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Abstract

Recently, formal complexity-theoretic treatment of cryptographic hash func-
tions was suggested. Two primitives of Collision-free hash functions and Uni-
versal one-way hash function families have been defined. The primitives have
numerous applications in secure information compression, since their security
implies that finding collisions is computationally hard. Most notably, Naor and
Yung have shown that the most secure signature scheme can be reduced to the
existence of universal one-way hash (this, in turn, gives the first trapdoor-less
provably secure signature scheme).

In this work, we first present reductions from various one-way function fam-
ilies to universal one-way hash functions. Our reductions are general and quite
efficient and show how to base universal one-way hash functions on any of the
known concrete candidates for one-way functions. We then show equivalences
among various definitions of harduness {or collision-free hash functions.

1 Introduction

Cryptographic Hash Functions are important tools in secure information com-
pression and as byilding blocks for other cryptographic procedures. A hash
function is cryptographically strong if collision finding is computationally hard.

The usefulness of cryptographic hashing was used and known in practice
(M1, Gi, M2] (and is already mentioned in the original Diffie-Hellman paper
which introduced the notions of trapdoor and one-way functions and their ap-
plications). Nevertheless, only recently two formal complexity-theoretic defi- .
nitions of cryptographic hash functions were given and implementations based
on one-way functions were suggested.
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The first function family, suggested by Damgard, is the Collision-Free Hash
Functions (CFHF) [D], which is based on Claw-Free functions of Goldwasser,
Micali and Rivest [GMRi]. The second function family, suggested by Naor and
Yung [NY], is the Universal One-Way Hash Function family (JVOWHF). In a
CFHF family, the function is given and then finding a colliding pair is hard,
while in UOWHTF definition is weaker: first an adversary chooses an input to
compress and then the function is drawn at random; (the weaker definition may
imply implementations based on weaker assumptions).

CFHF family can be based on any one-way homomorphism. Its applicability
was shown as this family when having also a trapdoor property was used to
implement a secure signature scheme [GMRI, D}; it was also shown to give
efficient zero-knowledge proof-systems {NY]. On the other hand, [NY] showed
that a secure signature scheme is reduces to the existence of UOWHF, and
‘they show how to achieve UOWHF based on 1-1 one-way functions, giving the
first provably secure signature scheme which is trapdoor-less (unlike all previous
secure signature schemes which had followed the Diffie-Hellman model of basing
signatures on a trapdoor property). ’

It is theoretically important to base cryptographic primitives and basic tools
on reduced complexity assumptions, it is also practically important to give ef-
ficient implementations of such tools. In this work we investigate implementa-
tions of cryptographic hash functions on reduced complexity assumptions and
investigate reductions among various definitions of hardness of collision finding.
We would like the reductions to be efficient as well.

We first give a reduction from a 1-1 one-way function to a UOWHF (our
proof is easier and the reduction is more efficient than the original construction
in [NY}). We then show that a UOWHT can be based on a one-way func-
tion with the property thal the expected size of the preimage of an element
in the range is small {i.e., when an element in the domain is randomly cho-
sen). We call this function small ezpected preimage-size function. We then
show how to construct such a function if a regular function [GKL} is avail-
able; this function family includes a large number of concrete examples (see
[GKL}]). Even more gencrally, we show how to reduce a very general one-way
function family to a small expected preimage-size family. The general property
requirement is that: given an clement in the range, an estimate on the size
of the preimage set is almost always easily computable (where the estimate
should only be polynomially close to the real size). We call such a function an
almost-known preimage-size function. Tlhis requirement is a mild one since it
implies some structure of the domain-range relationship which all concrete can-
didates for one-way functions (based on number theory, algebra, coding theory
or combinatorics (subset-sum)) have. Then, we investigate various definitions
of hardness of hash functions and we show reductions and equivalences among
the various definitions; such relations may lead to finding CFHF based on re-
duced complexity assumptions or on concrete functions which are assumed to
be one-way.

Recently, Rompel has come up with a construction of generating a UOWHF
based ‘on any one-way function [Ro]. This gencral construction does nat rely
on the approximate knowledge of the preimage size (the property mentioned
above) and it is much more involved than ours. It is ingenious and theoretically
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optimal, as it shows that the Naor-Yung approach leads to a signature based
on any one-way function (which is necessary by the work of Impagliazzo and
Luby [IL}). However it is much less practical than the work presented here for
all known concrete candidates for one-way functions.

The rest of the paper is organized as following. Section 2 present back-
ground on one-way functions, universal hash functions, UOWHF, and signature
schemes. The reader familiar with these notions can skip this section. Section 3
gives the construction based on any 1-1 one-way function, while Section 4 gives
the construction based on small expected preimage-size, regular, and the most
general almost-known preimage-size families. In section 5 we present reductions
among different notions of difficulty of cryptographic hash functions.

2 Notations and background

Let z be a string, then |z] is the length of z. Let z and y be two strings,
then z o y is the concatenation of z and y. By the symbol “0” we mean the
composition of functions. Thus, let f and g be functions, y = f o g(z) is the

value f(g(z)).

Probability ensembles: A probability ensemble D is the set {D, | n € N*}
where Dy, is a distribution probability on {0,1}". Forz € {0,1}", D[z]is the
probability assigned to z by D,. For X C {0,1}", D[X]is thesum ¥__cx D[z]-
By the notation z €5 B, we mean that 2 has been chosen from the set B under
the uniform distribution (i.e. each element in B has the same probability 1/]B|
of being selected).

Accessible ensembles: An ensemble D is accessible if there exists a prob-
abilistic polynomial time algorithm G, such that on input n, the probability
distribution induced by the output of G (depending on its internal coin-flips)
is D,.

