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Abstract 

This paper presents a general method how to construct public key cryptosystems 

based on the r-th residue problem. Based on the proposed method, we present the first 

mental poker protocol which can s h d e  any set of cards. Its fault tolerant version is given, 

too. An efficient zero knowledge interactive proof system for quadratic non-residuosity is 

also shown. 

1 Introduction 

Goldwasser and Micali presented a probabilistic encryption scheme based on the quadratic 

residue problem[GM]. Cohen generalized this binary system to r valued systems for prime 

T ,  and applied it to a secret voting system [CF][BY]. Zheng showed a sufficient condition 

which the parameters must satisfy for odd r[ZMI]. Since such cryptosystems have a nice 

additive homomorphic property, they have many cryptographic applications. 

This paper shows a generd method how to construct a public key cryptosystem 

based on the r-th residue problem for any r (both odd and even). The necessary and 

sufficient conditions are presented which the parameters must satisfy. 

We apply our result to mental poker protocols (Note that the number of cards 

is 52, which is even.) Previous mental poker protocols[C][MUS] itze not that realistic. 

They cannot shuffle only discarded cards, for example. We propose the first mental poker 

protocol which can shuffle any set of cards. The difference is in the way of card expression. 

In the previous protocols, the k-th card is given by the composition of each player’s secret ’ 

permutation. In our protocol, card k is given by the sum of each player’s secret random 
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number. Its fault tolerant version is given, too. 

The related zero knowledge interactive proof systems are also shown. 

2 Preliminaries 

2.1 Public key residue cryptosystems 

(Secret key) two large prime numbers, p and q. 

(Public key) N ( = p q )  and y 

(Plaintext) m(0 5 m < r) 

(Encryption) E(m)  = ymzr mod N ,  where I is a random number. 

This cryptosystem has the following homomorphic property. 

E ( m  + n) = E(rn)E(n)t' mod N for some z. 

Under what condition, is any element of 2: uniquely deciphered ? 

The condition for r = 2 is [GM] 

( Y M  = ( Y / d  = -1 

The condition for prime r is [CF][BYJ 

- 1 (1) rlP - 1, r 

(2) y is an r-th non-residue. 

2.2 Some known lemmas 

Let G be an abelian multiplicative group and H be a subgroup of G. 

(Lemma A)[P] 
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Two elements g and g' of G are in the same coset of H if and only if g-lq' is an 

element of H .  

(Lemma B)[P] 

Every elememt of G is in one and only one coset of H. 

(Lemma C)[P] 

(Order of H)(index of G over H)=(order of G) 

(Lemma D)[K] 

In GF(p), the number of r-th roots of unity is gcd(r ,p  - l), where p is a prime 

number. 

2.3 Notations 

2;; = {.I0 < 2 < N , g c d ( z ,  N) = 1) 

2;;(+1) = {.I. E r;, ( s / N )  = 1) 

BN(r)  = {wIw = zr mod N,z E 2;) 

p ,  q : two prime numbers. 

3 How to construct residue cryptosystems 

3.1 Conditions of the parameters 

[Theorem 11 

In the public key residue cryptosystem in 2.1, any element of 2; is uniquely deci- 
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phered if and only if eq.(l)-(6) are satisfied. 

gcd(p - 1, r )  = el 

gcd(q - 1,r) = e3 

if r is odd. 

1 if r is odd. 

2 if r is even. 
gcd(el J e2) = 

(y/N) = 1 if r is even. 

(Definition) 

We call y which satisfies the above conditions "a basic element". 

(Decryption) 

In mod p ,  

Similarly, 

{E(m)}(q-l)/et = (y(Q-')/el * mod 1 

Therefore, for 0 _< i < r ,  just compare 

{E(m))(P-l)lel mod p and {E(m)}(q-')/a mod q. 

(4) 
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with 

(Sketch of proof of Theorem 1) 

Observe that 

E{O} = 1,2', - - 

E { r n } = y , y 2 ' , - - - ,  ( I < r n < r )  

Notice that {E(O)} is a multiplicative group and { E ( m ) }  is a coset. Therefore, any element 

of 2: is uniquely deciphered if and only if 

(1) ym is the coset leader (1 5 rn < r ) .  

(2) i-j {E(m)}  = 2; 
m=O 

Eq.(l) is the necessary and sufficient condition for (1) from Lemma A. It can be proved 

that Eq.(2)-(6) are the necessary and sufficient conditions for (2). Q.E.D. 

3.2 Proof of Theorem 1 

Theorem 1 is based on the following lemmas, which are derived from lemma A-D in 2.2. 

We discuss only the case of r = odd for the simplicity. The case of r = even is similar. 

