process uses again the node numbers of the code tree. As an exam-
ple, consider the decoding of an index with value 5. Clearly, the sequence cannot start
with an a, as all such sequences have indices less than 3. Also, the sequence cannot
start with a c, as all of these sequences have indices 2 3 + 3. Hence, the sequence
starts with a b. Next, the index is decreased by N , = 3, yielding a new index with
value 2. Applying the same procedure, c is obtained as the second character, yielding

200

Enumerative
Decoder

&run perms
4 i0

Figure 2: Generator structure for run permuted sequences

t Enumerative
Decoder

1-run perms

a new index with value 1. Continuing in this way we find that the sequence with
index 5 is bcca.

It is obvious that the enumerative decoding process can be applied twice, once for
the runs of ones and once for the runs of zeroes. In this way, all different run permuted
sequences can be generated in their run-length representations. To generate the
corresponding binary sequences it suffices to apply the run-length decoding algorithm.
The structure of such a sequence generator is depicted in Figure 2

* il

5 A Shift Register Construction
Although the enumerative decoding techniques are well understood, their implemen-
tational complexity is still quite substantial. Therefore, in this section we present a
run permuted sequence generator, based on feedback shift registers; binary counting
devices that are easy to implement.

The proposed method works because of the fact that the generator needs not
be able to generate the entire class C,, but rather a smaller subclass of sequences,
with sequences possibly occuring more than once, i.e. the class may contain p h m
shifted versions of one and the same sequence. Under these relaxed conditions the
enumerative decoders, as shown in Figure 2, can be replaced by integer-sequence
generators, being capable of generating a number of different sequences of integers.

These sequences of integers have to satisfy a number of conditions, viz.:

1. the period must be 2"-', as there are exactly that many runs of both ones and
zeroes in a run permuted sequence of order n

2. because of the perfect run distribution, there must be 2"-3 integers with value
1, 2"-4 with value 2, etc.

Sequences satisfying these conditions can be constructed very efficiently by means of
a nonlinear feedback shift register, generating a DeBruijn sequence of order n - 2. An
example is shown in Figure 3, which shows the complete binary sequence generator of

201

C

Figure 3: Generator example for run permuted sequences of order 5

order 5, being capable of generating 512 different run permuted sequences of period
32. The complexities of these sequences are listed below:

Total #(a) = 512 (88200)

c = 6 128 (17376)
c = 7 168 (37824)
c = 8 168 (19824)
c = 9 48 (8048)

2 = 7.2656 (7.2892)

The numbers between brackets are for the entire class Cs.
From Figure 3 the two identical DeBruijn sequence generators of order 3 can be

identified, i.e. one for the runs of ones and one for the runs of zeroes. The statese-
quences of each of these generators are permuted by the contents of the Key registers,
thus giving rise to 8 different statesequences each. The initial vector IV causes the
two statesequences to combine in 8 different ways. The statesequences are converted
into appropriate sequences of integers by means of the S-box. Alternatively this S-box
may be implemented separately for the two statesequences, thus allowing additional
permutations. The following details apply to the generator of Figure 3:

- f(=1, x212.3) = 2 1 + 23 + 52 v 23

202

- T: toggle flipflop 010101.. -
- T clocked by C A clock

- NLFSR for 0-runs clocked by c A clock A s.

- NLFSR for 1-runs clocked by c A clock A S

- c is output of binary 8-counter (state 111)

- &counter counts from preset value to 111 and presets again

- S-box is substitution table, e.g.:

in: 0, 1, 2, 3, 4, 5 , 6, 7
out: 7, 7, 7, 7, 6, 6, 5 , 3

Example 3 Operating example: Key = 101001, IV = 111000

The table below shows the successive states of the DeBruijn generators and the come-
sponding integer values input to the S-box by the generators taking "Key" and "Iv"
into account.

DB- -
000
001
011
111
110
101
010
100 -

:n
0
1
3
7
6
5
2
4

-

-

7

Gr: 10.2.6 7.....4...3..5....1.
G1: 2.3.0 ... 7.........1..5..4...6...2
ct: 7....5673456734567.6767.6767567..
- s : 010101110000011111011001001100010

From the foregoing it should be clear that higher order sequences can be obtained
analogously. In particular, for nth order sequences, having period 2", the DeBruijn
sequence generators must be of order n - 2 and the presetable counter must comprise
[log, n1 bits. In this way 23n-6 different sequences can be generated efficiently.

6 Conclusions
In this paper a construction method for binary sequences was described and its prop-
erties investigated. This construction method is based on source coding techniques.
Starting with a DeBruijn sequence of given order we construct an entire class of se-
quences by permuting the runs of ones and zeroes. The class of sequences contains ad
DeBruijn sequences of the given order, but many other sequences as well, all satisfying
Golomb's first and second randomness postulates.

It was demonstrated that all the sequences in the class can be generated by enu-
merative decoding techniques. Also, an efficient sequence generator based on shift

203

registers was shown, which seems very well suited for high speed applications. In the
way described in this paper, many more classes of sequences can be constructed, e.g.
if the starting sequence is a Mazimum Length Linear FSR sequence or a Legendre
sequence ([3, pg. 47]), which may be useful for cryptographic purposes. To this end,
it suffices for the the shift register generator to simply use other S-boxes.

References
[l] T. Cover. "Enumerative Source Coding", IEEE Trans. on Info. Theory, vol.

IT-19, pp. 73-76, January 1973.

[2] N. G. de Bruijn. "A Combinatorial Problem", Nederl. Akad. Wetensch. Proc.,
vol. 49, pp. 758-754, 1946.

[3] S. W. Golomb. Shift Register Sequences, Holden-Day Inc., San Francisco, 1967.

[4] C. J. A. Jansen. Investigations On Nonlinear Streamcipher Systems: Construc-
tion and Evaluation Methods, PhD. Thesis, Technical University of Delft, Delft,
April 1989.

	On the Construction ofRun Permuted Sequences
	1 Introduction
	2 The Sequence Class C,
	3 Complexity Properties of Sequences in C,
	4 Generation of Run Permuted Sequences
	5 A Shift Register Construction
	6 Conclusions
	References

