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Abstract. We &scribe a cryptographic library for the Motorola DSP56000 that provides harahre speed 
yet softwcue&xibility. The library includes modular arithmetic, DES, message digest and other methods. 
Of particular interest is an algorithm for modular multiplication that interleaves multiplication with 
Montgomery modular reduction to give a very fart implementation of RSA. 
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1. Introduction 

As cryptography becomes more widespread, fast yet flexible cryptographic tools are 
becoming important. Experience with hardware tools has shown that speed often cannot 
fully be malized unless all cryptographic methods of interest are implemented in 
hardware. For example, digital signatures are often implemented with a message digest 
followed by a public key encryption (as suggested first by [S]), so speeding up only the 
public key encryption may not be sufficient. Nevertheless, hardware implementations of 
many important yet nonstandard methods are hard to find. 

We therefore propose that the right tool for many applications is not custom hardware but 
a fast general-purpose processor. 

We have recently developed a cryptographic library for one such processor, the Motorola 
DSP56000 digital signal processor. The library includes the following methods: 

Multiple-precision arithmetic. Several cryptosystems [12][16][18][19][261 
involve integers hundreds of digits long, so this is a necessity. 

Data Encryption Standard [7]. Though its security has been questioned [21, it 
remains an important tool. 

Message digest. This operation is essential to almost every signature scheme. 
Flexibility is important as there is no widely accepted, secure, standard message 
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digest; our choices include FIPS 113 MAC [6] and RSA-MD2, both of which 
were proposed for Internet elecmnic mail [22]. We are also considering RSA- 
MD4 [25]. 

In evaluating various general-purpose processors we found that the DSP56000 is 
especially well-suited because it can multiply two 24-bit integers and add the product to a 
56-bit integer in 100 ns [14]. Such an operation is important not only in digital signal 
processing but also in multiple-precision arithmetic. The 24-bit word size also matches 
the 48-bit round keys of DES nicely. However, we expect that most of our results can be 
applied on other general-purpose processors. 

This paper is organized as follows. We begin by describing our algorithms for RSA and 
DES. Then we present the design of a "crypto-accelerator card" for the IBM PC. Finally, 
we s u m m b  the performance of the cryptographic library. 

2. Related work 

Work that motivated ours is Barrett's, Wiener's and Davio et ufs. Barrett observed the 
effectiveness of digital signal processors for cryptography and presented an 
implementation of RSA on Texas Instruments' TMS32010 [l]. Wiener developed a 
general software implementation of RSA on the DSP56000 that achieves 10.2K bits/s for 
512-bit modular exponentiation with the Chinese remainder theorem 141. An 
implementation specific to 512-bit moduli is even faster [30]. Davio et a2 made 
considerable progress in efficient techniques for DES [9], some of which we apply in our 
implementation. 

Among other recent work on fast cryptography are Buell and Ward's implementation of 
multiple-precision arithmetic on a a Cray computer [5] and Laurichesse's fast 
implementations of RSA on conventional processors [21]. A number of fast hardware 
implementations can be found in Brickell's 1989 survey [4]. 

Currently the record for the fastest implementation of RSA is held by Shand, Bertin and 
Vuillemin of Digital Equipment Corporation's Paris Research Laboratories, who have 
achieved 226K bits/s for 508-bit modular exponentiation with the Chinese remainder 
theorem [ 291. 

3. RSA algorithm 

We now describe our implementation of RSA on the Motorola DSP56000. This section 
addresses the algorithms; performance is dealt with in Sec. 6. 

In the RSA cryptosystem [26] one performs modular exponentutionr: computations of the 
form C = ME mod N where C, M, E and N are multiple-precision integers. This 
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to several other cryptosystems [12][16][18][19] so our results 

S W g  modular exponentiation has been of interest for some time, and there are a 
number of speedups [3][20][24][27]. We focus on one particular aspect, the integration of 
multiple-precision multiplication with modular reduction according to Montgomery's 
method [23]. Our speedup is complementary to others that focus on reducing the number 
of multiplications and reductions so ours and the others can be applied concurrently. 

