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Abstract

We describe initial results from an apparatus and protocol designed to im-
plement quantum public key distribution, by which two users, who share no
secret information initially: 1) exchange a random quantum transmission, con-
sisting of very faint flashes of polarized light; 2) by subsequent public discussion
of the sent and received versions of this transmission estimate the extent of
eavesdropping that might have taken place on it, and finally 3) if this estimate
is small enough, can distill from the sent and received versions a smaller body
of shared random information (key), which is certifiably secret in the sense that
any third party’s expected information on it is an exponentially small fraction
of one bit. Because the system depends on the uncertainty principle of quan-
tum physics, instead of usual mathematical assumptions such as the difficulty
of factoring, it remains secure against an adversary with unlimited computing
power.
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1 Introduction and History

Quantum cryptography has recently entered the experimental era. The first con-
vincingly successful quantum exchange took place in October 1989. After a short
historical review of quantum cryptography, we report on the new apparatus and the
results obtained with it. These results extend the first report on the apparatus, which
appeared in SIGACT News [4].

Quantum cryptography was born in the late sixties when Stephen Wiesner wrote
“Conjugate Coding”. Unfortunately, this highly innovative paper was unpublished
at the time and it went mostly unnoticed. There Wiesner explained how quantum
physics could be used in principle to produce bank notes that would be impossible to
counterfeit and how to implement what he called a “multiplexing channel”, a notion
strikingly similar to what Rabin was to put forward more than ten years later under
the name of “oblivious transfer” (in our opinion, it would be fair to give at least equal
credit to Wiesner for the concept of oblivious transfer).

Fortunately, Charles H. Bennett knew Wiesner quite well and heard about his
idea from the horse’s mouth. Nevertheless, it was only when he met Gilles Brassard
that quantum cryptography was revived. This happened on the occasion of the 20th
IEEE Symposium on the Foundations of Computer Science, held in Puerto Rico in
October 1979. Following our discussion of Wiesner’s idea, we discovered how to
incorporate the (almost new at the time) notion of public key cryptography, resulting
in a CRYPTO ’82 paper [6]. This brought Wiesner’s paper back to life, and it was
subsequently published in SIGACT News [17], together with a selection of papers from
the earlier CRYPTO 81 workshop (for which “real” proceedings were not published).

Initially, quantum cryptography was thought of by everyone (including ourselves)
mostly as a work of science-fiction because the technology required to implement it
was out of reach (for instance, quantum bank notes [6] require the ability to store a
single polarized photon or spin-1/2 particle for days without significant absorption or
loss of polarization). Unfortunately, the impact of the CRYPTO '82 conference had
left most people under the impression that everything having to do with quantum
cryptography was doomed from the start to being unrealistic.

The main breakthrough came when Bennett and Brassard realized that photons
were never meant to store information, but rather to transmit it (although it should
be said that half of Wiesner’s original paper dealt precisely with the use of quantum
physics for the transmission of information). This lead initially to the self-winding
reusable one-time pad [5] which was still not very practical. Later, Bennett thought
of the quantum public key distribution channel and Brassard designed the somewhat
less realistic quantum coin-tossing protocol [1, 2]. Quantum cryptography was also
picked up by other researchers. For instance, Crépeau and Kilian showed how the
quantum channel could be used to implement oblivious transfer in a strong way
(Wiesner’s original multiplexing channel could leak information on both channels),
zero-knowledge protocols, and secure two-party computation [12, 11].
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The principle of quantum cryptography has been described in major popular mag-
azines such as Scientific American [15], The Economist [14], and New Scientist [13].
Also, Brickell and Odlyzko close their very thorough survey of recent (1988) results
in cryptanalysis with these words: “If such systems [quantum cryptography] become
feasible, the cryptanalytic tools discussed here [in their paper] will be of no use” [10].

In this paper, we report on the first experimental quantum public key distribution
channel ever designed and actually put together. Although we assume that the reader
is already familiar with the principles of quantum cryptography, the following section
should provide sufficient background. (A good description of the quantum channel
itself can be found in chapter 6 of [9].)

