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Abstract 

At Eurocrypt’ W. J. Jaburek suggested an algorithm, which he 
called pseudo exponentiation, for use in generalized El-Gamal type 
public key cryptosystems. This pseudo exponentiation uses a modified 
form of binary addition in the place of multiplication in an ordinary 
exponentiation. 

In this paper we show that the pseudo exponentiation on the set 
GF(2)k of bitstrings of length k has a considerable amount of math- 
ematical structure. Using this structure we present an algorithm for 
inverting pseudo exponentiation that has a running time polynomial 
in k. 
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1 Introduction 

In their famous work [2] Diffie and Hellman presented a protocol for public key exchange 
based on the discrete log problem. Then, in 1985 El-Gamal presented a public key cryp- 
tosystem [3] based on this probloem. Some years later Beth found a corresponding zero- 
knowledge identification scheme [l]. 

These cryptosystems are based on an exponential structure over a set G ,  usually 
a group. There a generalized exponentiation xe is the application of the (e - 1)-fold 
composition of an associative function f : G x G + G on x E G, namely 

ze = f ( .  .. f ( x , z )  )... z) -- 
c-1 times e times 

The cryptosystems mentioned above make use of the associativity of f: 

Furthermore if f is associative (and can be computed in polynomial time), xe can be 
efficiently computed in polynomial time (with complexity parameter E = loge) using the 
square and multiply algorithm, whereas it is hoped that in general computing its inverse 
is much harder. 

Now consider the order < x > of any element z E G ,  defined as 

< x > = m a x { n ~ N  : V ' v : l < ' v ~ n ~ x " # x }  

Because G is finite the repeated application of f on x will lead into a cycle of f-images. 
Therefore < x > is either infinite or < x >I IGI. From a cryptographical point of 
view, given I, y E G ,  as much as possible uncertainty about the integer e with xe = y 
is required. In terms of the order of elements this means that most of the elements of 
G have an order of roughly /GI. For complexity theoretic analysis this allows for the 
simplification that e = O(lG1). 

Some well-known f-functions are the multiplication in the multiplicative group of a 
finite field GF(q) and the addition of points on an elliptic curve ( [ 5 ] ) .  

2 Reviewing the Pseudo Exponentiation 

To achieve efficient implementations of public key cryptosystems, in [4] Jaburek suggests 
a modified binary addition as as suitable function f ,  there called pseudo addition. It is 
defined over the vector space GF(2)k of bitstrings of length k. The resulting exponential 
structure is called pseudo exponentiation. For the rest of the paper we shall denote pseudo 
addition with t and pseudo exponentiation with $. 

Let A be a k x k matrix over GF(2), satisfying the conditions 
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Pseudo addition of two vectors z and y is performed using Algorithm 1. 

Algorithm 1 (Pseudo addition) 

Variables are a,  b,c 
a c x  

While b # (0,. . . , 0 )  Do 

a t a + b  

b t Y  

C + ( U l  '& ,  ... ,ak * bk) 

b + c - A  
End Whi l e  
x t y + a  

The pseudo addition so defined is associative and commutative. Note that 

k-1  
x i x =  Can 

n=O 
(3) 

In=] 

where a, denotes the n-th row vector of A,  so that together with (2) in particular 

(Vn : 2, = 1 * a, = 0) * 2$2 = 0 (4) 

Furthermore it is worth noting that the k x k matix 

0 1 0 ... 0 
- .  . . . . . - . .  . .  . . .  

. .  
* .  -. 0 

0 . * .  1 
0 1 0 . . .  ... 

describes the usual addition in 
From a technical viewpoint, pseudo addition can be looked upon as a series of k full 

adders with widely scattered carry lines. Each carry output can be connected to one or 
more carry inputs or can be ignored. Each carry input can be connected to one carry 
output or to zero. These connections are given by the matrix A: 

1 

0 otherwise 

if the carry output of the 1-th full adder is connected 
to the carry input of the rn-th full adder q m  = 
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2 

Figure 1: Full adder representation of the pseudo addition defined by A 

An example of this hardware representation for the matrix 

A =  

‘ 0  0 0 1 0 0  0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 1  
1 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0  
0 ’ 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0  

( 0  1 0  0 0 0 0 0 0 0 0 0  

is given in fig. 1. 