Functions: A function f is a collection {f.: {0,1}" — {0,1}"™ | n € N*}
where [(n} is the output length. Herealter, for sake of brevity we often omit the
subscript in f,,. All functions considered will be polynomial time computable,
i.e. given an input = and an argument z, the value f,(z) can be computed in
time polynomial in n.

Definition 1 [One-way function.] f is one-way if for every polynomial time
algorithm A, for all polynomials p and all sufficiently large n, the probability
that A on input f(z), when z € {0, 1}", oulpuls a y such that f(y) = f(z) is

Pr(f(z) = [(A(f(=))) |z €r {0,1}"] < 1/p(n).

We remark that the above delinition is of a sirong one-way function which
is implied by the existence of the weaker somewha! one-way function using
Yao'’s amplification technique [Y]. A somewhat onc-way function has the same
definition as above, but the hardness of inversion is smaller, i.e. its probability
is inverse polynomially away from 1. (In the above definition the probability is
at most 1—1/q(n) for a given polynomial (instead of 1/p(n) for any polynomial
above)).
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Unless stated otherwise, f will have input length n and output length I(n).
The requirement that the range of f has a uniform length is without loss of
generality, as we may use a variable to fixed length encoding. For instance, if f
has output length less than or equal to m, then we can construct a function f
with output length at most 2m (or m + 2[log m] + 2) by employing a suitably
prefix encoding [E] explained below.

A prefix sct of strings is a sct S with the property that if any two strings
z,y € § are such that z = y o w (where w is a string) then z = y (and w is the
empty string). A prefix encoding {rom a set § to a set R is a bijection from S
to R where R is a prefix set.

In our case, the set is the range of a one-way function f (where f = f,), we
employ the following encoding f'(z) = 0M®)=1o1¢ f(z). This has the property
that it is easy to compute f'(z) given f(z) and vice-versa, even without knowing
z. Since the range of f’ is a prefix set, we can add dummy zeroes to make the
range of the same length m. That is f”(z) = f'(z) o 0™~W'&),

2.1 Collision-Free Hash Functions

Let {n1,} and {no,} be two increasing sequences such that for all i ng, < ny,,
but Jg, a polynomial such that g(ng,) > ny; (we say that these sequences are
polynomially related). Let H, be a collection of functions such that for all
h e Hg, h: {0,1}™% — {0,1}™+ and let U = |J, Hi. Let A be a probabilistic
polynomial time algorithm (A is a collision adversery) that given a random
h € Hy attempts to find =,y € {0,1}™ such that A(z) = A(y) but z #y. In
other words, after getting a hash lunction it tries to find a collision pair.

Definition 2 Such ¢ U is called a family of Collision-Free Hash Functions
(CFHF) if for all palynomials p, for all polynomial lime probabilistic algorithms
A, and all sufficiently large k the following holds:

1. PrlA(h) = (z,y),h(z) = h(y),y # z] < 1/p(n1,) where the probability is
taken over all h € H; and the random choices of A.

2. Yh € H,, there is a description of h of length polynomial in ny,, such that
given h's description and z, h(z) is computable in polynomial time.

3. Hy is accessible : there exists an algorithm G such that G on input k
generates uniformly a! random a description of h € Hj,.

Based on the existence of claw-free permutations (as defined in [GMRi])
one can construct a CFHT [D]; also, based on any one-way function which is
homomorphism, one can construct CFIIF.

2.2 Universal Hash Functions
The following definition is from Carter and Wegman [CW].

Definition 3 [Universalz hash [unction.] Let G be a family of functions from
C to B. We say that G is a universaly if for any pair of inputs (a,,02) and
any pair of oulputs (by,b7), the number of functions that map ay to by and az
to by 1s |G|/ B|>.
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Letz € C, 5 € C - {2}, g € G and §y(x,S) be the number of y € § such
that g(z) = g(y). Then by [CW], the expected value p of §4(z,S), for each
fixed z and § and when g is uniformly chosen {rom G, is u = |5]/|B|. Markov’s
inequality tells us that when g is randomly chosen from G then for any ¢{ > 1:

Prdy(z,5) > t-u] < 1/t

Definition 4 [NY](extended): A strongly universal, family G has the collision
accessibility property if, given a requirement g(z) = ay and g(y) = a, it is
possible to generate in polynomialtime e funclion uniformly among all functions
tn G that obey the requirement.

The abave is an extended property which is necessary for our construction.
A simple example of such a family (which we will use from now on, just for
clarity) is the set Gym = {9ap | Jab(2) = chop(az +b),a,b € GF(2™)}, where
all computations are in GF(2") and chop : {0,1}* — {0,1}™ returns the first
m bits of its n-bit argument. We will denote by G, the set G n-1. An inter-
esting property of the family G, ., is that each function is a 2"~™-1 function;
i.e. exactly 2*~™ elements in the domain have the same value in the range. In
particular, when » = m + 1 the functions are 2-1; and when m = n, G, 5 is a
permutation.

From now on, all the strong universal, families we consider are supposed to
have the collision accessibility property. '

The following simple lemma states that the composition of two universaly
functions is still universal;.

Lemma 1 [Composition.] Let G1 and G2 be two universalk families from Ci
to C3 and from C; to C3, respectively. Then the set G = {g=gr00 | g €
G1,92 € G2} is a universaly family from C, to Cs.

2.3 Universal One-way Hash Functions

In this subsection we review the definition and the important properties of
universal one-way hash functions (UOWLUF), as introduced and discussed in
[NY].