2 Quantum Public Key Distribution

The purpose of public key distribution is for two users “Alice” and “Bob”, who share
no secret information initially, to agree on a random key, which remains secret from
an adversary “Eve”, who eavesdrops on their communications. In conventional cryp-
tography and information theory it is taken for granted that digital communications
can always be passively monitored, so that the eavesdropper learns their entire con-
tents, without the sender or receiver being aware that any eavesdropping has taken
place. By contrast, when digital information is encoded in non-orthogonal states of
an elementary quantumn system, such as single photons with polarization directions 0,
45, 90 and 135 degrees, one obtains a communications channel with the property that
its transmissions cannot in principle be reliably read or copied by an eavesdropper ig-
norant of certain key information used in forming the transmission. The eavesdropper
cannot even gain partial information about such a transmission without disturbing it

in a random and uncontrollable way likely to be detected by the channel’s legitimate
users.

The protocol we describe here is secure even against an enemy possessing unlimited
computing power (even if P = NP!), under any attack in which she is limited
to measuring photons (or in the subsequent generalization, light pulses) one at a
time, and combining the classical results of these measurements with information
subsequently overheard during the public discussion. The formalism of quantum
mechanics allows a more general kind of measurement, completely infeasible at present
or in the foreseeable future. Such a measurement would treat the entire sequence of n
photons sent during a key-distribution session as a single 2"-state quantum system,
cause it to interact coherently with an intermediate quantum system of comparable
complexity, maintain the phase coherence of the intermediate system for an arbitrarily
long time, then finally measure the intermediate system in a way depending on the
information overheard during the public discussion. It is not known whether the
protocol is secure against such an attack.

We first review the original quantum public key distribution (QPKD) protocol of
[2], which illustrates the method most plainly. Then, we describe subsequent mod-
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ifications of the protocol {7, 8, 3], which give it the ability, necessary in practice,
to function despite partial information leakage to the eavesdropper and partial cor-
ruption of the quantum transmissions by noise. Finally, we describe the physical
apparatus by which QPKD has actually been carried out. The essential quantum
property involved, a manifestation of the uncertainty principle, is the fact that any
measurement of a single photon’s rectilinear (0 vs 90 degree) polarization randomizes
its diagonal (45 vs 135 degree) polarization, and vice versa.

The basic QPKD protocol begins with Alice sending a random sequence of the four
kinds of polarized photons to Bob. Bob then chooses randomly and independently for
each photon (and independently of the choices made by Alice, of course, since these
choices are unknown to him at this point) whether to measure the photon’s rectilinear
or diagonal polarization. Bob then announces publicly which kind of measurement
he made (but not the result of the measurement), and Alice tells him, again publicly,
whether he made the correct measurement (i.e. rectilinear for a 0 or 90 degree photon,
diagonal for a 45 or 135 degree photon). Alice and Bob then agree publicly to discard
all bit positions for which Bob performed the wrong measurement. Similarly, they
agree to discard bit positions where Bob’s detectors failed to detect the photon at
all—a fairly common event with existing detectors at optical wavelengths. The
polarizations of the remaining photons should be shared secret information between
Alice and Bob, provided that no eavesdropping on the quantum channel has taken
place. In the basic protocol, Alice and Bob next test for eavesdropping by publicly
comparing polarizations of a random subset of the photons on which they think they
should agree. In [2] it is shown that any measurement the eavesdropper makes on
one of these photons while it is in transit from Alice to Bob has a 1/4 chance of
inducing a discrepancy when the data of Bob and Alice are compared, assuming that
this photon is detected in the correct basis by Bob (otherwise, this photon is lost to
all parties). If Alice and Bob find no discrepancies, they may safely conclude that
there are few or no errors in the remaining uncompared data, and that little or none
of it is known to any eavesdropper.

The elementary protocol described above is inadequate in practice for two reasons:

1. Realistic detectors have some noise; therefore, Alice’s and Bob’s data will differ
even in the absence of eavesdropping. Accordingly, they must be able to recover
from a reasonably small error frequency.

2. It is technically difficult to produce a light pulse containing exactly one photon.
It is much easier to produce a coherent pulse, which may be regarded as a
superposition of quantum states with 0, 1, 2... photons; or an incoherent pulse,
which may be regarded as a statistical mixture of coherent states. In either case,
let 4 be the expected number of photons per pulse. If  is small (i.e. significantly
less than 1), there is a probability approximately p?/2 that an eavesdropper will
be able to split a pulse into two or more photons, reading one and allowing the
other(s) to go to Bob.
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Below we briefly describe a practical protocol that allows these difficulties to be
overcome. Further details may be found in [3, 7, 8.

