
VICTOR
an efficient RSA hardware implementation

Holger Orup
Erik Svendsen

Erik Andreasen

Computer Science Department, Aarhus University
Ny Munkegade 116

DK-8000 Aarhus C, DENMARK
e-mail: orupQdaimi.aau.dk

Abstract

The latest improvements of RSA chips are based on progress in implementation
technology and strategy i.e. smaller circuits and higher clock frequencies. There has
been no improvements in e.fEciency of the algorithms. The efliciency is here defined
as the number of bits produced pr. 1000 clock cycles.

We present algorithms which improve the efliciency by 300%-400%. The main
strategy is multiple bit scan and parallel execution of two multiplications. Using
these algorithms and the presented hardware architecture a bit rate greater than 90
Kbit/sec. cau be achieved encrypting 512 bit blocks.

1 Introduction

Severalimplementations or suggestions of how to implement the RSA protocol in hardware
have been presented in the past. Brickell made an overview of existing RSA chips. The
three implementations with the highest bit rate, when the length of an encryption block
is 512 bits, are shown in table 1 [Brig91 [EMI88].

We have defined the efficiency as the number of bits produced pr. 1000 clock cycles.
Note that the efficiency of the three implementations are approximately the same, and
the difference in bit rate is due to the difference in clock speed. The efliciency as defined
here is a performance measure of the algorithm used. On the other hand, the clock rate
is a rough performance measure of the technology and methods used for realin& the
algorithm in hardware.

I.B. Damgard (Ed.): Advances in Cryptology - EUROCRYPT ‘90, LNCS 473, pp. 245-252, 1991.
0 Springer-Verlag Berlin Heidelberg 1991

246

pr. 512 bits

15 MHz
17.0 K

Table 1: The three fastest RSA chips to date

Apparently there has been no development of more efficient algorithms suited for
hardware implementation. In the following, we will present algorithms for exponentiation
and multiplication which result in a higher efficiency than the above mentioned.

2 Exponentiation
The main operation in the RSA protocol is M E mod N, where the length of each operand
is at least 500 bits. Therefore it is essential to have an efficient exponentiation algorithm.
The most commonly used algorithm is named Russian Peasant [Knu69]. Below is shown
a variant in which E is read from the least significant bit. The i’th bit of E is denoted ei.

Algorithm: Modulo exponentiation.
Stimulation: E , M , N, where E 2 0 and 0 5 M < N .
Response: X = M E mod N

i .- Method: .- 0

WHILE i < n DO
x := 1;

IF ei = 1 THEN X := (X M) mod N END;
M := (M . M) mod N;
i := i + 1;

END;

Algorithm 1: Variant of Russian Peasant for modulo ezponentiation

If we denote the length of M,E and N by n the time complexity is:

3 T[Exp,n] = -nT[Mult,n]
2

Assuming it is possible to perform two multiplications in parallel, this is indeed possible
because the three statements in the loop do not depend on each other, the complexity is:

T[Exp,n] = nT[Mult,n]

This gives a 33% time reduction compared with the variant with one multiplication unit.

247

3 Multiplication
To implement the exponentiation algorithm mentioned above, we need an efficient way
to perform modulo multiplication. Several algorithms have been presented [HDVG88]
[Bar861 [ORSP86] [Bla83]. None of them are able to carry out a multiplication with fewer
than n full additions of n-bit words.

The usual way of multiplying is by scanning the mdtiplier one bit at a time and
conditionally accumulating the multiplicand parallelly. Assume we scan the multiplier 12
bits at a time, corresponding to base 2", we can express the serial-parallel multiplication
scheme as in algorithm 2. In this algorithm S is the accumulator, n' is the number of

S := 0; i := n' - 1;
WHILE i 2 0 DO

S := (2 k S + a$) mod N ;
i := i - 1;

END;

Algorithm 2: Seridparallel multiplication with integrated modulo reduction

digits in base 2", 6 is digit number i of the multiplier, B the multiplicand and N the
modulus. The multiplier is scanned from the most significant digit.

The modulo reduction can be carried out by subtracting N from S until S E [O;N[.
The maximal number of subtractions will be 2k + 2" - 2, because ai E [O; 2' - 11 and
B E [O;N]. Even though the number of subtractions is limited, this method is rather
slow. Instead we can estimate the quotient, S div N, belonging to [O; 2"+' - 21 and carry
out the reduction in one subtraction. This is shown in algorithm 3. Note that this method

S := 0; i := n' - 1;
WHILE i 2 0 DO

q := estimate(S div N) ;
S := 2 " s + aiB - 2"qN;
i .- * .- 1 - 1;

END;
Correction of S;

Algorithm 3: Modulo multiplication with quotient estimation

is only feasible if we are able to generate the products GB and qN rapidly. We could
for example precalculate all the possible values of aiB and qN and save them in a table.
According to Barrett [Bar86], the quotient estimate can be found by multiplying a few

248

of the most significant bits of the dividend S and the reciprocal of the divisor N. We
assume that the necessary amount of bits of $ is part of the input to the chip. If q is to
have an accuracy of 2 bits, then by using x + 2 bits from S and $ we get an estimate
which at the most is one less than the exact quotient.