Let {n,,} and {no,; } be two increasing sequences such that for all i ng, < nq,,
but 3¢, a polynomial such that g(ng;) > 74, (we say that these sequences are
polynomially related). Let II; be a collection of functions such that for all
h € Hiy h: {0,1}"% — {0,1}"% and let U = (J Hy. Let A be a probabilistic
polynomial time algorithm (A is a collision adversary) that on input k£ outputs
z € {0,1}™« which we call an initial value, then given a random h € Hy
attempts to find y € {0,1}™+ such that h(z) = h(y) but z # y. In other
words, after getting a hash funclion it tries to find a collision with the initial
value.

Definition 5 Such a U is called a family of universal onc-way hash functions
if for all polynomials p, for all polynomial time probabilistic algorithms A, and
Jor all sufficiently large k the following holds:
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1. Ifz € {0,1}™x is A’s initial value, then Pr[A(h,z) = y,h(z) = h(y),y #
z] < lfp(ny,) where the probability is taken over all h € Hy and the
random choices of A.

2. Yh € 1l there is a description of h of length polynomial in ny,, such that
given h’s description and z, h(z) is computable in polynomial time.

3. Hy is accessible : there exisls an algorithm G such that G on input k
generates uniformly at random a description of h € Hy.

Notice that Hj is actually a collection of descriptions of functions; two
different descriptions might correspond to the same function.

In this definition the collision adversary A is a (uniform) algorithm. We
can alternatively define UOWHY where A is a polynomial sized circuit (the
non-uniform case). In this case, all our results still hold, but we require the
one-way functions that we use to be one-way in the non-uniform setting as well.

An important property is the composition lemma: composing families of
UOWHTF yields a family of UOWHF. Because of this lemma it will be enough to
prove the existence of UOWHF that compress one bit. Invoking the composition
lemma allows us to construct a family for any input and output size that are
polynomially related.

Let Hq,H;,...,1; be familics of functions such that Vi and Vh; € H;,
hi: {0,1}™ = {0,1}™-1 and n; < n;4;. Wecall H = {h|h = hjohjzo...0h;} an
l-composition of Iy, Il,, ..., If;. IT is a multiset; If iy ohyo...ofy = hjohho...0h]
for different (hy, ha,...,N;) and (h{, R}, ..., hy), both instances are members of
H. (In other words, we use the set of concatenated functions and sample an
element by sampling each If; independently and uniformly).

Lemma 2 [NY] Let H be an [-decomposition as above. If there ezists an algo-
rithm A that produces an initial value © and when given a uniformly random
h € H PrlA(h,z) = y,h(z) = h(y),y # z] > ¢, then there ezisis an 1 < i < I
and an algorithm A’ such that

o A’ produces an initial valuc z; € {0,1}™
o then on inpul h; € II; trics to find a y; that collides with z;.

o Pr{A'(hiyzi) = yi, h(xi) = h(y:),vi # xi] > €/l where the probabilities are
taken over h; € I; and A"’s random choices.

¢ The running time of A’ is similar lo that of A.

We remark that an equivalent definition to the above is when the initial
input z is chosen (in a more specific way) at random. For a given h € I and
z chosen by an arbitrary way by A, one can come up with another UOWHF
family H' = Gnn o H where G, is a universal; permutation family, which
randomizes the initial value.

UOWIF can be successfully applied to solve various authentications prob-
lems. Signature schemes and public fingerprintings for files among the others
[NY]. Next we bricfly describe signature schemes, and how to base a trapdoor-
less secure signature scheme on UOWIIF.
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2.4 Signature Schemes

In this subsection we review the definition of a signature scheme, its security
and the relation of trapdoor-less signature schemes and UOWHF. For a more
complete treatment, the reader is encouraged to consult the original paper [NY]..

Digital signature is a primitive suggested right at the birth of modern
(public-key) cryptography by Diflie and Hellman {DH]. The first implemen-
tations of their idea provided digital signature as well [MH, RSA, R]; these
proposed signature schemes were based on trapdoor one-way functions, but
lacked a precise notion of security. Following [DII], signature systems design
has become an extensive field of research (sce (GMRi]); we concentrate here
only on provably sccure systems.

The first scheme to deal formally with the notion of security of signature
scheme was suggested by Goldwasser, Micali and Yao [GMY] who also pointed
out flaws in the Diffie-Illellman scheme. They based their probabilistic scheme
on the problem of factoring. Tlen, the strongest known definition .of security
was formalized by Coldwasser, Micali, and Rivest [GMRI]; they defined what
it means for a system to be ezistentially unforgeable under an adaptive chosen
plaintezrt attack (which we call “secure” in the rest of the paper). This is an
attack by an adversary (forger) who initially computes a plaintext and receives
{rom the signature algorithm a corresponding valid signatures; this is repeated
in an adaptive fashion, polynomially many times. Then, the forger has to
produce, without the cooperation of the signature algorithm, an extra signature
for a message that was not previously signed. A secure system was designed
under the assumption that factoring is hard, or a more general assumption
that claw-free trapdoor permutations exist. Bellare and Micali [BeM] have
shown how to construct secure signature system based on the assumption that
trapdoor one-way permutations exist; this matches the original suggestion of
Diffie and Hellman, but this time the system had a proof of security.

Naor and Yung [NY] were the first to conceive that the trapdoor property is
not necessary for secure signature, (even one robust against the adaptive chosen
plaintext attack). They proved that a one-way permutation is sufficient and
invented the primitive of universal one-way hash family (UOWHT') to achieve
(among other things) a sccure signature.