The first task is for Alice and Bob to exchange public messages enabling them to
reconcile the differences between their data, while revealing to Eve as little informa-
tion as possible. We assume throughout that Eve listens to all the public messages
between Bob and Alice.

An effective way for Alice and Bob to do this is for them first to agree on a random
permutation of the bit positions in their strings (to randomize the locations of errors),
then partition the permuted strings into blocks of size k such that single blocks are
believed to be unlikely to contain more than one error. For each such block, Alice
and Bob compare the block’s parity. Blocks with matching parity are tentatively
accepted as correct, while those of discordant parity are subject to a bisective search,
disclosing log(k) further parities of sub-blocks, until the error is found and corrected.
If the initial block size was much too large or too small, due to a bad a priori guess
of the error rate, that fact will become apparent, and the procedure can be repeated
with a more suitable block size. In order to avoid leaking information to Eve during
the reconciliation process, Alice and Bob agree to discard the last bit of each block
or sub-block whose parity they have disclosed. It is easy to see that Eve cannot know
more information about the remaining truncated block than she did about the whole
block before disclosure of its parity. However, because the string gets shorter, Eve’s
proportion of known information increases.

Of course, even with an appropriate block size, some errors will typically remain
undetected, having occurred in blocks or sub-blocks with an even number of errors.
To remove additional errors, the random permutation and block parity disclosure is
repeated several more times, with increasing block sizes, until Alice and Bob estimate
that very few errors remain in the data as a whole. At this point a different strategy is
adopted to eliminate any errors that may remain and to verify, with high probability,
that they have in fact been eliminated.

In each iteration of this strategy, Alice and Bob compare parities of a publicly
chosen random subset of the bit positions in their entire respective data strings. If
the data strings are not identical, then the random-subset parities will disagree with
probability 1/2. If a disagreement is found, Alice and Bob undertake a bisective
search, similar to that described above, to find and remove the error. As in the
preceding block-parity stage of the reconciliation, the last bit of each compared subset
is discarded to avoid leaking any information to Eve. Each subsequent random subset

parity is, of course, computed with a new independent random subset of bit positions
in the remaining string.

At some point, all errors will have been removed, but Alice and Bob will not yet
be aware of their success. When this occurs, subsequent random subset parities will of
course always agree. After the last detected error, Alice and Bob continue comparing
random subset parities until sufficiently many consecutive agreements (say 20) have
been found to assure them that their strings are indeed identical, with a negligible
probability of not detecting the existence of remaining errors.
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Alice and Bob are now in the possession of a string that is almost certainly shared,
but only partly secret. As described in the next section, they can find a conservative
upper bound on Eve’s partial information on their string from the detected error fre-
quency, the optical pulse intensity, and the 0/1 ratio of the received string. If their rec-
onciled string = has length n, and if they estimate that Eve knows at most k bits about
it (these need not be k physical bits, but any k bits of information about the string),
it is shown in [8] that for any security parameter s > 0, a hash function & randomly
and publicly chosen from an appropriate class of functions {0,1}" — {0,1}"~*~* will
map their string into a value A(z) about which Eve’s expected information is less
than 27¢/In2 bit. An adequate hash function for this purpose can be obtained by
continuing to compute n — k — s additional independent random subset parities, but
now keeping their values secret instead of revealing them. The class of hash functions
thus realized is essentially the strongly-universal; class H3 discussed by Wegman and
Carter [16].

3 Physical Apparatus

The apparatus occupies an optical bench approximately one meter long inside a light-
tight box measuring approximately 1.5 x .5 x .5 meters. It is controlled by a program
running on an IBM PC computer, which contains separate software representations of
the sender Alice, who controls the sending apparatus, the receiver Bob, who controls
the receiving apparatus, and optionally an eavesdropper Eve. The program can also
run in simulation mode, without the attached experimental apparatus. Even though
they reside in the same computer, no direct communication is allowed between the
software Alice and the software Bob, except the public channel communication called
for by the protocol.