Our algorithm is most effective on a processor on which multiplication is fast relative to 
shifting, for then the convolution-sum approach described below outperforms the 
conventional shift-and-add method. We believe our algorithm will result in some speed 
improvement on every processor, but given that it is a little more complicated than 
conventional methods, the algorithm may not be justified on all processors. 

3.1 Montgomery's method 

We now outline Montgomery's method for modular arithmetic. Readers familiar with the 
topic may skip to Sec. 3.2. 

In Montgomery's method we represent residue classes in an unusual way and redehe  
modular arithmetic within this representation. Specifically, let N be an integer (the 
modulus) and let R be an integer relatively prime to N. We represent the residue class A 
mod N as AK mod N and redefine modular multiplication as 

MONTGOMERY-PRODU~(A$,N,R) = ABR-' mod N 

It is not hard to verify that Montgomery multiplication in the new representation is 
isomorphic to modular multiplication in the ordinary one: 

MONTGOMERY-PRODUCT(AR mod N,BR modN,N,R) = (AB)R mod N 

We can similarly redefine modular exponentiation as repeated Montgomery 
multiplication. This "Montgomery exponentiation'' can be computed with all the usual 
modular exponentiation speedups. TO compute ordinary modular exponentiation c = M E  
mod N, we compute M' = MR mod N (ordinary modular reduction), C' = (M')ER1-E mod 
N (Montgomery exponentiation), and C = C'R-l mod N (Montgomery reduction). 

The practicality of Montgomery's method rests on the following nice theorem, which 
leads directly to an algorithm for Montgomery multiplication. 
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Theorem 1 (Montgomery, 1985) 

Let N and R be relatively-prime integers, and let K = 4 V - I  mod R. Then for all integers 
T,  (T+MN)IR is an integer satisfymg 

where M = TN' mod R. 

Proof Equation 1 is straightforward. The fact that (T+MiV)/R is an integer can be shown 
by substituting M. 

If we choose the right R-say, a power of the base in which we represent mulhple- 
precision integers-then division by R and reduction modulo R are trivial. With such an 
R Montgomery reduction is no more expensive than two multiple-precision products, and 
we can make it even easier. 

3.2 Computing the Montgomery product 

We now describe OUT algorithm for the Montgomery product. For the discussion we will 
let b be the base in which multiple-precision integers are represented. That is, we will 
represent an integer A as a sequence of digits (uo,. . where 

We will further require that a l l  inputs to our algorithms can be represented in n base b 
digits, and that R = b". In Sec. 3.3 we determine limitations on the individual digits ag, 
. . ., un-l. 

We derive our algorithm by successive improvements, beginning with the following 
algorithm taken directly from Theorem 1. (We note that our algorithm does not 
"normalize" its output to the range [Od-11. Sec. 3.3 shows why.) 

MONTGOMERY-PRODUCT(A ,Bs\'p) 
1 N't-W1modR 
2 T t A B  
3 MtTIV 'modR 
4 TtT+MN - I 
5 returnTIR 

Improvement 1. Instead of computing all of M at once, let us compute one digit mi at a 
time, add to T,  and repeat. The resulting T may not be the same as in the original 
algorithm but the effect of adding multiples of N will be: namely, to make T a multiple of 
R. This is essentially the approach Montgomery gives for multiple-precision integers. We 
note that this change allows us to compute ngl= N-l mod b instead of N'. 

