
A Cryptographic Library for the Motorola DSP56000

Stephen R. Dussb
Burton S. Kaliski Jr.

RSA Data Security Inc.
Redwood City, CA

Abstract. We &scribe a cryptographic library for the Motorola DSP56000 that provides harahre speed
yet softwcue&xibility. The library includes modular arithmetic, DES, message digest and other methods.
Of particular interest is an algorithm for modular multiplication that interleaves multiplication with
Montgomery modular reduction to give a very fart implementation of RSA.

Key words. Data Encryphh Standard (DES), Encryption hardware, Message digest, Modular mithmetic.
Montgomery reduction, Motorola DSP56oo0, Multiple-precision arithmetic, RSA.

1. Introduction

As cryptography becomes more widespread, fast yet flexible cryptographic tools are
becoming important. Experience with hardware tools has shown that speed often cannot
fully be malized unless all cryptographic methods of interest are implemented in
hardware. For example, digital signatures are often implemented with a message digest
followed by a public key encryption (as suggested first by [S]), so speeding up only the
public key encryption may not be sufficient. Nevertheless, hardware implementations of
many important yet nonstandard methods are hard to find.

We therefore propose that the right tool for many applications is not custom hardware but
a fast general-purpose processor.

We have recently developed a cryptographic library for one such processor, the Motorola
DSP56000 digital signal processor. The library includes the following methods:

Multiple-precision arithmetic. Several cryptosystems [12][16][18][19][261
involve integers hundreds of digits long, so this is a necessity.

Data Encryption Standard [7]. Though its security has been questioned [21, it
remains an important tool.

Message digest. This operation is essential to almost every signature scheme.
Flexibility is important as there is no widely accepted, secure, standard message

I.B. Damgard (Ed.): Advances in Cryptology - EUROCRYPT ‘90, LNCS 473, pp. 230-244, 1991
0 Springer-Verlag Berlin Heidelberg 1991

231

digest; our choices include FIPS 113 MAC [6] and RSA-MD2, both of which
were proposed for Internet elecmnic mail [22]. We are also considering RSA-
MD4 [25].

In evaluating various general-purpose processors we found that the DSP56000 is
especially well-suited because it can multiply two 24-bit integers and add the product to a
56-bit integer in 100 ns [14]. Such an operation is important not only in digital signal
processing but also in multiple-precision arithmetic. The 24-bit word size also matches
the 48-bit round keys of DES nicely. However, we expect that most of our results can be
applied on other general-purpose processors.

This paper is organized as follows. We begin by describing our algorithms for RSA and
DES. Then we present the design of a "crypto-accelerator card" for the IBM PC. Finally,
we s u m m b the performance of the cryptographic library.

2. Related work

Work that motivated ours is Barrett's, Wiener's and Davio et ufs. Barrett observed the
effectiveness of digital signal processors for cryptography and presented an
implementation of RSA on Texas Instruments' TMS32010 [l]. Wiener developed a
general software implementation of RSA on the DSP56000 that achieves 10.2K bits/s for
512-bit modular exponentiation with the Chinese remainder theorem 141. An
implementation specific to 512-bit moduli is even faster [30]. Davio et a2 made
considerable progress in efficient techniques for DES [9], some of which we apply in our
implementation.

Among other recent work on fast cryptography are Buell and Ward's implementation of
multiple-precision arithmetic on a a Cray computer [5] and Laurichesse's fast
implementations of RSA on conventional processors [21]. A number of fast hardware
implementations can be found in Brickell's 1989 survey [4].

Currently the record for the fastest implementation of RSA is held by Shand, Bertin and
Vuillemin of Digital Equipment Corporation's Paris Research Laboratories, who have
achieved 226K bits/s for 508-bit modular exponentiation with the Chinese remainder
theorem [291.

3. RSA algorithm

We now describe our implementation of RSA on the Motorola DSP56000. This section
addresses the algorithms; performance is dealt with in Sec. 6.