[Lemma 11 

(1) Let w be an r-th residue mod p .  Then, the number of r-th roots of w is e l .  

(2) Let w E BN(r). Then, the number of r-th roots of w is elea. 

(3) 2: is a multiplicative group and its order is ( p  - l ) (q  - 1). 

(4) BN(r) is a subgroup of 2; and its order is ( p  - l ) ( q  - l)/elea. 
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( 5 )  The index of 2: over B N ( r )  is ele2. 

[Lemma 21 

(1) xcl E B,(r) for any z. 

(2) Let g be a primitive element of GF(p). Then, 

[Lemma 31 

Let s = Icrn(el,ez)- Then, 

(1) x' E BN(r) for any x 

(2) Let y be an integer which is a primitive element of GFb)  and GF(q). Then, 

(3) Let r = e1e2. Then, there exists y such that eq.(l) holds if and only if eq.(5) holds. 

(4) If r # ele2, there is no y such that any element of 2: is uniquely deciphered. 

3.3 Existency of basic elements 

[Theorem 21 

(number of basic elements)/lZGl = d(r ) / r  

(number of basic elements)/lZ&(+l)l = #( r ) / r  

if r is odd. 

if r is even. 

It is known that [BW] 

. /d(r)  = O(loglogr). 

Therefore, the expected number of trials to choose a basic element is O(loglogr). 

[Theorem 31 
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k .  
Let r = n dil where p; is prime for 1 5 i < k. Then, 

i=l 

if and only if 

[Lemma 41 

w E B N ( r )  if and only if 

4 Proposed mental poker protocols 

We propose the first mental poker protocols which can shuffle any set of cards. In Poker 

1, a distributed sum scheme is introduced for the card representation. Poker 2 is a fault 

tolerant version. 

Suppose that PI, . ~. , P, want to play poker. Each palyer constructs the r-th residue 

cryptosystem, where r = 52 in Poker 1 and r = 53 in Poker 2. 

(1) Pi publicizes his public key ( N i , y i ) .  

(2) P, proves that ( N i ,  y;) satisfies the conditions in 3.1 by a zero knowledge proof system. 

4.1 Poker 1 

A DECK of cards is (0,. ~. ,511. In Poker 1, card k in DECK is expressed by 
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where f i ( k )  is pl’s secret random number such that 

We show how to assign such random numbers to each player in a distributed and trusted 

way. 

(Putting c a d s  upside down) 

PI choose randomly { r i j }  such that 

and publicizes them. At this stage, every card is open. PI then encrypts each ri,k by Pi’s 

public key. He publicizes the result and the related random numbers which were used in 

the encryptions. Let 

where t , , k  = &(r,,k). 

At this stage, each card has become the backside. However, everyone knows, for each card, 

what the front side is. So, next, each player shufaes the cards in turn. 

(Shufing cards in DECK) 

DO the following for h = 1,. . . , n. 

Ph chooses random numbers { s;$} such that 

He then chooses a random permutaion 7r and computes 
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Note that, for some 6, 

E;'(ti,k)' + . . . + Ei'(tL$) = 7r'(k) mod 52, 0 5 k 5 51 

because of the homomorphic property of E; and eq.(4.1). He sets tl,k = tic and publicizes 

By a zero knowledge interactive proof system, he proves that he computed c k  according 

to the protocol. 

Now, we have made a DECK. 

(Getting a card from the DECK) 

When Pi gets a card from the DECK, the other players open their plaintexts of 

{ti,k} and the related random numbers. Only P, can obtain the card by computing 

The other players can compute the back side of this card as follows. 

E ; ' ( : ~ , ~  ) + . . . , ~ , . . . + E ~ ' ( ~ " , ~ )  Ei(T'(k)) = t1.k x 9; 

(Shuf3ing Hand) 

Let the cards in the hand of P, be E;(cl), . . . , E;(c,). Pi shuffles them before he 

opens or discards one of them. For the s u a n g ,  he chooses a random permutaion r and 

publicizes 
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He proves that he followed the protocol by a zero knowledge interactive proof system. 

(Openning a card) 

When P; opens Ei(n-’(k))) he just opens d ( k )  and the related random number. 

(Discarding a card) 

When Pa discards E , ( d ( k ) ) ,  he just declares that he discards EI(n’(k)). 

(Giving a card) 

When P, gives E,(d(k.)) to 8, he publicizes E , ( d ( k ) ) .  By a zero knowledge in- 

teractive proof system, PI proves that the plaintexts of E1(d(k.))  and Ej(d(k)) are the 

same. 