- 
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MONTC~MERY-I?RODWC~(A ,B 8 , R )  
1 ng' t -w-lmodb 
2 T c A B  
3 
4 do mi t ring' mod b 
5 T t T+mjV& 
6 returnTIR 

for i t 0 to n-l 

Improvement 2. Now let us interleave multiplication and reduction. We note that 
Montgomery reduction is intrinsically a right-to-left procedure. That is, mi depends only 
on ti. So we can begin adding this multiple to T as soon as we know ti. This results in the 
following algorithm: 

MONTGOMERY-F%ODUCT"(A ,B,N,R) 
1 no' t -no-' mod b 
2 T c O  
3 f o r i t o t o n - 1  
4 do T + T + @ b '  
5 
6 T t T+m$@ 
7 returnTIR 

mi t ri%' mod b 

Improvment 3. At this point we can begin to observe a potential difficulty for the 
DSP56000. The operation T t T + a$bi-the basic shift-and-add operation-is likely to 
break down into the following single-precision operations: 

4.1 do x t t i  
4.2 

4.4 

4.6 ti+n + X - (initial ti+n = 0) 

f o r j  t 0 to n-1 
4.3 do X C X + U ~ ~ ~  

4.5 x t x l b  -right shift 
ti+j t x mod b 

These operations involve not only n single-precision multiplications but also n right 
shifts. On many processors the "high part" and the "low part" of accumulators are 
separately addressable and the right shift can be accomplished with move instructions. 
This is true also on the DSP56000, but such shifting takes longer than a multiplication on 
the DSP56000, which motivates us to minimize the number of right shifts. Happily, there 
is a good way to avoid right shifts, and that is with the convolution-sum method of 
multiplication. In this method instead of performing operations like T t T f agbi, we 
perform operations like T c T + (& aibk-i)bk. These involve k+l multiplications but 
only one shift. The fact that Montgomery reduction is intrinsically right-to-left helps us 
again, and leads to our final algorithm. 

MONTGOMERY-PRODU~"(A ,B ,"R) 
1 ng't-q,-1modb 
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We expect that our final algorithm will generally be faster than the interleaved shift-and- 
add version on most pmessors, because our algorithm has fewer right shifts, U(n) versus 
O(n2). It also has fewer stores, again O(n) versus O(n2). (The number of other 
operations-fecthes, multiplies, and adds-is essentially the same for both algorithms.) 
Eowwer, we note *at e*xr Zlgcr;~.! hx rmre caq!e?:  IMP conm!.We also cote thzt 
our algorithm accumulates intermediate results that are a factor of 2n larger in magnitude 
than those in the shift-and-add algorithm, so we need a larger accumulator and addition 
instructions that can handle the larger accumulator. 

On most processors we can implement the larger accumulator with multiple registers and 
the additions involving it with add-with-carry instructions. The DSP56000 is especially 
well suited since its accumulator is eight bits longer than the largest product its ALU can 
produce. Thus even without multiple registers or add-with-carry instructions the 
DSP56000 can handle the intermediate results for n up to 128. 

The extent to which our algorithm is faster depends mostly on the relative speeds of 
multiplication and shifting. If multiplication is relatively slow then changes in the 
number of shifts will have an insignficant effect on total execution time. For example, on 
the Intel 80386 multiplication is an order of magnitude slower than shifting and we have 
observed what appears to be at best a 10 percent improvement in execution time. But on 
the DSP56000 the improvement is manyfold. 

We conclude with a couple of remarks. First, we can derive a Montgomery squaring 
algorithm MONTGOMERY-SQUARE(AJV,R) in the usual way that is asymptotically 25 
perceilt faster than the alieinauve ~ v ~ ~ ~ ~ T ~ G ~ E ~ - f - ~ o ~ ~ ~ ( ~ ~  ,?<,A!). 