2.4.1 Definition of a Signature Scheme and its Security

A signature scheme includes the lollowing componeats:

1. A security parameter k which deternines the size of keys, messages and
other resources; all sizes and algorithms are polynomial in k.

2. A message space M S, we allow all messages of a given size polynomial in
k.
3. A key component which includes a key space K S(k) a family {rom which

keys are being drawn and a generation algorithm K AL which chooses
random keys.

4. A signalure bound SB, a polynoniial representing a bound on the number
of messages signed; any polynomial should work.
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5. A systemn state s whicl represents the state of the system; there is an
initial state and execulion states.

6. A signing algorithm S AL which is given a message, a system state, and a
key, generates a signaturc and updates the system’s state.

7. A verificalion algorithm V AL which is given a message, a signature and
a system’s state, checks the validity of the signature.

A signature system is a distributed system in which each user is a polynomial-
time machine which initiates its instance of the signature scheme.

Next we describe attacks on signature schemes. The most general attack on
a signature scheme ([GMRi}) has two phases. First, it allows a polynomial-time
adversary F (a forger) Lo use the signature algorithm in an adaptive fashion,
getting signatures to polynomially many plaintexts of its choice. Next, the
attack has an existential nature, i.c., the forger itself has to come with a valid
signature of a new message of its choice, in which case we say that it was
successful. A scheme is p-forgeable if for a polynomial p there is a forger F
which for infinitely many k’s, succeeds in the attack with probability larger
than 1/p(k), where the probability is taken over the random cholces of keys by
K AL, the choices of the signatures by SAL, and the coin flips of F itself. We
say that a system is secure il it is not p-forgeable for any polynomial p.

2.42 A Signature Scheme based on UOWHF

Here we review the new approach to signature scheme as developed in [NY].
We briefly describe their reduction of signature to UOWHF.

Consider the Diflie-Lamport tagging system [La]. It consists of making pub-
lic a one-way function f and « window, which is an ordered pair of values
< f(z6), f(z1) >, for randomly chosen z,, z; in the function domain. The
user, then, is committed to the window and later on when it sends a bit b, it is
done by publishing a tag z,, an operation we call opening half @ window. We
say that the other half of the window remains unused. The construction can
be extended to tag a message of length m-bits, by initially publishing (com-
mitting) to a row of windows [< f(z}), f(z}) >,i = 1,...,m] and then opening
the halves corresponding to the bits of the message. Since f is one-way, only
the committed user can open a tag, and no ouc clse can tag a different message
unless it can invert a random value of [, furthermore, anyone can verify tags;
in this sense the system resembles a signature scheme.

The drawback of the above system is that the size of the initial commitment
limits the number of bits which can be tagged; to climinate it (and transform it
into a signature scheme) [NY] suggests to use UOWHF. The general strategy of
their system is to extend the tagging system, enhancing it with the capability
of “regencrating rows of windows”. The system is represented as a linked list,
a system’s state is a list consisting of nodes. Each node is associated with a
message, i.c., it tags that message. The node is also connected to its successor
in the list, i.c., it tags the successor node as well.

The node N; contains three data fclds: h; a UOWHF, and two rows of
windows rm; and rs;, the first will tag the next message M;y, while the second
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one will tag the successor node in the list, Niy1. The UOWIHTF family is publicly
known, or is otherwise produced by each user.

Next we sketch the algorithms and the dynamic behavior of the system.
The system has an initial state (state 0) in which a user deposits an initial
(root) node Ny in the public directory.

In a typical situation the system is in stale s;_; where there is a list of
t ~ 1 nodes and the last-node N;_; is unusced. The connection between nodes
will be explained in the following sketch of the signature and the verification
algorithms. .

SAL: Each message signing changes the state of the system, the list is grown
by a node which becomes the new last-node. At state s;_; the user sends a
message M; and tags it using the row rm;.1, furthermore a new node N; is
generated by algorithm K AL: N; =< h;,rm;,rs; > where its components are
chosen at random: &; is a random cleinent of the UOWHT family based on f,
and the rows are encryption by [ of random tag values.

In order to link the new node into the list, the user has to tag the new node
by its predecessor. Notice that the new node as a string of random bits is larger
than the tagging capabilities of the row rs;_| which was given this tagging task!
Here is where the UOWHPF hash is needed in a non-trivial way. The algorithm
first computes the hash value of the new node by evaluating n; = hi—_1(N;),
then the smaller string »; is being tagged by opening the corresponding half-
windows in rs;_1. This defines a signature on M; and a new valid state of the
system s;.

VAL: A verification of a validity of a message can be done by checking the
tagging of the message M; by rm;_; and testing the validity of the system’s
state by checking that the tagging of »; = h;_1(N;) is a valid one, namely, it
was done by a proper opening of rs;_; forall j=1,...,i — 1. This is done all
the way to the root and il all checks are valid the user accepts the signature.

Since a UOWIF implies the existence of a one-way function [NY], we can
state that:

Theorem 1 [NY] If UOWIIF exist, lhen the signalure scheme described above
is secure.

It is also possible to improve the cfficicncy of the above scheme [Go, NY].

3 UOWHEF Based on 1-1 One-way Func-
tions

Naor and Yung [NY] showed how to construct UOWHF [rom any 1-1 one-way
function. In this section we describe a construction different from them which
is easier to prove and is more economical in the number of applications of one-
way function used in the construction. Actually only a single application of a
one-way function is used.

Let f be a 1-1 one-way [unction (i.c. a 1-1 function that is also one-way),
with input length n and output length {(n).