(ShuBng any set of cards) 

Suppose that all players want to mix the cards in DECK with a discarded card, 

E a ( d ( k ) ) ,  and reshuffle them. Note that 

7r‘(k) = 0 + * 1 - + d ( k )  + . . - + 0 

and E ; ( d ( k ) )  is given. Then, it is easy to see that we can use the same protocol as ”shuf3ing 

cards in DECK”. 

(Remark) 

The necessary zero knowledge interactive proof systems are easy to obtain from the 

homomorphic property of the cryptosystem. 

4.2 Poker 2 

This protocol is a fault tolerant version of Poker 1. When n=2t+1, at most t faulty players 

are allowed. Let g(x) be a random polynomial with degree t and with the constant term 

k. Card k is expressed as follows. 
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The other part of the protocol is almost the same, except that pi sends g(j) to Pi secretly, 

j # i ,  when Pi gets a card from the DECK. 

5 ZKIP for public key residue cryptosystems 

5.1 Knowledge of a plaintext 

Suppose that z is given such that 

z = ymzf mod N 

A(1ice) wants to convince B(ob) that she knows m and x. 

(Protocol 1) 

Repeat the following n times, where n = ”1. 

(step 1) A chooses m’ and z’ randomly and computes 

z’ = ym’xh mod N 

She sends z’ to B. 

(step 2) B sends a random bit e to A. 

(step 3) A sends m” and 2’’ to B such that 

Z‘Z’ = ym”x”r mod N 

(step 4) B checks the above equation. 
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5.2 On the basic eIement 

Let 

if r is odd. 

Z,’(+l) if r is even. 

A wants to convince B that (N, y) satisfies the following two conditions. 

(1) For any z E S, there exists rn and z such that eq.(7) holds, where 0 5 m < r- 

(2) The above m is unique. 

[ZKIP for (l)] 

Repeat the following n times, where n = IN] .  

(step 1) B chooses z E S at rmdom and sends it to A. 

(step 2) A shows that she knows the rn and I by protocol 1. 

[ZKIP for (2)] 

Repeat the following n times, where n = IN1. 

(step 1) B chooses m and z randomly and computes eq.(7). He sends the z to A. 

(step 2) B shows that he knows rn and z by protocol 1. 

(step 3) A computes the plaintext of z ,  riz, and send it to B. 

(step 4) B checks that r% = m. 

(Remarks) When r = 2, 

(1) ZKIP for (1) is also a ZKIP for 

N = p i $ ,  ( y / p i )  = (y/$) = -1 

(2) ZKIP for (2) is aIso a ZKIP for that y is a quadratic non-residue. The number of bits 

communicated is a half of [GMR]. 



387 

Acknowledgement 

We are grateful to Dr.Itoh and Mr.Kishimoto for useful advice. 

References 

Benaloh and Yung: “Distributing the power of a government to enhance 

the privacy of voters”, Proc. 5th Annual Symp. on pronciples of distributed 

computing, ACM, pp.52-62 (1985) 

Crepeau: “A zero knowledge poker protocol that achieves confidentiality of 

players’ strategy, or how to achieve an electronic poker face”, CRYPT0’86, 

pp.239-247 (1986) 

Cohen and Fischer: 

tion scheme”, Proc. 26th FOCS, pp.372-382 (1985) 

“A robust and verifiable cryptographically secure elec- 

Goldwasser and Micah: “Probabilistic encription and how to play mental 

poker, keeping secret all partial information”, 14th STOC, pp.365-377 (1982) 

Goldwasser, Mica& and Rackoff: “The knowledge complexity of interactive 

proof systems”, SIAM J. on computing, ~01.18, No.1, pp.186-208 (1989) 

Hardy and Wright: 

Oxford Univ. Press (1979) 

“An introduction to the theory and numbers”, 5th ed., 

Koblitz: 

(1987) 

“A course in number theory and cryptography”; Springer-Verlag 



388 

W S I  Miyama, Uyematsu and Sakaniwa- “A mental poker protocol without later 

verifications”, (in Japanese) (1987) 

PI Peterson: pError correcting codes”, MIT Press (1961) 

PMII  Zheng, Matsumoto and Imai: 

cryptography”, Trans, IEICE, vol.E71, No.8, pp.75%767 (1988) 

“Residuosity problem and its application to 


	General public key residue cryptosystemsand mental poker protocols
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Public key residue cryptosystems
	2.3 Notations

	3 How to construct residue cryptosystems
	3.1 Conditions of the parameters
	3.2 Proof of Theorem 1
	3.3 Existency of basic elements

	4 Proposed mental poker protocols
	4.1 Poker 1
	4.2 Poker 2

	5 ZKIP for public key residue cryptosystems
	5.1 Knowledge of a plaintext
	5.2 On the basic eIement

	Acknowledgement
	References