In the RSA cryptosystem [26] one performs modular exponentutionr: computations of the
form C = ME mod N where C, M, E and N are multiple-precision integers. This

computation is central
apply to those as weL

232

to several other cryptosystems [12][16][18][19] so our results

S W g modular exponentiation has been of interest for some time, and there are a
number of speedups [3][20][24][27]. We focus on one particular aspect, the integration of
multiple-precision multiplication with modular reduction according to Montgomery's
method [23]. Our speedup is complementary to others that focus on reducing the number
of multiplications and reductions so ours and the others can be applied concurrently.

Our algorithm is most effective on a processor on which multiplication is fast relative to
shifting, for then the convolution-sum approach described below outperforms the
conventional shift-and-add method. We believe our algorithm will result in some speed
improvement on every processor, but given that it is a little more complicated than
conventional methods, the algorithm may not be justified on all processors.

3.1 Montgomery's method

We now outline Montgomery's method for modular arithmetic. Readers familiar with the
topic may skip to Sec. 3.2.

In Montgomery's method we represent residue classes in an unusual way and redehe
modular arithmetic within this representation. Specifically, let N be an integer (the
modulus) and let R be an integer relatively prime to N. We represent the residue class A
mod N as AK mod N and redefine modular multiplication as

MONTGOMERY-PRODU~(A$,N,R) = ABR-' mod N

It is not hard to verify that Montgomery multiplication in the new representation is
isomorphic to modular multiplication in the ordinary one:

MONTGOMERY-PRODUCT(AR mod N,BR modN,N,R) = (AB)R mod N

We can similarly redefine modular exponentiation as repeated Montgomery
multiplication. This "Montgomery exponentiation'' can be computed with all the usual
modular exponentiation speedups. TO compute ordinary modular exponentiation c = M E
mod N, we compute M' = MR mod N (ordinary modular reduction), C' = (M')ER1-E mod
N (Montgomery exponentiation), and C = C'R-l mod N (Montgomery reduction).

The practicality of Montgomery's method rests on the following nice theorem, which
leads directly to an algorithm for Montgomery multiplication.

233

Theorem 1 (Montgomery, 1985)

Let N and R be relatively-prime integers, and let K = 4 V - I mod R. Then for all integers
T, (T+MN)IR is an integer satisfymg

where M = TN' mod R.

Proof Equation 1 is straightforward. The fact that (T+MiV)/R is an integer can be shown
by substituting M.

If we choose the right R-say, a power of the base in which we represent mulhple-
precision integers-then division by R and reduction modulo R are trivial. With such an
R Montgomery reduction is no more expensive than two multiple-precision products, and
we can make it even easier.

3.2 Computing the Montgomery product

We now describe OUT algorithm for the Montgomery product. For the discussion we will
let b be the base in which multiple-precision integers are represented. That is, we will
represent an integer A as a sequence of digits (uo,. . where

We will further require that a l l inputs to our algorithms can be represented in n base b
digits, and that R = b". In Sec. 3.3 we determine limitations on the individual digits ag,
. . ., un-l.

We derive our algorithm by successive improvements, beginning with the following
algorithm taken directly from Theorem 1. (We note that our algorithm does not
"normalize" its output to the range [Od-11. Sec. 3.3 shows why.)

MONTGOMERY-PRODUCT(A ,Bs\'p)
1 N't-W1modR
2 T t A B
3 MtTIV 'modR
4 TtT+MN - I
5 returnTIR

Improvement 1. Instead of computing all of M at once, let us compute one digit mi at a
time, add to T, and repeat. The resulting T may not be the same as in the original
algorithm but the effect of adding multiples of N will be: namely, to make T a multiple of
R. This is essentially the approach Montgomery gives for multiple-precision integers. We
note that this change allows us to compute ngl= N-l mod b instead of N'.