Define If, = {/i = gnogny10...0g/m) 0 fu | 9: € Gi}, where G is a strongly
universal, family from -bit strings to (¢ ~ 1)-bit strings.
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Theorem 2 U =, H,, (based on 1-1 one-way function) is a UOWHF family.

Proof. The proof is by contradiction. If there is a polynomial time algorithm
that can find collisions for a randomly chosen &, then it can be used to invert
the one-way function f.

Suppose there is an algorithm A, that on input n produces an z € {0,1}"*
and given a randomly chosen h €p f, outputs a y such that h(z) = h(y)
and z # y, with probability greater than ¢ (here the probability is taken over
h €g Hp, and the random choices of A). Given z and gn,..., gi(n), denote by
COL;,n <i <I(n), the set of y such that gi0git10...091z) 0 fa(Z) = giogis10
0 Gin) © faly) and, for i < I(n), git10...0 gyny© ful2) # git10...0gi(n) © fa(y)-

Let j, n < 7 < {(n), be an integer such that with probability at least
¢/({(n) — n + 1) the algorithm A, on input z and h €g II,, gives a value
A(z,h) € COL;. Such a j must exist by the pigeonhole principle (wlog now
we assume it is known).

Given z and gji1,.-., fyn)> let W be the set of g; € G; such that [COL;| <
4(l(n) — n+ 1)/e, i.c. the sct of functions which have zero or more, but not too
many, collisions in COL;.

The probability Pr{A(z,h) € COL;} that A on input z and h €r Hp,
returns a value in COL; can be written as

>~ Pr{A(z,h) € COL; | gj = g)Prlg] + Pr[A(z,h) € COL; and g; € W],
geEW
where Pr{g] is the probability of choosing ¢ from G; under the uniform dis-
tribution. Thus, for g € W we have Pr[g] = Pr[W}/|W|, where Pr[W] =
Teew Prlgl, and hence Pr{A(x,k) € COL;] is equal to

Y PrlA(z,h) € COL; | g; = g]Pr(W]/|W|+Pr[A(z,h) € COL; and g; ¢ W].
gEW

Let g € W and u be such that gogjp10...0 fo(z) = gogjy1 0...0 fu(u) and
Gi4+1 0 «. © fu(z) # gj41 0 ... 0 fu(u). Since g is a 2-1 function, the number
of elements in COL; is equal to the number of collisions the composition of
the first I(n) — (7 + 1) 4+ 1 universal; functions (that is in turn a universal;
function), makes with u. The expected number of collisions for this compo-
sition, 6g1+1°,,_°y‘(")of"(u,{y # u}), is equal to (2" — 1)/27, which is less than
2. Thus, fromn the Markov’s inequality it follows that given 2 if we randomly
choose gj41 €r Gittrs Gin) €R Giny, and g in Gj, then the probability,
1—-Pr[W] = Pr[|COL;| > 4(l(n) ~ n+ 1)/¢] is less than (1/2)e/({(n) — n + 1).
Since Pr[A(z,h) € COL; and g; ¢ W] < Pr(|COL;| > 4({(n) — n 4+ 1)/¢] and
because Pr[A(x,h) € COL;] > ¢/(l{{n) ~ n + 1), il follows

1 €
N = a1 Pl 2 oo—
yzew PriA(z,h) € COL; | g; = gIPrIWI/IW] 2 57—y

and thus

‘ 1 1 € 1 €
> PrlA(z,h) € COL; | g; = ”]W 23 —n+tl (1 " 21(n) - n+1)'

geW
(1)

Now, consider the algorithm A’ that on input z = fo(w) where w €5 {0,1}%,
g |
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1. runs A to produce z (if f.(z) = z stop successfully -this is, of course,
negligible);

2. fori=mn,..,5 - 1,7+ 1,..,/(n), randomly chooses g; €r Gi;

3. randomly chooses g; €p G such that g; 0 gj+1 0 .. © Gyn)—n41 © Ja(z) =
gj04j+19...0 f/l(n)-u+l(3)§ ‘

4. gets y by running A on input h =g, 0...0 gy 0 frn and z;

5. outputs y.

Notice that the probability that gjyi0...0gp) 0 [u(z) = gjgr10 og,(,,)(z)
is 1/27, which is negligible; in this case we say that A’ fails and we can stop
it. Otherwise, with probability p, = 1 -1/27, f~1(z) belongs to COL; (by the
forced collision). Next we compute the probability of inversion of z when A’
does not stop. For the rest of the calculation p, will be a multiplicative factor
of the successful event.

Denote by D the distribution on Gj, according to which g; is chosen at
step 3. This is not an uniform distribution, not even among the functions in
G; that have at lcast one collision g; 0 gj41 0 w. 0 gin) © fn(z) = gj0 gjp1 0
w0 gitn) © faly), ¥ # z. Indecd, for any two functions ¢’,g” we have D¢} =
(ICOL;(g")/ICOL;(4")))Dlg"], where COL;(g) is the set COL; when g; = g.
That is the probability D[g] of a [unction g to be chosen at step 3 is proportional
to the number of collisions there are in COL;(g), thus it is dependent on the
previous choices of gj+1, .- Qi(n)-

The number of clements in COL; is given by 691“0,,_09‘(")01"()”1(z), {y #
F~1(2)}), and its expected value when h has been chosen according to A”’s algo-
rithm, is equal to (2" —1)/27, which is less than 2. Thus, from Markov’s inequal-
ity it follows that D{W] is greater than or equal to p;{1—(1/2)¢/({(n)-n+1)}.
Let g’ and g” be two functions in W, Fron D{g'] = (|COL;(g")/ICOL;(¢"))D[g"],
it follows that D[¢'] > ps(1/|W )</ {a(l(n)=n+ )D{1-(1/2)e/(I(n)-n+1)}.

