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Abstract. A chosen-plaintcxt attack on two-key triple encryption noted by Mcrklc and 
Hcllman is extended to a known-plaintext attack. The known-plaintext attack has lower 
memory requirements than the chosen-plaintext attack, but has a greater running time. 
The new attack is a significant improvement over a known-plaintext brute-force attack, 
but is still not seen as a serious threat to two-key triple encryption. 
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1. Introduction 

Due to questions raised (e.g., see [Diff77]) regarding the adequacy of security by the 56-bit 
key in the Data Encryption Standard (DES) [FIPS46], several varieties of multiple 
encryption have been considered. Given a few plaintext-ciphertext pairs, an exhaustive 
search defeats (single) DES in on the order of 256 operations. Double DES encryption, 
using two independent M-bit keys (see Figure l), requires on the order of 2112 operations 
to attack by this naive approach. This may be reduced to on the order of 256 operations and 
256 words of memory using a simple “meet-in-the-middle” attack [DiffUJ. 

Kl K2 

P (Plaintext) ~-$+-+$--~ C (Ciphertext) 

S is a private-key cryptosystem such as DES. 

Figure 1: Double Encryption 

Two-key triple DES (see Figure 2) can be defeated by the naive approach in on the order of 
211’ operations. This may be reduced to on the order of 256 operations and 256 words of 
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memory using a chosen-plaintext attack due to Merkle and Hellman which requires 25a 
chosen-plaintext plaintext-ciphertext pairs [MerkBl]. This latter attack, although 
impractical, is of interest in that it exhibits what Merkle and Hellman refer to as a 
"certificational" weakness in two-key mple encryption. 

K3 (three-key tn'ple encryption) 
or 

K (two-key triple encryption) 

Figure 2: Triple Encryption 

This paper presents a known-plaintext attack on two-key triple encryption. The Merkle- 
Hellman attack is first reviewed in 82. The new attack is presented in 03 and briefly 
analyzed in $4, showing it to require a running time on the order of 212O-I0gzn operations 
and n words of memory, where n is the number of available plaintext-ciphertext pairs. 
This is the best known-plaintext attack on two-key mple DES that the authors are aware of. 
In $5, we consider a hardware implementation of the new attack using n = 232. 

As with the Merkle-HeIIman attack, the new attack poses no serious threat to twekey triple 
encryption in practice. However, it is of interest in that it may be used to both reduce the 
memory requirements and relax the chosen-plaintext condition in the Merkle-Hellman 
attack, and may lead to further advances. It is also highly amenable to parallel 
implementation. As with the Merkle-Hellman attack, the ideas discussed in this paper are 
not restricted to DES, but apply to any similar cipher. 

2. The Merkle-Hellman Attack on Two-Key Triple Encryption 

Let C = S d P )  denote that the plaintext P, enciphered using key K, results in ciphertext C. 
Then as in  [Merk81], denote two-key mple encryption by the function Enco: 

Let A and B be the intermediate values in Enc(P): 

A = S K ~ ( P )  and B = S&A). 
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The Merkle-Hellman attack finds the desired two keys K1 = KI, K2 = ~2 by finding the 
plaintextciphertext pair such that intermediate value A is 0. The first step is to create a list 
of all of the plaintexts that could give A = 0: 

pi = s i'(0) for i = 0, 1, ..., 2 5 6 -  1. (3) 

Each Pi is a chosen plaintext and the corresponding ciphertexts are obtained from the holder 
of keys KI and KZ: 

The next step is to calculate the intermediate value Bi for each Ci using K3 = Ki = i . 

B; = S;'(C~) for i = 0, 1, ..., 2 5 6 -  1. (5) 

A table of mples of the following form is constructed: 

where flag indicates either a Pi-type or Bi-type triple. Note that the 256 values Pi from 
equation (3) are also potentially intermediate values B, by equation (2). All Pi and Bi 
values from equations (3) and (5) are placed in this table, and the table is sorted on the first 
entry in each triple, and then searched in order to find consecutive P and B values such that 
Bi = Pj. If Bi = Pj, then i, i is a candidate for the desired pair of keys ~ 1 ,  K2. This fact is 
illustrated in the two-key mple encryption depicted in Figure 3, 

i i 

see see see 
equation equation equation 
(3) (3) (5) 

Figure 3: Two-Key Triple Encryption with a Candidate Pair of Keys 

Because Ci = EnC(Pi) for both the candidate pair of keys i, j and the desired keys K1, K2, 
it is reasonable to expect that the two pairs of keys might be equal. Each candidate pair of 
keys found from the sorted table is tested on a few other plaintextciphertext pairs to filter 
out "false alarms". The reason the attack succeeds is that a match Pi = Bi is found in the 
table with i = ~ 1 ;  this is that i for which S K , ( P ~ )  = 0. Testing all candidate pairs guarantees 
that ~1 and ~2 will be found [Merk81]. 
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3. Known-Plaintext Extension of the Merkle-Hellman Attack 

Because the Merkle-Hellman algorithm computes a table based on the fixed value A = 0, 
and it is not known u priori which plaintext P results in the intermediate vdue A = 0, it is 
necessary to test all 256 possibilities (Le., Si'(0) for all possible keys i ) .  Also, the 
attacker must request that each of these plaintexts be enciphered for him by his adversary. 
This makes the Merkle-Hellman attack far from practical. The idea for extending the 
algorithm is to remove the reliance on a single, fixed value of A; rather, we choose values 
for A at random, and for each choice, carry out a tabulation. We continue until a "lucky" 
choice of A is made which results in the success of the algorithm. As the attacker, we no 
longer require access to the adversary's Em()  function. Instead, we assume that we are 
given n plaintextciphertext pairs. 