In algorithm 3 the accnmulator S does not necessarily belong to the interval [O; N[
after each iteration. This does not matter, as long as S belongs to the same residue as
S mod N, and S does not diverge. But after the loop S has to be corrected by subtracting
N until S belongs to the correct interval. It is proven in [OS90] that S E [O; (3 2& - 1)N]
after each iteration. The range of q is therefore [O; 3 - 2h - 11. As we shall see later, we
can construct hardware that generates qN efficiently if the range of q belongs to [0;42],
this means the scan factor 12 is limited to 3.

We are able to reduce the range of q, the idea is as follows: if we estimate f div N
instead of S div N , the range of the quotient is apparently halved. The modulo reduction
is performed by subtracting 2 * 2kqN instead of 2kqN. However, the accuracy of the
quotient estimate is hereby reduced, implying an increase of the range of S. A closer
analysis [OSA90] shows that if we estimate $ div N we get a minimal range of q when
k 5 T: [O ; 2k+']. This means that the scan factor can be increased to 4. The final algorithm
for modulo multiplication is shown as algorithm 4. Note that the final corrections can be
made by iterating two extra times while setting ai = 0 and further more assuming r = k.

Algorithm:

Stimulation:

Response:

Method:

Modulo multiplication.

A = anl-1anl-z * aoa-la-2,
where ui E [O; 2k - 11, a-1 = a-2 = 0 and n' =
B, where B E [0 ; 2 N [;
N , where N E]2"-'; 2"[;
k , where k 2 3;
P, where r = k.

S div 22k EN A B and
s div 22k E [0 ; 2 N [.

S := 0; i := n' - 1;
WHILE i 2 -2 DO

q := estimate(S div 2', N) ;
S := 2kS + a;B - 2k+'qN;
i .- .- 2 - 1;

END;

,

~

Algorithm 4: Modulo multiplication

The final result is read from S discarding the 2k least significant bits. Note that
this result belongs to the interval [0;2N[. A further reduction is not necessary. When
the exponentiation algorithm terminates, the result will also belong to [0;2N[, here a

249

reduction is necessary. This reduction is easily carried out while outputting the result
serially. The correctness of the algorithm is proven in [OS90]. The time complesity is:

n+l
k T[Mult, n] = (r-1 + 2)T[loop]

In the rest of this paper we wil l describe how to perform the central operation of the
loop: S := 2kS + a$ - 2k*qN. To do this we have to take a closer look at the hardware
architecture of the multiplication unit.

3.1 Hardware architecture

quotient
estimate

Figure 5: Hardware architecture of the multiplication unit

The multiplication unit consists of circuits for generating the d u e s -qN and q B . Each
circuit returns the result represented in two words, i.e. the value a;B is represented as
qBo and a;& where qB, + aiBc = aiB. Similarly the accumulator S is represented
in two words S, and Sc. The main task of the loop is now to add six words together
and represent the s u m as two words S: and Sf. Using the carry save addition technique
this is easily done with fonr rows of fulladders as shown in figure 5. The critical path of
the multiplication unit is calculating the quotient estimate, generating -qN followed by
the delay of two fulladders. To be able to use the parallel version of the exponentiation
algorithm we have to perform two multiplications i parallel. This can be achieved by
pipelining the circuit and adding an extra A register. It is not necessary to duplicate the
B register since the two multiplications always have a common operand. See algorithm
1.

3.2 Generating a,B and -qN
To compute -qN we again use the carry save technique. Observe that all numbers in
[0;42] can be expressed as a s m of three powers of two. Table 2 shows which values, a,

250

P and 7, are needed to compute -qN = a N +PN +7N. The values aN,PN and 7 N are
generated through a selection network, and added through a row of fulladders as shown
in figure 6. Here again the result is represented in two words -qNc and -qN,.