The probability Pr{A’(z,h) € COL;] that A’ on input & and h chosen by
A'in H,, returns a value in COL; is at least

Z Pr{A(z,h) e COL; {g; = 9]D[g],
geWw

which is greater than or equal to

z,h) € COL; | g; = 922 ¢ )(_l___i.___).
g;VPT[A(r’ Y € COL;lg; g]tIIW| (l(n)— n+1 ! 2l (n)-n+1

Making use of (1), it follows that Pr[A’(z,h) € COL;] is greater than

2 (=) (i) -

The probability that g; € W when it is chosen accordingly to A”'s algorithm
is DIW] > ps{1-(1/2)(¢/(!{{n)—n+1))}. When A’ at step 5 returns an element
y € COL; that collides with z, then the probability that f(y) = zis 1/|COLj|
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(since z is not an input to A). Hence the probability that y = A’(z, k) satisfies
f(y) = z is at least

3 rrer) (b
2 \Un)-n+1 2i(n)-n+1/ "’

which is polynomially related to € (notice that, say, é, > 1/4). Ci

4 Further Reducing Complexity Assump-
tions

Next, we show how to construct UOWIIIL using one-way functions that are
more general. First, we show that a function with a small preimage size gives
us a UOWHF as well. This will be [ollowed by a more general result: a function
with the property that the expected size (when an element in the domain is
randomly chosen) of the preimage of an element in the range is small gives us a
UOWHF. We show also liow to construct such a function if a regular function
[GKL] is available, or even when a function where given an element in the range
an estimate (with polynomial uncertainty) on the size of the preimage set is
easily computable.

4.1 UOWHEF Based on One-way Functions with Small
Expected Preimage Size

Here we describe how to construct a UOWHTF if a one-way function that has
at most only polynomially many collisions on the average is available. We
first define formally what we mean by small preimage size and then by small
expected preimage size. Roughly speaking, the latter is a function f with the
property that for a randomly chosen z, the expected size of the preimage of f(z)
is small. Then, we discuss why the previous scheme does not work with such
functions. We describe a scheme for these [unctions and prove its correctness.
In the next subsection we show how to construct such a function when it is
only required that there is a [easible algorithm that when given an element 2
in the range, it gives a relatively good estimate on the size of the preimage set
().

The property of a small preimage size is shared by all 1-1 one-way func-
tions, but also include for example, one-way functions based on the gencralized
factoring assumption of composite with two or more primes, such as modular
squaring (whose inverse is extracting square roots) (sce [GKL]).

Definition 8 Let r(-) be a funclion from Nt to N*. A one-way function has
a r(n)-preimage sizc if for cach x € {0,1}*
L () < r(n).

Definition 7 Let r(.) be a function from Nt to N*. A one-way function has
an ezpected r(n)-preimage-size if when z is randomly chosen in {0,1}" the
ezpected size of f=1( f(z)) is at most r(n).
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Definition 8 A onc-way function [ has a small expected preimage-size if there
ts a polynomial p such that [ hus an cxpecled p(n)-preimage-size.

Let f be a one-way function with expected p(n)-preimage-size. Denote by
8¢(z,{y # z}) the number of clements such that f(y) = f(z), then Markov’s
inequality implies that Pr{é;(z, {y # z}) > t-p(n)] < 1/t, where the probability
is over the choices ol z € {0, 1}7. The Markov’s inequality essentially states
that there is only a negligible probability that there are more than polynomially

many collisions. This is an important property for the proof of our scheme for
UOWHF.

Why the previous scheme does not work with small preimage size functions
Suppose we use the same scheme described earlier to construct UOWHF based
on 1-1 functions, but we plug in a p{n)-preimage size function as the underlying
one-way function. So, A is constructed as g, 0 gnp10...0g)(n) © fn, Where each g;
is a hash function that shrinks the input by one bit. To prove its correctness we
should derive a contradiction with the difficulty of inverting f; i.e. the ability
to easily find a collision for the & would imply the ability to invert the f. It is
immediate that this approach is doomed to failure. Indeed, suppose that there
is a poly-time algorithm thal on inpul z outpuls y such that f{z) = f(y) and
¥y # = (this is not in contradiction with the difficulty of inverting f). Then, -
this latter algorithm can be used to find a collision for h. Squaring modulo a
composite is such a function f, so is any one-way [unction which is independent
of part of its input and just applics to the rest of the argument. .

A provably secure scheme
We just saw the problem in dealing with functions that are not 1-1, as the
difficulty of inverting does not rule out the possibility of easily finding collisions
for the one-way function and may thus jeopardize the sccurity of the A function
that is based on it. Here we show how to deal with this problem.

Let § > 0 be a constant. Let f = {f.: {0,1}" — {0,1}/™ | n e N1} be
a one-way function with the output length {(n) and expected p(n)-preimage-
size, where p(-} is a polynomial. Recall that Gr |(logn)i+4) and G; are families
of universal, functions from {0,1}" to {0,1}0%6")'**] 3nd from {0,1}* to
iO, 1}-1, respectively. For a positive integer k, let H be the set of functions
hi: {0,1}% — {0,1}%-1 defined as

hi(w) = gx 0 grgr 0 o 0 iy © fi(w)

where g; € Gy, ¢ = k,..., (k). Let I, be the set of [unctions h: {0,1}* —
{0,1}™! defined as

h(l) = .(/(7’) < (ﬁrl—t(lugrt)‘+oj 0. 077'71 © h‘l(a'))

where g € Gy, {(10gn)i+6) hie il i=n~— |(logn)!*5],...,n,and b € Gpnis a
universal; permutation.

