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Abstract
At the Eurocrypt meeting, a public-key cryptosystem based on rational numbers
has been proposed [2]. We show that this system is not secure. Our attack uses the
LLL algorithm. Numerical computations confirm that it is successful. '

1 The proposed cryptosystem

We briefly review the article of H.Isselhorst [2], in which the system was described. The

secret key consists of a large prime number p, (a size of 250 decimal digits is suggested),

together with a (small) integer k and a (k, k)-matrix A, with an inverse A™! mod p.
The public part of the system essentially consists of a matrix

C = (cijigick & 1<k

where ¢; ; is computed from A and a fixed public integer t, 1 < t < p, by truncating the
decimal expansion of ta; ;/p after n digits, which we write

ci,j = Float(ta; ;/p, n)

Also included in the public key data are integers z and m satisfying inequalities
which will be given later on

The plaintext is a vector X, with k coordinates, all of them being positive integers
bounded by m. The encryption is as follows:
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e Compute U = C.X
s Set V = U mod ¢, where the mod function is applied coordinatewise

¢ Output Y = Float(V, z), where the Float function is applied coordinatewise

We now explain why and how the ciphertext can be decoded. I u; (resp. v;) is the

ith coordinate of U (resp. V'), we can write:
pvi _ pus

t t

mod p
and using the definition of Y,

__'=_'__t_'w1th0<e,<10"

t t
thus, for some integers a;, we get
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Noting that

0<r,;<107"
we get that the sum of the last two terms is bounded by

P n— P.in-

=107k =107*

t YT
Now, if both terms are bounded by 1/4, then the real value of

> aijz;
j

can be easily recovered from p, by rounding py;/t and reducing mod p. From these
values, the original message is obtained via A™?

The inequalities that are needed to carry through the above argument are easy
consequences of thoses which are proposed in the paper [2], namely

109 <m < p/10
4kpm/t < 10" < p?107%0 /¢
10°7! < 4p/ft < 10°

Presumably, the other inequalities have been added to ensure security.
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2 A cryptanalytic attack

Our attack uses the LLL algorithm {3], very much in the same way as known attacks
against the knapsack-based cryptosystem (see [1]). It can be described as follows

e Pick four distincts values ¢, ¢z, ¢3, ¢4 among the k? possible ¢; ;’s, included the
largest one ¢;. Set ’

v =10"%; 1<i<4

Note that the v;’s are integers.

» Apply the LLL algorithm to the 4-dimensional lattice generated by the columns
of the matrix

1 0O 0 0
-7 m 0 0
-3 0 7 O
-2 0 0 m

o Output the first coordinate a; of the first vector of the reduced basis of L,
obtained through LLL.

We claim that a; is precisely the original value a; j, corresponding to the largest of
the ¢; ;, which was choosen as ¢;. We will give a heuristic justification of this fact. The
argument can actually be put on a firmer theoretical basis by a precise probabilistic
analysis. Anyhow, as will be seen in section 3, the success of the attack is confirmed by
numerical experiments.

First observe that, for : = 1,..4, if we denote by a;,..a4 the values of a;; corre-
sponding to ¢;,..c4, we have

t N
0< = g <107m
p
which gives , by linear combination
laici —aicy| 107 "p, :=2,3,4
multiplying by 10%, we get
la1yi —aim] <p, i=2,3,4

together with the inequality 1 < a; < p, this shows that the integers a;,as,as,a4
provide a linear combination V' of the columns of the matrix of L, whose coordinates
are bounded by p. Now, the determinant of L is 43. Because c; is the largest of the
ci j's, it is presumably close to t; thus v, is close to t10™ so that the expected size of
the coordinates of a short vector is about 3(n + log;, t)/4 digits. Letting m = p®, and
using the fact that

4kpm/ft < 10"

we see that the expected value of the coordinates of a short vector of L should be
bounded from below by p*(1+®)/4 | o is significantly greater than 1/3, p3ital/t ig
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definitely greater than p, so that the LLL algorithm will actually disclose the very short
vector V', defined above, whose first coordinate is precisely a;.

If we consider the size suggested in [2], namely 250 digits, we see that our attack is
presumably successful when the size of the coded messages m is 85 digits or more. Of
corse, for a smaller choice of m, it is possible to apply an analogous method, provided one
chooses more than 4 values c; and one apply the LLL algorithm in a larger dimension.
For example, the 6D-version of the attack works as soon as a is significantly greater
than 1/5.

Once a; has been correctly recovered, p can be computed by rounding ta;/c;; this
because of the inequality

C1

tax | < P _P
"c110" T

Similarly, the correct value of each a; ; is obtained by rounding a;c; j/c;. This is because
of the following inequality

a1
a;j— —eij| < —— =
L7 c ’,JI 0110"' T

3 Numerical experiments

For numerical experiments, we used the Symbolic Computation System Maple. In all
our experiments, we restricted ourselves to the case k = 2, which involves a (4,4)-matrix
Mat to be reduced by LLL.

3.1 Main part of our program

In order to test our cryptanalytic attack, we first choose the 3 following parameters:
t, n , whose role is explained in the previous sections and nb_of.digits which is the
number of digits of the prime number p. We then choose randomly 4 nb_of _digits-
long integers a;, a; beeing the largest, and p a prime number greater than these 4
numbers. The ¢; are the values of Float(ta;/p,n) and are the public key. The +; and
the matrix Mat are then built as in section 2 and we obtain by LLL-reduction a new
matrix new_Mat. We may assume that new_Mat, ; is positive. Our algorithm fails if

new_Mat, ; is different of a;, and if not, we let new_a; = new_Mat; ;. We then get a
value

new_p = closest_integer(t * 10" new_a;/y1)

Again the attack fails if new_p # p, and if not, we let
new._a; = closest_integer(new.a; * /1)

We reach complete success if for each 7, we have new_a; = a;.
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3.2 Results

We made 4 different trials under different values of the parameters.

ot =1, nbof.digits =20, n = 30: 10 different runs reached complete success.

o The smallest bound for m suggested by Isselhorst beeing 70, when t = 1, we
took nb_of_digits = 121, and n = 192: 2 different runs reached complete success.

e nbof_digits = 121, and ¢ is a randomly choosen 50-digits integer. As is clear
from section 2, this allows a lower value for n. We set n = 141, which corresponds to
messages m of length 70. 2 different runs reached complete success.

e The runs with the largest figures:

t =1, nb.of.digits = 250, n = 336, which allows messages m of length 85. 4
different runs reached complete success.

3.3 Remarks

All our trials gave values which can be saved and can be used again. We also checked
that for t = 1, nb_of_digits = 20, we get a failure as soon as n < 27. This is in
accordance with the analysis os section 2.

3.4 Final conclusion

All these complete success justify the basic claim of our theoretical analysis above: The
cryptosystem proposed by Isselhorst is not secure.
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