Alice’s light source, at the left end of the optical bench, consists of a green light-
emitting diode (Stanley type HBG5566X) as the source of incoherent light, a 50
micron pinhole and 25 mm focal length lens to form a collimated beam, a 500 % 20
nm interference filter (Ealing type 45-5040) to reduce the intensity and spectral width
of the light and select a portion of the spectrum at which the photomultipliers have
relatively high quantum efliciency, and finally a Polaroid filter (i.e. a dichroic sheet
polarizer) to polarize the beam horizontally. The LED is driven by current pulses
(about 107 coulombs in 50 nanoseconds) yielding, after collimation, filtration and
polarization, an intensity of about 0.1-0.2 photon per pulse. The low intensity serves
to minimize the chance that an eavesdropper will be able to split any one pulse into
two or more photons. |

Alice modulates the polarization of the beam by means of two Pockels cells (IN-
RAD type 102-020), operated at + or — the quarter-wave voltage (about 800 volts),
so as to be able to choose among the four polarization states {horizontal, vertical,
left-circular, or right-circular} (circular polarizations are used instead of diagonal be-
cause they require only half the Pockels cell voltage). High voltage NPN transistors
(type BU-205), in series with 200K ohm pull-up resistors, are used to switch the high



259

voltage for the Pockels cells under control of low voltage TTL signals on output lines
of the PC’s parallel port (5.1 volt Zener diodes protect the computer from exposure
to high voltage in case of transistor failure).

The quantum channel itself is a free air optical path of approximately 32 centime-
ters. '

Bob’s receiving apparatus, at the right end of the optical bench, consists of another
Pockels cell and a calcite Wollaston prism (Melles-Griot type 03PPW001/C), oriented
so as to split the beam into vertically and horizontally polarized beams, which are
directed into two photomultiplier tubes (Hamamatsu type R1463-01) with integral
preamplifiers and voltage dividers in the sockets (Hamamatsu type C716-05). Bob’s
Pockels cell is also operated at quarter wave voltage, allowing him to use the same
Wollaston prism to make a measurement of either rectilinear or circular polarization,
depending on whether the voltage is off or on.

The timing for each experiment is controlled by a timing and detection unit,
which also contains the hardware for handling asynchronous communication with the
PC’s parallel port, and two potentiometers for setting the discrimination levels for
rejecting small pulses from each photomultiplier preamplifier (no rejection of large
pulses is necessary, owing to their infrequency). The pulse-height discrimination is
carried out by fast ECL voltage comparators (Plessey type SP9687).

Upon receiving a “start” signal on one of the PC parallel port’s output lines, the
timing unit waits 60 usec for the Pockels cell voltages to settle, turns the LED on for
about 75 ns, gates the photomultiplier detection logic on for about 100 ns, and sets
two input lines of the parallel port according to the result (for each photomultiplier,
whether a count was detected during the gate interval). When it has done all this,
the timing unit turns on another of the parallel port’s input lines to signify “done”,
and begins waiting for the next start signal. When the computer sees the done signal
it knows it can read the results of the present experiment and thereafter safely start
the next experiment.

Alice’s choice of polarization and Bob’s choice of reading basis are made randomly
(not pseudorandomly) using a large file of random bits supplied to the computer on
a diskette. Of course, Alice and Bob feed on different bits from this diskette (recall
that although they live on the same computer, they do not communicate or otherwise
share information that is not called for by the public channel discussion). These ran-
dom bits had been previously generated using the same experimental apparatus, by
taking the physically random output of one of the photomultipliers, illuminated by
an auxiliary nearby LED of intensity such as to yield a count in about 1/2 the time
windows, removing the 0/1 bias by von Neumann’s trick (i.e. in each consecutive pair
of tosses taking HT=1, TH=0, ignoring HH and TT), and XORing the resulting bits
with pseudorandom bits from the computer to hide any residual deviations from ran-
domness caused by time-variation of the photomultiplier and pulse-detection circuit.
The same file is used to supply additional random bits as needed by Alice and Bob
during the data reconciliation and privacy amplification protocols described in the
previous section.
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The photomultipliers had quantum efficiency approximately 9%, with dark count
rates of about 1500 per second, or about 0.00015 per 100 ns time window. When using
pulses of 0.15 expected photons per pulse, this dark count rate would yield a bit error
rate of approximately 1%; the actual error rate, about 5%, was due primarily to
imperfect alignment of the Pockels cells.