To randomly choose an element in IT,, we first randomly select ¢ €g
G l(logmyi+é)» then &' €p Gy n, and finally hi €r I1;, i = n — |(log n)1*%}, ..., m,
uniformly and independently from cach other.
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In the above schiemic to compress ¢ bits one needs to apply one-way functions
only |(log n)'*°] + ¢ times.

Theorem 3 U =J, H,, based on small expecled preimage Junctions as above,
ts a UOWHF family.

Proof. Suppose there is an algorithm A, that on input n produces an z €
{0,1}" and given a randomly chosen h €g /I, outputs a y such that h(z) = h(y)
and z # y, with probability greater than €. As for the previous proof of
Theorem 2, we will describe a probabilistic poly-time algorithm A’ that on input
z = f(w), where w has been randomly chosen, finds a u such that f(u) = f(w),
with probability polynomially related to ¢.

It is unlikely that A on input 2 aud & €p I/, returns a value y = Az, h)
such that y # z, g(¥) = g(z) and ha(y) = hn(z). Indeed, when hn €r Ha,
W €r Gpn, and g €p Gn,L(logn)”‘"J’ thie probability that there exists a ¥

such that f,(h'(2)) # fa(W'(¥), 9(y) = ¢(z) and Ra(y) = Bn(z) is at most
‘2"/2"‘““’%")”6], which is negligible. Moreover, when h' €g Gun, and
9 €R G ((logn)i+¢), the probability that there exists a y such that fL(H(2)) =
Fo(W () and g(y) = g(2), is at most p(n)/2loen’**] (by Markov’s inequality)
which is negligible. ("This is indeed the reason why, in the definition, |(log n)i+é|
of the output bits of A(z) have been chosen to be an hashed value of 2 through
the universal; g.) Thus, we assume this is not the case (we can assume that
for all sufficiently large #, this will happen with probability at least 1/2, to be
generous).
Given z and h, denote by COLin~ L(log n)”ﬂ <i< n,thesetof y such
that g(z) = g(y), hio...ohy(2) = hio ohn(y) and hipq0. ohy(z) # hiz10.
n(y) Fix an integer j, n — |{log u)“"sj < j < n, such that with proba.blhty
at least (1/2)¢/(|(logn)'*5] + 1) the algorithm A, on input z and kb €r Hay,
returns a value A2, h) € COL;. Such aj must exist by the pigeonhole principle
(wlog we assutne now that jis known). R
Let sz be the composition of g; 0 gj41 0 ... 0 gy5y© fj, and let s = hjyqr0
.ohyo Jfa(2). Denote by Ci, i = j,...,1(7), the set of y € COL;, such that
9i © i1 © .. 0 gy(5) © fi(8) = gi 0 gix1 © ... © g5y © fi(y) and, for i < (),
Jis1 © - 0 gi(j) © fi(8) # giz1 0 .. 0 gy © [i(y). And denote by Cy(jy41 the set
of y € COL; such that f;i(s) = f;(y). Fix an integer &k, j < k < I(j) + 1,
such that with probability at least (1/2)c/(([(logn)'*°] + 1){(I(7) — j + 2)) the
algorithm A, on input x and h €g II,,, returns a value A(z,h) € Cy. Such a &
must exist by the pigeonhole principle (wlog we assume now that & is known).
We distinguish two cases: & <I(7) and £ ={(j) + 1.
Suppose k < {(j). Consider the algorithm A’ that on iuput z = f;(w), where
weEgr {0,1}:
1. runs A to produce z;
2. randomly chooses g €1 G, {(ugn)i+e )i
3. fori=n - |(log 1z)’+5j,...,j - 1,7+ 1,..,n, randomly chooses hi €r Hi
4

fort=j,.,k—=1k+1,..., ), randomly chooses g; €q G;;
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5. computes s = 7'-j+1 o... ofzn o [n(2), and randomly chooses g €g Gk such
that gy 0 git1 0 . 0 gi(yy © fi(s) = gk 0 grgy © - 0 g5 (2);
. constructs ’1;,1- = g;00j419 . 0G0 . 0 gi5 © fi;

. constructs k as the pair g and the composition h,_ [(logn)1+6] © - © fin

. gets u by running A4 on input z and i;

© 00 = O

. outputs y = A4, 0 ... 0 hy(u).

Notice that there is a negligible probability that f;(s) = z, in which case
we invert z. Thus, assume this is not the case.

Every hash [unction (but g at step 5) is randomly chosen by A’. Let us
denote by D the distribution under which such gi is chosen by A’. If D were
the uniform distribution and were independent {rom the choices ol the other
hash functions, then the probability of A’ returning a colliding u in the set Ci
would be the same as for A. The expected number of f values whose inputs are
from {0,1}/ that collide under the universal; hash function g o ... 0 gy(;) is at
most 2/ /281 < 2; and thus it is unlikely that there are more than polynomially
many collisions (from the Markov’s inequality). Thus, when A gives a collision
u € Cy, the value foIzJH 0. olz.,,(u) is onc of the f colliding values, and there
is a non-negligible plobdbml,_y that this is exactly z = f(w) (in which case we
invert z). Unfortunately, D is not the uniform distribution but, as in the A”s
algorithm of Theorem 2, it is close enough (for our purposes) to it. The proof
of this case is essentially the same of Theorem 2 and, thus, is omitted here.