3 Identifying the Mathematical Structure 

To see the mathematical properties of pseudo addition and exponentiation more clearly 
we introduce the notion of a cluster. A cluster Ci is a subset of the vector space GF(2)k 
that is defined as follows: 

C; = {z E GF(2)k : z$”-’ # o ,  Z S ~ ’ = O }  i = 1 , 2  ,..., m ( 6 )  
C, = {z E GF(2)k : z$” # 0 , i = 1 ,2 , .  . .} (7) 

for some integer 0 5 rn 5 k. We call i the order of cluster Ci. 

Equation (4) directly implies that any member z of C1 is nonzero at most in those 
coordinates x,,, for which the corresponding row vectors a, of matrix A are zero. We will 
identify these coordinates of I and corresponding rows and columns of A with C1. In an 
analog way we will identify those row vectors a, of A (and their corresponding columns of 



A and vector coordinates zn) with cluster Ci,  i = 2,3 , .  . . , m, who are themselves members 
of cluster Ci-1. 

For ease of notation we will assume from now on that the coordinates of z and hence 
the rows and columns of A are ordered in a way that all bits belonging to the same cluster 
are adjacent and the clusters are sorted according to their order, so that z o  belongs to 
the cluster with highest order and 3 k  to the cluster with lowest order. Such an ordering 
can easily be obtained by applying a suitable permutation matrix P at the beginning and 
the inverse matrix P-' at the end of the algorithm. In the hardware representation of 
the pseudo addition this is equivalent to permuting the order of the full adders. 

According to this definition the matrix A' = P A  shows the following structure: 

where the A;, A; . . , ,A', are square sub-matrices, not necessarily equal in size associated 
with clusters C,,C,,,, . . . ,C1 respectively. Note that this is the most general case and that 
either Al , . . . , A,  or A, need not exist for some of the possible matrices definig a pseudo 
addition. 

Considering the definition of a cluster above it is obvious, that 

The sub-matrix Ab, must contain at most one 1 per column (because of the definition 
of A, cf. equation (2)). On the other hand it must contain at least one 1 per row, else 
the specific row would belong either to one of the existing clusters C,, . . . ,C1 or to a 
new cluster C,,,,,. Therefore Ab, has exactly one 1 per row and column (i. e. Ak, is a 
permutation matrix), none of them on the main diagonal. So Ab, can be permuted to a 
form 

zj 0 * * .  

A'' = , . .  
... 0 ZI 

with cyclic permutation matrices Z;, . . . , Zj as defined in equation (5 ) .  For simplicity we 
will assume that P is suitably chosen so that Ak, = A: 

To obatin such an order for our example matrix A ,  we must exchange the rows and 
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columns 5 with 12, 8 with 11, 7 with S and 2 with 4 giving: 

' 0  1 0 
0 0 1  
1 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  

( 0  0 0 

0 0 0 0 0 0 0 0 0  
0 0  1 0  0 0  0 0 0  
0 0 0 0 0 0 0 0 0  
0 1 0 1 0 0 0 0 0  

0 0 0 0 1 0 0 0 0  

0 0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  

ii 1 0 0 0 0 0 0 0 0  

I 0 0 0 0 0 0 0 0 0  

The example matrix thereby divides into four clusters C,,C3,C2 and C1. The sub-matrix 
ab, divides into two cyclic matrices Z3 and Z 2 .  The corresponding sorted full adder chain 
is shown in fig. 2. 