-

234

MONTC~MERY-I?RODWC~(A ,B 8 , R)
1 ng' t -w-lmodb
2 T c A B
3
4 do mi t ring' mod b
5 T t T+mjV&
6 returnTIR

for i t 0 to n-l

Improvement 2. Now let us interleave multiplication and reduction. We note that
Montgomery reduction is intrinsically a right-to-left procedure. That is, mi depends only
on ti. So we can begin adding this multiple to T as soon as we know ti. This results in the
following algorithm:

MONTGOMERY-F%ODUCT"(A ,B,N,R)
1 no' t -no-' mod b
2 T c O
3 f o r i t o t o n - 1
4 do T + T + @ b '
5
6 T t T+m$@
7 returnTIR

mi t ri%' mod b

Improvment 3. At this point we can begin to observe a potential difficulty for the
DSP56000. The operation T t T + a$bi-the basic shift-and-add operation-is likely to
break down into the following single-precision operations:

4.1 do x t t i
4.2

4.4

4.6 ti+n + X - (initial ti+n = 0)

f o r j t 0 to n-1
4.3 do X C X + U ~ ~ ~

4.5 x t x l b -right shift
ti+j t x mod b

These operations involve not only n single-precision multiplications but also n right
shifts. On many processors the "high part" and the "low part" of accumulators are
separately addressable and the right shift can be accomplished with move instructions.
This is true also on the DSP56000, but such shifting takes longer than a multiplication on
the DSP56000, which motivates us to minimize the number of right shifts. Happily, there
is a good way to avoid right shifts, and that is with the convolution-sum method of
multiplication. In this method instead of performing operations like T t T f agbi, we
perform operations like T c T + (& aibk-i)bk. These involve k+l multiplications but
only one shift. The fact that Montgomery reduction is intrinsically right-to-left helps us
again, and leads to our final algorithm.

MONTGOMERY-PRODU~"(A ,B ,"R)
1 ng't-q,-1modb

235

We expect that our final algorithm will generally be faster than the interleaved shift-and-
add version on most pmessors, because our algorithm has fewer right shifts, U(n) versus
O(n2). It also has fewer stores, again O(n) versus O(n2). (The number of other
operations-fecthes, multiplies, and adds-is essentially the same for both algorithms.)
Eowwer, we note *at e*xr Zlgcr;~.! hx rmre caq!e?: IMP conm!.We also cote thzt
our algorithm accumulates intermediate results that are a factor of 2n larger in magnitude
than those in the shift-and-add algorithm, so we need a larger accumulator and addition
instructions that can handle the larger accumulator.

On most processors we can implement the larger accumulator with multiple registers and
the additions involving it with add-with-carry instructions. The DSP56000 is especially
well suited since its accumulator is eight bits longer than the largest product its ALU can
produce. Thus even without multiple registers or add-with-carry instructions the
DSP56000 can handle the intermediate results for n up to 128.

The extent to which our algorithm is faster depends mostly on the relative speeds of
multiplication and shifting. If multiplication is relatively slow then changes in the
number of shifts will have an insignficant effect on total execution time. For example, on
the Intel 80386 multiplication is an order of magnitude slower than shifting and we have
observed what appears to be at best a 10 percent improvement in execution time. But on
the DSP56000 the improvement is manyfold.

We conclude with a couple of remarks. First, we can derive a Montgomery squaring
algorithm MONTGOMERY-SQUARE(AJV,R) in the usual way that is asymptotically 25
perceilt faster than the alieinauve ~ v ~ ~ ~ ~ T ~ G ~ E ~ - f - ~ o ~ ~ ~ (~ ~ ,?<,A!).