The new algorithm proceeds as follows. Tabulate the (P, C) pairs, sorted or hashed on the 
plaintext values (see Table 1 in Figure 4). Table 1 is independent of A and requires O(n) 
words of storage. Now randomly select and fix (for this stage of computation) a value u 
for A , and create a second table (see Table 2 in Figure 4) as follows. For each of the 256 
possible keys K1 = i, calculate what the plaintext value would be if i were used for K1: 

1 Pi = Si (a). 

Next, look up Pi  in Table 1. If Pi is found in the first column of Table 1, take the 
corresponding ciphertext value C and compute the intermediate value 

B = S i'(C). 

Place this value of B along with the key i into Table 2. Table 2 is sorted or hashed on the B 
values. 

Each entry in Table 2 consists of an intermediate B value and corresponding key i which is 
a candidate for ~ 1 ;  as described above, each (By i )  pair is associated with a (P, C) pair from 
Table 1 which satisfies Si(P) = u. The remaining task is to search for the desired value of 
K2. For each of the 256 candidate keys K2 = j ,  calculate what the intermediate B value 
would be i f j  were used for K2: 

Bj =Sj-l(u). 

Next, look up Bj in Table 2. For each appearance of Bj (if any), the corresponding key i 
along with key j is a candidate for the desired pair of keys ~ 1 ,  KZ. (To handle the rare case 
that a given B-value appears more than once in Table 2, a few bits could be added in Table 
2 enmes to indicate the multiplicity of each B-value.) Each candidate pair of keys (i, 11 is 
tested on a few other pkntext-ciphertext pairs. If all of these additional (P, C) pairs have P 
mapped to C by the key pair ( i ,  11, then (i, 13 = (q, ~ 2 )  and the task is complete. 
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This algorithm will find ~1 and ~2 the first time any one of the available (P, C) p& has a 
first intermediate value ( S K ~ ( P ) )  that is equal to a chosen u. If the algorithm does not 
succeed for a given a, the process is repeated for another value of A until ultimately the 
desired keys ~ 1 ,  ~2 are found. 

Table 1 

P C 

Table 2 
(for fixed a) 

B keyi 

K 
sorted or hashed 

on P values 
sorted or hashed 

on B values 

Figure 4: Tables used in the Known-Plaintext Attack 

4. Time and Space Analysis 

In this section, we briefly summarize the running time and memory requirements of the 
known-plaintext attack. 

The time required for building and hashing Table 1 is the time required to hash n items. 
This time is dominated by other computations required in the attack, for n < 2% The space 
required for Table 1 is O(n). 

For each value of A that is med, the time required to build Table 2 is on the order of 25a, 
assuming that Table 1 is hashed on the plaintext values so that lookups take constant time. 
Because only 256 out of 264 possible texts are searched for in Table 1, the expected number 
of enmes in Table 2 is n/2*. This space is reusable across different values of A. The time 
required to work with Table 2 to find candidate pairs of keys is on the order of 256. 

The probability of selecting a value of A that leads to success is n/264. The expected 
number of draws required to draw one red ball out of a bin containing n red balls and N - n 
green balls is (N + l)/(n + 1) if the balls are not replaced. Therefore, assuming that one 
does not try the same value of u more than once, the expected number of values of u that 
must be tried is 

(264 + I)/(n + 1) = 26% for n large. 
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Thus, the expected running time for the attack is on the order of (256)(264/n) = 2120-'0b'zn, 
and the space required is O(n). 

5. Parallel Hardware Implementation 

In this section we present one possible parallel hardware implementation of the known- 
plaintext attack on two-key mple DES, assuming that n = 232 plaintext-ciphertext pairs are 
available. Given a number of assumptions concerning the cost of components and the 
performance that can be achieved by present-day technology, the illustrated implementation 
of the attack is shown to be four orders of magnitude faster (for an attacker with fixed 
resources) than a brute-force known-plaintext attack. This is the best known-plaintext 
attack the authors are aware of, but this attack is still not feasible. We conclude that two- 
key mple DES is currently not vulnerable to attack in practice. 

The following hardware implementation is suitable for an attacker with a large amount of 
resources. We will assume that the attacker has 1 billion (109) dollars and n = 232 
plaintext-ciphertext pairs available to him. Note that the execution time is not particularly 
sensitive to n (provided that n is not too small) because as n increases, the number of 
operations required for the attack (2*20-'og29 decreases, but memory requirements increase, 
and the number of machines that can be built with a fixed amount of money decreases. 