4 Computing the Pseudo Logarithm 

We will call a solution e of the equation 

the pseudo logarithm of y (with respect to the base z). 
The pseudo logarithm can be computed by first finding an exponent that yields a 

correct result for those bits belonging to cluster C, using Chinese Remainder techniques. 
Then this exponent will then be successively adjusted so that it yields also the correct 
result for those bits belonging to  clusters C,, . . . , C1. 
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To explain this in more detail, we will denite by 11; the projection of I on cluster ci, 

The first goal is to solve the equation 
i.e. z with all coordinates belonging to clusters other than C' set to 0. 

Ylm = ( ~ l , S e - ) l c u  ' (12) 

This can easily be done by first performing separate divisions in 2 2 ' - 1 , .  . . ,2~-1, yielding 
em mod 2' - 1,. . . , e, mod 23 - 1, and then combining the results via (the inverse of) the 
Chinese Remainder Theorem. If the moduli 2' - 1, . . . , 2 j  - 1 are not coprime, the Chinese 
Remainder Theorem can be applied to coprime factors of z ,  = lcm(2' - 1,. . . , 2 j  - 1). 
The solution em satisfies em = e mod z,, i.e. 

for some f E Z. 
Multiples of z, may now be used as correction terms to adjust the other bits of x f " , ,  

because a direct consequence of the definition of z ,  is that (z$'m)Iw = 0. 
There are, however, two distinct i-bit representations of 0 E Zzt-l, namely i zeros 

and i ones. So, in general, ( z $ ~ ~ ) ( ,  will consist of several runs of zeros and ones, all 
representing 0 in one of . . , Zv-l. It can nevertheless been shown that this fact 
has no influence on the algorithm for computing pseudo logarithms. 

Thus the remaining task of determining f in equation (13) can be completely done by 
evaluating the clusters of finite order. Algorithm 2 computes f bit by bit, starting with 
the least significant bit. Each cluster contributes exactly one bit to f, because definition 
(6) implies that z $2'zm Im = . . - = z J2'+ Im-iSI = 0. 

Algorithm 2 (Pseudo  logarithm for clusters of finite order) 

Variables are g, i, r,  s, a, b 
g+-o 
24-0 

Repeat 
7- t z $'- t z+g=- f 

+ 2 $"- z$(2'+g)zm 

a + mm{j  : r J j  # yl,} (or 0 if the set is empty) 
b + max{j : 51, # yl,} (or 0 if the set is empty) 
If u > b Then 

EndIf 
9+-2'+g 

Z C i S - 1  
Until a = b 
f f - g  

If y was the result of a pseudo exponentiation, not an arbitrary vector, algorithm 2 
will terminate with a = b = 0 and yield a correct result. In the case that C, does not 
exist for a given A ,  set e to 0 and 2, to 1 in order to compute the pseudo logarithm. 
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5 Computational Complexity 
The permutation matrix P can be found in at most O(k3)  steps. The same holds for the 
permuation from A ,  to A;. 

Division in Z2i-1 can be done using the extended Euclidean algorithm. Such a division 
is needed at  most O ( k )  times. Finding coprime factors of z,, if necessary, can be done by 
applying the Euclidean algorithm on the moduli 2' - 1,. . . ,2j - 1 at most O(k2)  times. 
The inverse of the Chinese Remainder Theorem is needed only once. Both the Euclidean 
algorithm and the inverse Chinese Remainder Theorem are well known polynomial time 
algorithms . 

The subsequent computation o f f  consists of at most k steps, whereby the computa- 
tional cost of each step is dominated by a pseudo exponentiation. 

Thus the presented algorithm prohibits the cryptographic application of the pseudo 
exponentiation. 

6 Remarks 
The interested reader may find that in the original publication [4] the matrix Ais described 
with the main diagonal from top right to bottom left. 

An implementation of pseudo exponentiation and pseudo logarithm for values of 
k 200 showed that computing the pseudo log is almost as fast as the pseudo expo- 
nentiation. 

It is also feasible to solve equation (11) for z given y and e to compute 'pseudo roots'. 
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