Second, we can precompute no' = -no-' mod b once during a Montgomery
exponentiation since it depends only on the modulus N. Computing nd by a general
modular inverse algorithm such as extended Euclidean GCD would not be all that
expensive, since b is small. We have found instead (or rediscovered?) a very nice way to
compute the modular inverse in the special case that no is odd and b is a power of 2:

MoDuLAR-INVERSE(X,~)
1

3
4 do if xyi-I < 2i-1 mod 2i

- Computes r1 mod b for x odd and b a power of 2.

for i c 2 to lg b
2 Y l c - 1

236

5 then yi + Yi-1
6
7 returnylgb

The correctness of MODULAR-MRSE can be verified by induction with the hypothesis
xyi P 1 mod 2'.

else yi c yi-l + 9-1

3.3 Representation of multiple-precision integers

We have not yet defined "base b representation" for the DSP56000, so we do so now.
The DSP56000 has a signed multiply instruction that multiplies two 24-bit two's-
complement integers and adds their product to a 56-bit accumulator. Thus the logical
choices for "base b representation" are a sequence of 24-bit signed digits and a sequence
of 23-bit unsigned digits. A sequence of 24-bit unsigned digits is rather awkward with a
signed multiply instruction. Given that the 23-bit unsigned representation of an integer
would generally be longer than the 24-bit signed representation, we chose the signed
representation.

n u s the digits ai in @. 2 satisfy -223 I, ai I, 223-1.

We now prove our claim that MONTGOMERY-PRODUCT need not adjust its result to the
range [Oa-1] by showing that the redundant range [-N,N-l] can be maintained through
all intermediate calculations.

Theorem 2

Let R = bn where b, n > 0, and let A, B and N be n-digit, multiple-precision integers in the
signed representation, where N > 0. If A and B are in the range [-N,N-1] then for all n-
digit multiple-precision integers M, (AB+MN)/R is in the range [-N,N-l].

Proof We begin by proving two identities:

N + M < R
- N + M > - R

The fist follows from the observation that the largest positive n-digit integer in the
signed representation is less than Rn. The second follows from the fact that the largest
positive n-digit integer and the smallest negative n-digit integer differ by less than R.

The theorem follows, since

(AB+MN)/R I (N+M)NIR .c N
(AB+hRQ/R > (-N+M)N/R > -A'

237

We note that a similar property holds in the unsigned representation, but it requires the
further condition that N < Rl4.

- 1

4. DES algorithm

Our implementation of DES follows the paper of Davio er. al. [9]. We first recall the
definition of DES, then describe how we implemented the improvement.

By way of review, DES consists of 16 nonlinear rounds that transform a 64-bit block
according to a 48-bit round key. The 16 round keys are computed from a 56-bit key
according to a DES key schedule that we do not describe further. The bits in the &bit
block are permuted in a fixed way before the first round and after the last. This is
Summar?zed in the following algorithm:

DES(M,K)
- Encrypts message M under key K with DES.
(K,,. , .Sld t DES-K.EY-SCHEDULE(K)
(LJO +- mM)
for i c 1 to 16

return ZP~((R,L})
do (LJZ) t DES-RoUND((L,R),Ki)

Here E is a linear 32-to-48-bit mapping, P is a 32-bit permutation, and S1, ..., Sg are
nonlinear six-to-four-bit mappings (the “S boxes”). ZP is a &bit permutation and IF1 is
its inverse.

The primary difficulty with a direct implementation of DES is the expense of applying E
and P. Davio er al observed that the linearity of E and P makes it possible to remove E
and P entirely fkom the DES round. We can do this by modifying the S boxes to
incorporate the permutation P that would follow in one round and the mapping E that
would follow in the next. That is, we define S boxes Sl’, . . ., S,l as

238

We also change the main algorithm to apply E at the beginning and E-1 at the end. The
mapping E-l can be any 48-to-32-bit mapping be any that satisfies E 1 (E (X)) = X for all
X. This leads to our algorithm.