P -
0
0
-4
-4
-4
-4
0
0
0
0 -

P -
4
4
4
4
0
0
0
0
-4
-4

:j: -1 23

0 26

2 28
1 29

-1 27

a P r

-32 a 2
-32 a 1
-32 a o
-32 a -1

-16 -4 0
-16 -4 -1

-32 4 2
-32 4 1
-32 4 0
-32 4 -1

-
4
30
31
32
33
34
35
36
37
38
39

-

-

a P r
-32 0 2
-32 0 1
-32 0 0
-32 0 -1
-32 0 -2
-32 -4 1
-32 -4 0
-32 -4 -1
-32 -4 -2
-32 -8 1

Table 2: q expressed as the s u m of a, /3 and 7

I N
I I

1

-qNc -9N.

a S 7
-32 -a o
-32 -a -2
-32 -8 -1

Figure 6: Unit for generating -qN

The computation of a;B is performed following the same principle,

3.3 Quotient estimation
The quotient estimate q is calculated by adding the S most significant bits of Si and S:
and then multiplying the s u m with the E most significant bits of +, The quotient can
then be found by discarding the 6 + t: - (k + 2) least significant bits of the product, where
k is the scaa factor.

Earlier we have given an upper bound of q = 2&+l, and this restricted Ic 5 4. In [OS90]
we have investigated the interdependency of q, 6, E , k and found an expression that gives
a smaller upper bound for q:

2k(2k+3-6 + 1 + 2 1 4)
1 - 2k-e qm0;S =

251

Table 3 shows that we can achieve an upper bound equal to 42 with k = 5 by selecting
6 = 10 and E = 11. This scan factor is optimal for the presented hardware architecture
because the maximal value of cri wi l l exceed 42 if k is greater than 5. Simulations indicate

Table 3: Upper bounds for the quotient estimate

that an even lesser upper bound for q can be found, which means that S and e can be
reduced, giving a simpler circuit.

4 Performance
The critical path of the multiplication unit has been designed in a 2p process. Simulations
show that a loop in the multiplication unit takes less than 85 ns. In a pipelined version each
loop takes two clock cycles, thereby giving a clock period less than 50 ns., corresponding
to a clock frequency of more than 20 MHz. The layout shows high regularity and the area
is estimated at approximately 100 ma.

The efficiency of the algorithms is:

n - lOOObits
2 - n(+ 2)cycles

For n = 512 we achieve an efficiency of 3.8 for k = 4 and 4.8 for k = 5. The bit rates for
a clock frequency of 20 MHz are 78 Kbit/sec and 97 Kbit/sec respectively.

5 Conclusion
We have presented a way to speed up a well known exponentiation algorithm by perfonn-
ing two multiplications in parallel, and we have shown how these multiplications can be
performed efficiently using multiple bit scan. Further more we have developed a highly
regular hardware architecture, based on the carry save addition technique, impkmenting
the multiplication algorithm with a scan factor of up to 5.

Currently a prototype is being developed at the Computer Science Department, Aarhus
University.

252

References
[Bar861 Paul Barrett. Implementing the Riverst Shamir and Adleman public key

encryption system on a standard digital signal processor. In Advances in
Cyptology - CRYPTO '86, pages 311-323, 1986.

G.R. Blakely. A Computer Algorithm for Calculating the Product AB Modulo
M. IEEE ?+am. Computers, C-32:497-500, 1983.

[Bla83]

[Brig91 Ernest F. Brickell. A Survey of Hardware Implementations of M A . In
CRYPTO '89, 1989.

[EM1881 THORN EMI. RSA Evaluation Board. Technical Report 10, Thorn EM1
Central Research Laboratories, 1988.

[HDVG88] Frank Hoornaert, Marc Decroos, Joos Vandewalle, and RenC Govaerts. Fast
In Advances in Cyptology - EURO- RSA-Hardware: Dream or Reality ?

CRYPT '88, pages 257-264, 1988.

Donald E. Knuth. The Art of Computer Programming - Seminumerical Algo-
rithms, volume 2. Addison-Westley, 1969.

[ORSP86] G.A. Orton, M.P. Roy, P.A. Scott, and L.E. Peppard. VLSI implementation
of public-key encryption algorithms. In Advances in Cyptology - CRYPTO
'86, pages 277-301, 1986.

Holger Orap and Erik Svendsen. VICTOR. Forbedringer og videreudviklinger
af VICTOR - en integeret kreds til underst0ttelse af RSA-krpptosystemer.
Computer Science Department of Aarhus University - Internal report, 1990.

Holger Omp, Erik Svendsen, and Erik Andreasen. VICTOR - Teoretiske
og eksperimentelle unders0gelser af algoritmer til understgttelse af RSA-
kryptosystemer med henblik pb VLSI design. Master's thesis, Computer Sci-
ence Department of Aarhus University, 1990.

[Knu69]

[OS90]

[OSA90]

	VICTORan efficient RSA hardware implementation
	Abstract
	1 Introduction
	2 Exponentiation
	3 Multiplication
	3.1 Hardware architecture
	3.2 Generating a,B and -qN
	3.3 Quotient estimation

	4 Performance
	5 Conclusion
	References