Each machine for attacking two-key triple DES (see Figure 5 )  consists of a central 
component containing Table 1, and 512 peripheral components each containing its own 
version of Table 2 (for distinct sets of values for A). 

Component Component 

Central 

Peripheral 
Component 

(Table 2) 

Component 

(Table 1) 

Peripheral 
Component 

. . .  
512 peripheral components in all 

Figure 5: A Single Machine for Attacking Two-Key Triple DES 

The function of the central component is to service requests from the peripheral 
components for the ciphertexts (if any) which correspond to a specified plaintext. In order 
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to service these requests quickly, Table 1 is hashed on the plaintext values. To reduce 
overhead during table lookup of hashed values caused by hashing collisions, the density of 
the hashing table is restricted to 50510. In this case, the total memory required €or Table 1 is 

2(Z3* words)(@ + 64 = 128 bits per word) = 240 bits. 

Assuming that bulk memory can be obtained for $10/Mbit, the cost of this memory is 
approximately $10 million. 

If each memory chip is 1M x I-bit, then Table 1 is organized as approximately 8000 rows, 
with 128 chips in each row. These rows are independent and can be accessed in parallel. 
This makes it possible €or the central component to service the requests h m  the peripheral 
components in parallel. Each request will be directed to one of the 8000 rows. There 
should be few collisions among 512 requests out of 8000 rows. We will assume that the 
cost of the complex routing and arbitration circuitry required to make this work will double 
the wst of the memory making the total cost of a central component $20 million. 

We will assume that the average time required to service a request from a peripheral 
component is 250 ns. This may seem slow considering the current speed of memories, but 
this figure takes into account delays caused by the routing and arbitration circuitry, delays 
due to collisions among the 5 12 requests, and delays due to hashing collisions which lead 
to extra probes into Table 1. 

The expected number of words required for Table 2 is n/2* = 224. Again, restricting the 
density of Table 2 to 50%, the total memory required for Table 2 is 

2(224 words)(64 + 56 + 4 = 124 bits per word) 5 4000 Mbits. 

(Four extra bits have been allocated to handle the problem of possible duplicate B-values as 
indicated in $3.) Assuming that bulk memory can be obtained for $10/Mbit, the cost of this 
memory is $40 OOO. For all 512 peripheral components in a machine, the total memory 
costs are approximately $20 million. Peripheral components have some circuitry other than 
memory, such as DES chips, but there is just enough of this circuitry that the 250 ns 
request rate is not slowed down. The cost of this circuitry is negligible compared to the 
cost of memory. Then the total cost of one machine is $40 million. Therefore, the attacker 
who has $1 billion can afford to build 25 machines. 

The expected number of values of A that must be med is 264/n = 232. For each value a of 
A,  zs6 accesses of Table 1 are required to build Table 2. Also 256 accesses of Table 2 are 
required to find all candidate pairs of keys. Assuming that accesses of Table 2 also require 
250 ns, the expected time required to find the desired pair of keys is 

(232)(256 + 256)(250 ns) / (25 x 512 peripheral components) a 4 x 108 years. 

Next, we consider a brute-force known-plaintext attack. Analysis indicates that a DES chip 
could be built in volume for about $10/chip [BNR]. A similar chip with added comparison 
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circuitry and modified input/output could be built for about the same cost and used for 
attacking DES. The cost of building a machine for attacking two-key triple DES would 
include'overhead in addition to the cost of the DES chips; assume this overhead cost to be 
roughly equal to the total cost of the DES chips. Then for $1 billion, the attacker could 
afford to build a machine with 50 million DES chips. Using current technology, each DES 
chip could perform a DES operation in about 500 ns. One would expect to have to search 
through about half of the 2l l2 pairs of keys, and testing each pair of keys requires 3 DES 
operations. Therefore, the expected time required for a brute-force search is 

(3)(0.5)(211*)(500 ns) /(50 x 106 DES chips) = 2.5 x 1012 years. 

Therefore, the known-plaintext attack is approximately four orders of magnitude faster than 
a brute-force search, based on the assumptions made in the preceding arguments. 
However, this is of little practical consequence unless new ideas improve the running time 
of the former by several more orders of magnitude. 

6. Conclusion 

The new attack presented in this paper demonstrates a known-plaintext variation of the 
chosen-plaintext Merkle-Hellman attack, with a decreased memory requirement. The 
penalty that is paid for these improvements is increased running time. 

The new attack gives approximately four orders of magnitude improvement over a brute- 
force known-plaintext attack, provided that a sufficient number of plaintext-ciphertext pairs 
are available. Despite the improvement, for practical purposes, two-key triple encryption 
remains currently invulnerable to known-plaintext attacks. 

The authors encourage others to pursue other known-plaintext attacks on two-key triple 
encryption, which further reduce the running time. 
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