DES’(Mm
- Encrypts message M under key K with DES .
(Kl,. ..,Kid c DES-KEY-SCHEDULE(K)

R‘ t E(R)
for i t 1 to 16

(L 8) + WM)
L’ t E(L)

do (L’J?’) c DES-ROUND’((L’$’),K~)
L t E-l(L3
R t E-I(R’)
return IP1((R,L))

Davio et al observed that this algorithm would be especially good on a processor with
48-bit words. We almost have this on the DSP56000, which can fetch two 24-bit words in
one instruction. We note finally that speedups such as Davio et UPS have been adapted on
many types of processor [10][17] and are quite common.

5. A “crypto-accelerator card” for the IBM PC

We now describe a working deployment of the DSP56000: our crypto-accelerator card.
The card is a 3/4-length card occupying one expansion slot of an DBM PC, XT, AT or
compatible. It uses the +5, +12, and -12 volt DC power supplies from the PC. The card is
comprised of four major components: processor, optional DES chip, PC interface, and
noise circuit. The total cost to us for the card is $400.

5.1 Processor

At the heart of the card is Motorola’s XSP56001zL20, a RAM-based member of the
DSP56000. It is clocked at 20 M H z The DSP consists of an arithmetic logic unit, address
generation unit, and a program controller as well as internal program and data memory.
There is extensive YO support including a dedicated host interface port, an external
memory/peripheral port, and two serial ports.

239

For our design, the DSP is attached to two banks of external 24-bit memory. The P
program memory bank can hold 8K or 32K of RAM or ROM and the X data memory
bank can hold 8K or 32K of RAM, An external power-up reset circuit holds the DSP in a
reset state until the PC activates the DSP. This avoids the execution of spurious code
upon power-up which could damage the DSP [15].

53 DES chip

The optional DES chip is Western Digital's WD20C03. It is clocked at 10 MHz. It can
perform the ECB and CBC modes of DES [111. The DES chip is attached to the DSP
extemal memory/pexipheral port and is mapped into the Y data memory bank's external
VO space. It transmits and receives data under program control of the DSP.

5.3 PC interface

The card communicates with the host PC via a multi-function interface. The interface has
three main components: DSP external memory interface, direct DSP interface, and
control and status.

DSP external memory inrerface. The DSP memory words are 24 bits wide and do not
directly map to the PCs 8-bit memory space. For this reason, we designed special-
purpose external memory support with these features:

- a bank select that specifies DSP external memory bank (P or X)

- an address generation unit (AGU) with a PC-loadable counter that indexes
through the bytes of a 24-bit DSP word and then from word to word

- a load mode that indicates whether the address generation unit is to index DSP
words in low-medium-high byte order or low byte only

- external memory bus requestlbus grunt signals programmable by the PC

To take advantage of fast block move instructions on the PC, the memory interface
responds to any address in a large range in the PCs memory. Nevertheless, the AGU and
not the particular PC memory address determines which DSP external memory byte is
selected.

Direct DSP interface. The PC accesses the DSP56000's internal registers through the
DSP's bidirectional host interface port. The port is mapped to eight locations in the PC's
VO address space. The port allows direct control of DSP software functions and gives
access to software status and completion flags.

240

Control and starus registers. Control and status is achieved through a series of latches
and registers. These are mapped to eight locations in the Pc's I/O address space. The
registers support such functions as the loading of the AGU, DSP bus requesVbus grant,
location of the PC reserved memory, and DSP chip reset.

5.4 Noise circuit

The noise circuit consists of a noise diode, some amplification and an analog-to-digital
converter. The noise diode is a CND6002A diode from Koep Recision Standards which
produces a minimum noise output of 7 pv per root Hz over the range 10 Hz-100 IrHz.
Two op-amp stages amplify the noise and a precision comparator with lTL output
converts the result into bits. The circuit is connected to the DSP and the status registers.

Since the primary purpose of the noise circuit is to generate random cryptographic keys,
special care is taken to decouple the noise circuit from other computer components.
Coupling would not only introduce unwanted noise but might also make the output of the
noise circuit predictable.

6. Performance

We now summarize the performance of the cryptographic library.