The driver program on the PC provides the ability to simulate two principal kinds
of eavesdropping: intercept/resend and beamsplitting, by a hypothetical adversary
“Eve” who has detectors of 100 % quantum efficiency.

Recall that u is the expected number of photons per light pulse. If 4 is sufficiently
smaller than 1, it is approximately also the probability that a pulse would be detected
by a perfectly efficient detector. In intercept/resend, Eve intercepts a light pulse and
reads it in a basis of her choosing (she cannot be sure of choosing the correct basis,
which has not yet been announced). If, with probability approximately u, she is
successful in detecting a photon, she fabricates and sends to Bob a pulse of the same
polarization as she detected. It can be shown that the canonical bases, rectilinear or
circular, are optimal for Eve to use in this attack, yielding an expected information
1/2 bit per intercepted photon, and inducing an error with probability 1/4 if the
fabricated pulse is later detected in the correct basis by Bob. Other bases for Eve yield
less information, induce more errors, or both. To avoid suspicion, Eve’s fabricated
pulses should be of such intensity (slightly higher than one expected photon per pulse)
as to yield the same net rate of pulse detection by Bob as if no eavesdropping were
taking place.

No additional hardware is needed to simulate this attack: when the software Eve
wishes to intercept a pulse, she borrows the real receiving apparatus from Bob; when
she wishes to resend to Bob, she borrows the sending apparatus from Alice. While
Eve is borrowing the receiving apparatus, Alice obliges her by repeating the same
transmission 1/¢ times, where ¢ is the quantum efficiency of the actual detectors.
This allows the software Eve to obtain a count with the same probability y as a
physical eavesdropper with perfectly efficient detectors.

The other attack, beamsplitting, would be technically easy for a real Eve, and
depends on the fact that the transmitted light pulses are not pure single-photon
states. To carry out this attack Eve would use a partly-silvered mirror or equivalent
device to divert a fraction f of the original beam’s intensity to detectors of her own,
letting the remainder pass undisturbed to Bob. With probability approximately fu/2,
Eve will succeed in detecting a photon, and will have by good luck measured it in
the correct basis. This attack induces no errors, but does attenuate the intensity
reaching Bob by a factor 1 — f. If Eve is in control of the channel between Alice and
Bob, and if this channel has significant attenuation, she can conceal the attenuation
due to her beamsplitting by substituting a more transparent channel. Assuming
conservatively that she can do this, she will divert most of the beam to herself, and
learn a fraction roughly #/2 of the polarizations later correctly measured by Bob. An
Eve with superior technology might be able to store her portion of the split beam and
delay measuring it until after the correct bases were announced, thereby doubling her
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information yield. On the other hand, if Alice and Bob suspected Eve of having this
capability, they could send and receive all the pulses first, wait an arbitrarily long
time for Eve’s stored beam to decay, and only then announce all the bases.

A dramatic but harmless variant on the beamsplitting attack would be for Eve to
attempt to detect enough photons in the incoming pulse to determine its polarization
uniquely, even without knowing the correct basis. An example of such a measurement
would be for Eve to further split the intercepted portion of beam into two beams of
intensity fu/2, and measure the rectilinear polarization of one and the circular po-
larization of the other. If, by extreme good luck, this measurement yielded three
photons with polarizations vertical, horizontal, and right circular, Eve would know
that the original pulse’s polarization was definitely right-circular, and she could capi-
talize on this knowledge by sending Bob such a bright pulse of right-circular light that
he would be sure to detect it. Fortunately this attack succeeds so rarely (roughly with
probability #3/32) that it is a less serious threat than simple 2-photon beamsplitting.

The driver program simulates beamsplitting simply by having the software Alice
disclose directly to the software Eve the correct polarizations of a fraction p/2 of the
pulses.