Second, we can precompute no' = -no-' mod b once during a Montgomery 
exponentiation since it depends only on the modulus N. Computing nd by a general 
modular inverse algorithm such as extended Euclidean GCD would not be all that 
expensive, since b is small. We have found instead (or rediscovered?) a very nice way to 
compute the modular inverse in the special case that no is odd and b is a power of 2: 

MoDuLAR-INVERSE(X,~) 
1 

3 
4 do if xyi-I < 2i-1 mod 2i 

- Computes r1 mod b for x odd and b a power of 2. 

for i c 2 to lg b 
2 Y l c - 1  
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5 then yi + Yi-1 
6 
7 returnylgb 

The correctness of MODULAR-MRSE can be verified by induction with the hypothesis 
xyi P 1 mod 2'. 

else yi c yi-l + 9-1 

3.3 Representation of multiple-precision integers 

We have not yet defined "base b representation" for the DSP56000, so we do so now. 
The DSP56000 has a signed multiply instruction that multiplies two 24-bit two's- 
complement integers and adds their product to a 56-bit accumulator. Thus the logical 
choices for "base b representation" are a sequence of 24-bit signed digits and a sequence 
of 23-bit unsigned digits. A sequence of 24-bit unsigned digits is rather awkward with a 
signed multiply instruction. Given that the 23-bit unsigned representation of an integer 
would generally be longer than the 24-bit signed representation, we chose the signed 
representation. 

n u s  the digits ai in @. 2 satisfy -223 I, ai I, 223-1. 

We now prove our claim that MONTGOMERY-PRODUCT need not adjust its result to the 
range [Oa-1] by showing that the redundant range [-N,N-l] can be maintained through 
all intermediate calculations. 

Theorem 2 

Let R = bn where b, n > 0, and let A,  B and N be n-digit, multiple-precision integers in the 
signed representation, where N > 0. If A and B are in the range [-N,N-1] then for all n- 
digit multiple-precision integers M, (AB+MN)/R is in the range [-N,N-l]. 

Proof We begin by proving two identities: 

N + M < R  
- N + M > - R  

The fist follows from the observation that the largest positive n-digit integer in the 
signed representation is less than Rn. The second follows from the fact that the largest 
positive n-digit integer and the smallest negative n-digit integer differ by less than R. 

The theorem follows, since 

(AB+MN)/R I (N+M)NIR .c N 
(AB+hRQ/R > (-N+M)N/R > -A' 
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We note that a similar property holds in the unsigned representation, but it requires the 
further condition that N < Rl4. 

- 1  

4. DES algorithm 

Our implementation of DES follows the paper of Davio er. al. [9]. We first recall the 
definition of DES, then describe how we implemented the improvement. 

By way of review, DES consists of 16 nonlinear rounds that transform a 64-bit block 
according to a 48-bit round key. The 16 round keys are computed from a 56-bit key 
according to a DES key schedule that we do not describe further. The bits in the &bit 
block are permuted in a fixed way before the first round and after the last. This is 
Summar?zed in the following algorithm: 

DES(M,K) 
- Encrypts message M under key K with DES. 
(K,,. , .Sld t DES-K.EY-SCHEDULE(K) 
(LJO +- mM) 
for i c 1 to 16 

return ZP~((R,L}) 
do (LJZ) t DES-RoUND((L,R),Ki) 

Here E is a linear 32-to-48-bit mapping, P is a 32-bit permutation, and S1, ..., Sg are 
nonlinear six-to-four-bit mappings (the “S boxes”). ZP is a &bit permutation and IF1 is 
its inverse. 

The primary difficulty with a direct implementation of DES is the expense of applying E 
and P. Davio er al observed that the linearity of E and P makes it possible to remove E 
and P entirely fkom the DES round. We can do this by modifying the S boxes to 
incorporate the permutation P that would follow in one round and the mapping E that 
would follow in the next. That is, we define S boxes Sl’, . . ., S,l as 
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We also change the main algorithm to apply E at the beginning and E-1 at the end. The 
mapping E-l can be any 48-to-32-bit mapping be any that satisfies E 1 ( E ( X ) )  = X for all 
X. This leads to our algorithm. 