Our RSA implementation on the DSP56000, as expected, achieves hardware speed:
11.K bits/s for 512-bit exponentiation with the Chinese remainder theorem and 4.6K
bits/s without. (This is for full or "private key" exponentiation, i.e., where the exponent is
the same length as the modulus; "public key" exponentiation is faster.) The
implementation is more than an order of magnitude faster than our software on a fast PC.
We do not lose much performance in the overhead of interfacing the crypto-accelerator
card to a PC.

The DES implementation runs at 350K bits/s in CBC mode for large blocks. ECB mode
is a little faster. This is comparable to our software on a fast PC. In this case the
interfacing overhead affects perfoxmance somewhat, such that it is faster for a fast PC to
perform DES in software for blocks less than about 600 bytes than to interface to the
crypto-accelerator card. A card with the optional DES chip runs at 3.8M bit& and is
faster than PC software for almost any block size.

Our RSA-MD2l implementation performs much like DES: for small blocks, fast PC
software would be faster. The implementation achieves 190K bits/s, which is twice as
fast as our software on a fast PC for large blocks.

lTo be accurate, we have only implemented RSA-h4D1. a proprietary message digest algorithm almost
identical to RSA-MDZ We expect to include RSA-h4D2 in later versions of the library.

24 1

We note that the lack of significant speedup in RSA-MD2 does not mean that our efforts
to accelerate cryptography have failed. Although we have not made those algorithms "as
fast as hardware," we have offloaded them from the PC, leaving the PC to perform such
operations as VO in parallel with the cryptography. We also note that there is mom for
improvement in all results. One factor sigrufkantly affecting performance is the
limitation on internal memory. We do not store any of our program in internal memory,
though we put some data there, so we expect a fair improvement just as a result of
copying procedures to internal memory before executing them. There are other
improvements as well.

Our results are s
foIlowing hardware/software configurations:

ized in Figs. 1-3 where we compare performances across the

- DSP56000 (the one stated in Sec. 5.1 with zero-wait-state memory): software
alone, or with optional DES chip (the one stated in Sec. 5.1)

- fast PC (20 M H z Intel 80386): software alone, with crypto-accelerator card, or
with crypto-accelerator card and optional DES chip

- slow PC (6 M H z Intel 80286): software alone, with crypto-accelerator card, or
with crypto-accelerator card and optional DES chip

Our PC software is admittedly not the fastest in the world; a better baseline for
comparison is probably Laurichesse's software [21].

7. Conclusion

We have described a flexible and fast cryptographic tool based on the Motorola
DSP56000. Among the techniques we used are an algorithm for modular multiplication
that interleaves multiplication with Montgomery modular reduction to give a very fast
implementation of RSA, and the 48-bit model of DES due to Davio ef al.

Since the time we began developing our cryptographic library, Motorola started
producing a 27 MHz version of the DSP56000 [13]. Consequently our implementations
can potentially be made 35 percent faster with no further investment on our part.

One of the areas of further interest is how fast RSA can be implemented on other digital
signal processors. If we make the assumption that the speed of modular multiplication
(Montgomery or otherwise) is proportional in speed to one FfR filter tap and to the
square of the word size, we find that the processors likely to provide the best
performance are AT&Ts DSP16A (40M taps/s, 256 bit$) and TI'S TMS320C50 (29M
taps/s, 256 bits2) [28]. The DSP56000 measures in at 13M taps/s and 576 bits2. We wil l
probably explore the DSP16A and the TMS320C50 next.

n

Fi
gu

re
 1

 (a
) M
od
ul
ar
 e

xp
on

en
tia

tio
n
sp
ee
ds
 w

ith
 th

e
C

hi
ne

se
 re

m
ai

nd
er

 th
eo

re
m

. @
) M
od
ul
ar
 e

xp
on

en
tia

tio
n

sp
ee

ds
 w

ith
ou

t t
he

 C
hi

ne
se

 re
m

ai
nd

er
 th

eo
re

m
.