The expected information leaked to Eve through both kinds of eavesdropping is
bounded above by

k = N(u/2 + 2p) bits, (1)

where N is the number of Alice’s pulses received by Bob in the correct basis, u is
the pulse intensity at the upstream end of the channel, and p is the bit error rate.
This estimate assumes that Eve has been able to manipulate the channel attenuation
as described above to maximize her share f, that she does not have the superior
technology required to delay measurement until after announcement of the correct
bases (if she did, the first term above would be increased from /2 to g), and that
intercept/resend eavesdropping is the only cause of transmission errors. These as-
sumptions will in most cases be excessively conservative: e.g. in our case, the channel
has negligible attenuation and many of the bit errors can be confidently attributed
to causes other than eavesdropping. In our experiments, Eve has a small additional
source of information: the excess 0:1 ratio (about 62/38) in the received data resulting
from an inequality of quantum efficiency between Bob’s two photomultipliers. This
imbalance gives Eve a small additional amount of information (about 0.03N bits) on
Alice’s and Bob’s string. This leakage could have been prevented by using photomul-
tipliers of equal sensitivity, or by having Bob randomly permute the photomultipliers
between measurements.

The present apparatus is only an experimental prototype. In a more realistic
demonstration, the error rate could be reduced several orders of magnitude by bet-
ter optical alignment and cooling the photomultipliers to reduce dark current, the
quantum channel could be made much longer (e.g. a few km of optical fiber), and the
protagonists Alice, Bob, and Eve could reside in separate buildings [3]. The feasible
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distance over which a QPKD system can operate depends on the noise and quantum
efficiency of the detectors and especially on the attenuation of the optical channel:
the weak signal entering the channel must still be recognizable above background
upon leaving the channel.

4 Sample Data from the Apparatus

Here we give examples of data actually transmitted through the quantum channel,
the subsequent public discussion, and the shared secret key ultimately distilled. The
first batch of data is from a run in which there was in fact no eavesdropping, but
the eavesdropper’s potential information was nevertheless conservatively estimated as
described above, from the known pulse intensity and error rate. The second batch of
data illustrates the ability to distill a small amount of shared secret key from a run
with significant amounts of both kinds of eavesdropping.

Here is raw data obtained from the quantum channel on Friday, April 13, 1990.

Ahce 0101010010 1010001011 1100010100 0110001100 0001111001 1001001100 0001100000 1101000100 0001000100 0010100000
1011011001 0001000100 0000000100 1010001011 0011010101 0101010010 0000103011 1110000001 8101000001 0011010000
0111000100 0000011100 1100110100 0000101011 0000100001 1110000001 1106010000 0000100010 0010010110 0110000101
0111000000 1010611110 1101100111 0600000000 0010010100 000A000001 0000110110 0010010001 0001051110 1101100101
0101011000 1100100001 0000000100 1111111110 0010011010 0011000010 6111116000 0011000000 0000001010 1100010110
1010001010 0101000010 1110011000 0011111000 1100100011 1000100000 0001000101 1000101100 1101010111 0111011010
1001100101 0010000010 1000001100 0001110100

Bob 0101000010 1011001011 1100010100 0110001100 0001111001 1001000100 0001100000 1101000100 0001060100 0010100000
1011011001 0001000000 0000000100 1010001010 1011000101 01031010010 1000100011 1110000001 0101000013 0011000010
0111000100 0000111100 1100110100 0000101011 0000060000 1110000001 1100010000 0000110010 0010010109 0110000101
0111010000 1000011110 1101100111 0000000000 0013010100 0000000001 0000110110 0010010101 0001011110 1101100101
0161011000 1100104001 6000000100 10111031110 0010011010 0011000010 0111110000 0011000000 0100001010 0100010110
1010001010 0101000010 1110011000 0011111000 1100100011 1000100000 0001600101 1000101100 1100010101 0101011010
1001100101 0010100010 1000001000 0001110100

In this first example, out of about 85,000 light pulses of intensity 0.17 sent by Alice,
640 were received in the correct basis by Bob. Alice’s corresponding string contained

242 ones out of 640 bits. Bob’s string contained 28 errors, an error frequency of
4.375%.

A random permutation and block parity comparison was performed with block
size 10, reducing the string length to 509 bits with 8 undiscovered errors.

A second random permutation and block parity comparison was performed with
block size 20, reducing the string length to 457 bits with 2 undiscovered errors.

Random subset parity comparison was then begun, revealing an error on the first
attempt. Removal of this error by bisective search reduced the string length to 448
bits.