DES’(Mm 
- Encrypts message M under key K with DES . 
(Kl,. ..,Kid c DES-KEY-SCHEDULE(K) 

R‘ t E(R) 
for i t 1 to 16 

( L 8 )  + WM) 
L’ t E(L) 

do (L’J?’) c DES-ROUND’((L’$’),K~) 
L t E-l(L3 
R t E-I(R’) 
return IP1((R,L)) 

Davio et al observed that this algorithm would be especially good on a processor with 
48-bit words. We almost have this on the DSP56000, which can fetch two 24-bit words in 
one instruction. We note finally that speedups such as Davio et UPS have been adapted on 
many types of processor [10][17] and are quite common. 

5. A “crypto-accelerator card” for the IBM PC 

We now describe a working deployment of the DSP56000: our crypto-accelerator card. 
The card is a 3/4-length card occupying one expansion slot of an DBM PC, XT, AT or 
compatible. It uses the +5, +12, and -12 volt DC power supplies from the PC. The card is 
comprised of four major components: processor, optional DES chip, PC interface, and 
noise circuit. The total cost to us for the card is $400. 

5.1 Processor 

At the heart of the card is Motorola’s XSP56001zL20, a RAM-based member of the 
DSP56000. It is clocked at 20 M H z  The DSP consists of an arithmetic logic unit, address 
generation unit, and a program controller as well as internal program and data memory. 
There is extensive YO support including a dedicated host interface port, an external 
memory/peripheral port, and two serial ports. 
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For our design, the DSP is attached to two banks of external 24-bit memory. The P 
program memory bank can hold 8K or 32K of RAM or ROM and the X data memory 
bank can hold 8K or 32K of RAM, An external power-up reset circuit holds the DSP in a 
reset state until the PC activates the DSP. This avoids the execution of spurious code 
upon power-up which could damage the DSP [15]. 

53 DES chip 

The optional DES chip is Western Digital's WD20C03. It is clocked at 10 MHz. It can 
perform the ECB and CBC modes of DES [ 111. The DES chip is attached to the DSP 
extemal memory/pexipheral port and is mapped into the Y data memory bank's external 
VO space. It transmits and receives data under program control of the DSP. 

5.3 PC interface 

The card communicates with the host PC via a multi-function interface. The interface has 
three main components: DSP external memory interface, direct DSP interface, and 
control and status. 

DSP external memory inrerface. The DSP memory words are 24 bits wide and do not 
directly map to the PCs 8-bit memory space. For this reason, we designed special- 
purpose external memory support with these features: 

- a bank select that specifies DSP external memory bank (P or X) 

- an address generation unit (AGU) with a PC-loadable counter that indexes 
through the bytes of a 24-bit DSP word and then from word to word 

- a load mode that indicates whether the address generation unit is to index DSP 
words in low-medium-high byte order or low byte only 

- external memory bus requestlbus grunt signals programmable by the PC 

To take advantage of fast block move instructions on the PC, the memory interface 
responds to any address in a large range in the PCs memory. Nevertheless, the AGU and 
not the particular PC memory address determines which DSP external memory byte is 
selected. 

Direct DSP interface. The PC accesses the DSP56000's internal registers through the 
DSP's bidirectional host interface port. The port is mapped to eight locations in the PC's 
VO address space. The port allows direct control of DSP software functions and gives 
access to software status and completion flags. 
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Control and starus registers. Control and status is achieved through a series of latches 
and registers. These are mapped to eight locations in the Pc's I/O address space. The 
registers support such functions as the loading of the AGU, DSP bus requesVbus grant, 
location of the PC reserved memory, and DSP chip reset. 

5.4 Noise circuit 

The noise circuit consists of a noise diode, some amplification and an analog-to-digital 
converter. The noise diode is a CND6002A diode from Koep Recision Standards which 
produces a minimum noise output of 7 pv per root Hz over the range 10 Hz-100 IrHz. 
Two op-amp stages amplify the noise and a precision comparator with lTL output 
converts the result into bits. The circuit is connected to the DSP and the status registers. 