(c
) M
od
ul
ar
 e

xp
on

en
ta

tio
n
sp
ee
ds
 fo

r 1
5-

bi
t e

xp
on

en
ts.

 F
ro

m
 le

ft
to

 ri
gh

t, b
ar

s r
ep

re
se

nc
 D

SP
56

00
0 a

lo
ne

; f
as

t P
C

w
ith

 D
SP
; s

lo
w

 P
C

w
ith

 D
SP
; f

as
t P
C

al
on

e;

an
d

slo
w

 P
C

al
on

e.

.b
.d

w
(b

y
(o

r)

rh
.d

tlo
dc

 @
yt

u)

Fi
gu

re
 2

(a
) D

ES
 s

pe
ed

s
in

 C
B

C
 mo
de
 w

ith
ou

t D
ES

 c
hi

p.
 F

ro
m

 le
ft

to
 ri

gh
t, b

ar
s

re
pr

es
en

t:
DS
P5
60
00
 al

on
e;

 fa
st

 PC
 w

ith
 D
SP
; s

lo
w

 P
C
wit
h

D
SP

; f
as

t P
C

alo
ne

; s
lo

w
 P
C

al
on

e.
 @

) D
ES

 sp
ee

ds

w
ith

 D
ES

 c
hi

p.
 Ba
rs
 re

pr
es
en
t:
 D

SP
56

00
0

w
ith

 D
ES

 c
hi

p:
 f

as
t P
C

w
ith

 D
SP
 a

nd
 D
ES
 ch

ip
; a

nd
 sl

ow

PC
 w

ith
 D
SP
 an

d
DE
S

ch
ip

.

-d
-m

-)

Fi
gu

re
 3

 R
SA

-M
D

2 s
pe

ed
s.

Fr
om

 le
ft

to
 ri

gh
t,

ba
rs
 re

pr
es

en
C
DS
P5
60
00
 a

lo
ne

; f
as

t P
C

w
ith

D

SP
; s

lo
w

 P
C

w
ith

 D
SP
; f

as
t P
C

al
on

e;
 an

d
slo

w
 P
C

al
on

e.

243

Acknowledgements

We would like to thank our colleague Jeff Thompson for assisting in the implementation
of the crypto-accelerator card and for preparing the timings described in Sec. 6. We also
thank Jim B i b s , Tom Knight, Ron Rivest, Ralph Sweitzer and Michael Wiener for their
contributions.

References

Paul Banett. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a
standard digital signal processor. In A.M. Odlyzko. editor, Advances in Cryptology - CRYPT0 '86
Proceedings, volume 263 of Lecture Nores in Computer Science, pages 31 1-323. Springer-Verlag,
1987.

Eli Biham and Adi Shamir. Differential analysis of DES-like crypmystems @reprint).
Proceedings ofCRrPT0 '90 (Santa Barbara, CA, August 12-15,1990), to appear.

Jujen Bos and Matthijs Costa. Addition chain heuristics. In G. Brassard, editor, Advances in
Cryptology - CRYPTO '89 Proceedings, volume 435 of Lecture N o l a in Computer Science, pages
400407. Springer-Verlag. 1990.

Emest F. Brickell. A survey of hardware implementations of RSA. In G. Brassard. editor,
Advances in Ctyptology - CRYPTO '89 Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 368-370. Springer-Verlag, 1990.

Duncan A. Buell and Robert L. Ward. A midtiprecise integer arithmetic package. The Journal of
Supercomputing, 3:89-107.1989.

Computer data authentication. Federal Information Processing Standards Publication 113.
National Bureau of Standards, U.S. Department of Commerce, 1985.

Data encryption standard. Federal Information Processing Standards Publication 46-1, National
Bureau of Standards, U.S. Depamnent of Commerce, 1977.

D.W. Davies and WL. price. The application of digital signatures based on public-key
cryptosystems. In Proceedings of the Fifth International Computer Communications Cotference.
pages 525530,1980.