Another random subset parity was computed, revealing another error. Removal
of this error reduced the string length to 439 bits with no undiscovered errors.
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Twenty more random subset parities were compared and found to agree, confirm-
ing to Bob and Alice that with high probability their remaining strings, now 419 bits
long, were identical.

From the 28 errors corrected during reconciliation, Bob and Alice estimated that
the original error rate was 4.50 %. Lstimated potential information leakage to Eve
was 140 bits, including

¢ 58 bits from intercept/resend,
¢ 54 bits from beamsplitting, based on pulse intensity 4 = 0.17, and

e 28 bits from redundancy due to 0:1 imbalance (398/242) of initial string.

Therefore, allowing 60 bits excess compression for safety (e.g. in case Eve was
especially lucky in her eavesdropping, and obtained several standard deviations more
information than expected), it was decided to compress the string 200 bits by random
subset hashing, leaving 219 bits of shared secret key distilled from 640 original bits.

The resulting secret key, the same for Alice and Bob, was

0000101010 1101100010 0100101100 0110010010 1000010100
1110011101 1001000011 1111101010 0000111010 0011111100
1100101000 1101011111 1110001101 0001100100 1000110011
0101110110 0011110110 1010100100 1011111010 0101111101
0110000000 010000101.

In the second example, out of another approximately 85,000 light pulses of inten-
sity ¢ = 0.17 sent by Alice, 640 were received in the correct basis by Bob. Alice’s
corresponding string contained 239 ones out of 640 bits. Bob’s string contained 59
errors, an error frequency of 9.219 %. Through attempting to beamsplit all the pulses,
and intercept/resending one sixth of them, the simulated Eve learned 100 individual
bits of Alice’s data as well as knowing 30 bits of distributed information about the
string as a whole due to its 0/1 imbalance. (Her total information was actually slightly
less than 130 bits, because of the correlation between these two kinds of information.
As remarked earlier, Eve’s absolute amount of information does not increase during
reconciliation).

A random permutation and block parity comparison was performed with block
size 9, reducing the string length to 399 bits with 13 undiscovered errors. (They start
with a block size smaller than in the previous example because of reason (1) given at

the end of this section.) Eve’s information about the remaining string was still less
than 130 bits, and included knowledge of 61 individual bits.

A second random permutation and block parity comparison was performed with
block size 10, reducing the string length to 337 bits with 6 undiscovered errors. Eve’s
information about the remaining string was still less than 130 bits, and included
knowledge of 51 individual bits.
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A third random permutation and block parity comparison was performed with
block size 20, reducing the string length to 292 bits and leaving no undiscovered
errors. Eve’s information about the remaining string was still less than 130 bits, and
included knowledge of 43 individual bits.

Random subset parity comparison was then begun: Twenty consecutive successful
comparisons with no failures convinced Alice and Bob that their strings, now consist-
ing of 272 bits, were very probably identical. Eve’s knowledge about the remaining
string was still less than 130 bits, and included knowledge of 38 individual bits.

From the errors found and corrected, Alice and Bob estimated the error probability
had been 9.59 % in the original string. From this error rate and from the known pulse
intensity ¢ = 0.17, Alice and Bob computed an upper bound of 207 bits on Eve’s
probable information, including:

e 123 bits from intercept/resend,
o 54 bits from beamsplitting,

e 30 bits from redundancy due to 0:1 imbalance.

Therefore, allowing 20 bits excess compression (about all we can afford), it was
decided to compress the string 227 bits by random subset hashing, leaving 45 bits of
shared secret key, distilled from 640 original bits. Since Eve’s actual information was
less than 130 bits, this amount of compression left Eve with an utterly negligible (less
than 1072° bit) expected information about the output of the hash function.

The resulting secret key, the same for Alice and Bob, was
0001110110 0011101001 1000100011 1111000010 10010.

The 640-bit batch size used above for illustrative purposes is far from optimal.
In production use, a larger batch size (at least 10,000 bits) should be used for two
reasons: 1) It would allow the users, by preliminary sampling, to get a good estimate
of the bit error rate and so optimize the choice of block sizes used in the reconciliation
stage; and 2) by reducing the statistical uncertainty in estimating Eve’s possible
information, it would reduce the proportional amount of compression needed in the
privacy amplification stage to assure a given level of security.
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