Since the primary purpose of the noise circuit is to generate random cryptographic keys, 
special care is taken to decouple the noise circuit from other computer components. 
Coupling would not only introduce unwanted noise but might also make the output of the 
noise circuit predictable. 

6. Performance 

We now summarize the performance of the cryptographic library. 

Our RSA implementation on the DSP56000, as expected, achieves hardware speed: 
11.K bits/s for 512-bit exponentiation with the Chinese remainder theorem and 4.6K 
bits/s without. (This is for full or "private key" exponentiation, i.e., where the exponent is 
the same length as the modulus; "public key" exponentiation is faster.) The 
implementation is more than an order of magnitude faster than our software on a fast PC. 
We do not lose much performance in the overhead of interfacing the crypto-accelerator 
card to a PC. 

The DES implementation runs at 350K bits/s in CBC mode for large blocks. ECB mode 
is a little faster. This is comparable to our software on a fast PC. In this case the 
interfacing overhead affects perfoxmance somewhat, such that it is faster for a fast PC to 
perform DES in software for blocks less than about 600 bytes than to interface to the 
crypto-accelerator card. A card with the optional DES chip runs at 3.8M bit& and is 
faster than PC software for almost any block size. 

Our RSA-MD2l implementation performs much like DES: for small blocks, fast PC 
software would be faster. The implementation achieves 190K bits/s, which is twice as 
fast as our software on a fast PC for large blocks. 

lTo be accurate, we have only implemented RSA-h4D1. a proprietary message digest algorithm almost 
identical to RSA-MDZ We expect to include RSA-h4D2 in later versions of the library. 
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We note that the lack of significant speedup in RSA-MD2 does not mean that our efforts 
to accelerate cryptography have failed. Although we have not made those algorithms "as 
fast as hardware," we have offloaded them from the PC, leaving the PC to perform such 
operations as VO in parallel with the cryptography. We also note that there is mom for 
improvement in all results. One factor sigrufkantly affecting performance is the 
limitation on internal memory. We do not store any of our program in internal memory, 
though we put some data there, so we expect a fair improvement just as a result of 
copying procedures to internal memory before executing them. There are other 
improvements as well. 

Our results are s 
foIlowing hardware/software configurations: 

ized in Figs. 1-3 where we compare performances across the 

- DSP56000 (the one stated in Sec. 5.1 with zero-wait-state memory): software 
alone, or with optional DES chip (the one stated in Sec. 5.1) 

- fast PC (20 M H z  Intel 80386): software alone, with crypto-accelerator card, or 
with crypto-accelerator card and optional DES chip 

- slow PC (6 M H z  Intel 80286): software alone, with crypto-accelerator card, or 
with crypto-accelerator card and optional DES chip 

Our PC software is admittedly not the fastest in the world; a better baseline for 
comparison is probably Laurichesse's software [21]. 

7. Conclusion 

We have described a flexible and fast cryptographic tool based on the Motorola 
DSP56000. Among the techniques we used are an algorithm for modular multiplication 
that interleaves multiplication with Montgomery modular reduction to give a very fast 
implementation of RSA, and the 48-bit model of DES due to Davio ef al. 

Since the time we began developing our cryptographic library, Motorola started 
producing a 27 MHz version of the DSP56000 [13]. Consequently our implementations 
can potentially be made 35 percent faster with no further investment on our part. 

One of the areas of further interest is how fast RSA can be implemented on other digital 
signal processors. If we make the assumption that the speed of modular multiplication 
(Montgomery or otherwise) is proportional in speed to one FfR filter tap and to the 
square of the word size, we find that the processors likely to provide the best 
performance are AT&Ts DSP16A (40M taps/s, 256 bit$) and TI'S TMS320C50 (29M 
taps/s, 256 bits2) [28]. The DSP56000 measures in at 13M taps/s and 576 bits2. We wil l  
probably explore the DSP16A and the TMS320C50 next. 
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