M. Davio, Y. Desnedt, M. Fosseprez, R. Govaerts. J. Hulsbosch, P. Neutjens, P. Piret, J.-J.
Quisquater. J. Vankwalle and P. Wouters. Analytical characteristics of the DES. In D. Chaum,
editor. Advances in Cryptology: Proceedings of Crypt0 '83, pages 171-202. Plenum Press, 1984.

Marc Davio, Yvo Desmedt, Jo Goubert, Frank Hwrnaert and Jean-Jacques Quis uater. Efficient
hardware and software implementations for the DES. In G R Blakley and D. &mm. editors,
Advances in Cryprology: Proceedings of CRYPTO 84, volume 196 of Lecture Notes in Computer
Science. pages 144-146. Springer-Verlag, 1985.

DES modes of operation. Federal Information Processing Standards Publication 81, National
Bureau of Standards, U.S. Department of Commerce, 1980.

W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on In fomt ion
Theory, IT-22(6):644-654,1976.

Digital Signal Processors Quarter 3,1989. Motorola, 1989.

DSP56ooo/DSP56001 Digital Signal Processor User's Manual. Motorola. 1990.

DSP56001 Advance I@ormarion. Motorola, 1988.

244

[la

[17l

T. EIGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on It&ormatwn Theory, IT-3 1:469472,1985.

David C. Feldmeier and Philip R. Karn. UNM password security - ten years later. In G. BrasSarp
editor, Advances in Cryprology - CRYPTO '89 Proceedings. volume 435 of Lecture Noles in
Computer Science, pages 44-63. Springer-Verlag, 1990.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In A.M. Odlyzko, editor. Advances in Cryptology - CRYPTO '86 Proceedings, volume
263 ofkc ture Notes in Compuer Science, pages 186-194. Springer-Verlag, 1987.

L.S. Guillou and I.-I. Ququater. A practical zero-knowledge protocol fitted-to security
microprocessor minimizing both transmission and memory. In C.G. Gunther, editor, Advances in
Cryptology - EUROCRYPT '88 Proceedings, volume 330 of kclure Notes in Computer Science,
pages 123-128. Springer-Verlag. 1988.

Donald E. Knuth. Seminmricd algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, second edition, 1981.

Denis Laurichesse. Mise en oeuvre optimisee du chifie RSA. Rapport Laas No. 90052,
Labomtoire d'Automatique et D'Analyse des Systemes, 1990.

John Linn. Privacy enhancement for Internet electronic mail: Part m: Algorithms, modes. and
identifiers. RFC 11 15, Internet Activities Board Privacy Task Force, 1989.

Peter L. Montgomery. Modular multiplication without trial division. Mathematics of Computation.
44(170):519-521, 1985.

J.-J. Quisquater and C. Couvreur. Fast decipherment algorithms for RSA public-key cryptosystem.
Electronics Letters, 18(21):905-907. 1982.

Ronald L. Rivest. The MD4 message digest algorithm @reprint). Proceedings of CRYPT0 '90

Ronald L. Rivest, Adi Shamir and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120-126.1978.

(Santa Barbara, CA, August 12-15,1990), to

A. Selby and C. Mitchell. Algorithms for software implementations of RSA. IEE Proceedings,
136 part E(3): lt'S170.1989.

Michael K. Sta.uffex and Michael Slater. General-purpase digital signal processors.
Microprocessor Report, 3(10):25-29,1989.

M. Shand. P. Bertin and J. Vuillernin. Hardware speedups in long integer multiplication.
Proceedings of the Second ACM Symposium on Parallel Algorithm and Architectures (Crete,
July 2-6, 1990). to appear.

Michael Wiener. Personal communication. 1990.

	A Protocol to Set Up Shared Secret SchemesWithout the Assistance of a Mutually Trusted Party
	Introduction
	Democratic Shared Control Schemes
	Implementation
	Examp1 es
	Conclusion
	References