Now, suppose & = {(7) + 1. llere, the hypothesis is that A on input z and
h €r H, returns, with probability at least (1/2)6/((L(logn)1+5j + 1)(I(7) -
i+ 2)), a y # z such that f; o h_H., 9..0 h,.(:z:) = fiohjs10..0 fin(y) and
Rjs10 ... 0 hu(z) # Tj1 0 ... 0 hn(y). Now we construct an algorithm A’ that,
by ﬁrst running A, computcs a pair of colliding and diflerent elements in Ck.
And then, by running algorithim A again, exploits the computed collision to try
to invert an f va.lu_o.. More formally, the algorithm A’ on input z = fj_,_l(w),
where w €3 {0,1}7+":
1. runs A to produce an initial x;
2. “computes a colliding pair p; # pg such that f;(p) = f;(p2)”
(a) randomly chooses g €5 Gy |(10g n)i+9)3
(b) for i = n — |(log n)'*°], ..., n, randomly chooses hien fi;

{c) constructs ki as the pair g and the composition Tln-L(logn)Hﬂ 0...0hy,;
{d) gets u by running A on input 2 and h;
(e) computes the pair py,pp as p; = 7Lj+1 o ...071,‘(1:) and p; = ﬁj_H 0..0
hn(u);
3. fori=j+2,..,l(7+1), randomly chooses g; € G;;
4. randomly chooses g;41 € G4y such that gipi0.0gy40y0 fin oﬂj+2o
w0 lig(z) = g and giq1 0.0 gy540)(2) = pas

5. constructs nj41 = gi41 0 9420 . 0 gy(iy1) © fit1;

6. constructs £ as the pair g and the composition /Azn_wogn);“l 0. 0 fig;
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7. gets v by running 4 on input @ and &
8. outputs y = 71,-.,.2 0...0 71,;(1)).

The probability that the pair py, pz, computed at step 2, is such that p; # p2
and fi(p1) = f;(p1) is at least (1/2)e/(([(logn)'+*| + 1)({(j) - 7 + 2)) (this is
a bound on the probability of A outputting an element in Ci). Assume such
a pair is success{ully obtained at step 2. Let us denote by D the distribution
under which g is chosen by A’ at step 4. All other hash functions (but gx)
are randomly chosen by A’. As for the previous case, if D were the uniform
distribution and werc independent from the choices of the other hash functions,
then the probability of A’ returning a colliding v in the set C; would be the
same as for A. The expected number of fj;; values that collide under the
universaly hash function g;4; o ... 0 gy(j41) is at most 27t1/23 = 2, and thus
it is unlikely that there are more than polynomially many collisions (from the
Markov’s inequality). Thus, at step 7 when A returns a collision v € Cy, the
value f;41 0 71,42 0 ... 0 hia(v) is one of the f;41 colliding values, and there is a
non-negligible probability that this is exactly z = fj+1(w) (in which case we
invert z). Unfortunately, D is not the uniform distribution but, as in the A”’s
algorithm of Theorem 2 and in the previous case, it is close enough (for our
purposes) to it. The formal prool of this case, based on similar techniques as
in the previous proof, will be given in the final paper, Ct

4.2 One-way functions with almost-known preimage-
size

In this subsection we show how to construct a small expected preimage-size
function if there is a function which has a feasible algorithm that when given
an element z in the range, gives a good estimate on the size of the preimage

set f~1(z2).

Definition 9 A one-way funclion has a almost-known preimage-size if there is
a polynomial p and a poly-lime delcrministic algorithm PRE_SIZE such that,
on input z = f(z), relurns a value

|f71(f(@)] = p(n) € PRESIZE(z) < |7 (f(=))] + p(n)
forallz € {0,1}", excepl a negligible fraction of them.

A particular case of almost-known preimage-size one-way function is a reg-
ular function [GKL]. This is a function where every image of an n-bit input
has the same number of preimages of length n, another such function is de-
coding random lincar codes (sec [GNL]). Subset sum [IN] is another example
of this function. Also a p(n)-preimage size function is a particular case of a
almost-known preimage-size function. In [IN] the function subset-sum is used
directly as a UOWIIT, exploiting the instances of subset-sum which compress
their argument (from = bits to {(n) = (1 — €}n). On the other hand, the most
secure instance of subsct-sum is shown to be length-preserving instances (from
n bits to I{(n) = n bits or {(n) = n + O(logn)); all subset-sum instances are
“almost-known preimage-size” and (if one-way) can be used in our scheme.
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Let f be a alinost-known preimage-size one-way function, and PRE_SIZE
be an algorithm that gives an approximation within p(n) to the preimage size

of f. Define i{z) = [log(PRE_SIZE(f(2)} + p(Jz]})], and define f’ as

[zog) = f(z)ogolg(ziw

where z € {0,1}", g € Gn,n and [y]x is the first & bits of y.
Along the line of Lemma 5.1 of Impagliazzo, Levin, and Luby {ILL], it is
possible to prove the following lemma.

Lemma 3 [’ is a onc-way funclion, when z €g {0,1}" and ¢ €g Gnpn-
Moreover, given randomly choscn x €g {0,1}™ and g €g Gnn, the ezpected
number of y, y # z, that collide ['(y) = f'(z), is [f~ (f(z)]/22® < 1.

The rangc of f' may contain elements of different lengths. But, as mentioned
in Section 2, it is an easy task to construct an equivalent function with the range
of the same length. Thus, as a corollary of Theorem 3 we have the following
general result.

Theorem 4 If there is_a almosi-known preimage-size (or a regular} function
then there is a UOWIIF, and thus a signature scheme.

5 On Various Notions of Security of Cryp-
tographic Hash

In this section we give a number of definitions of hardness of one-way hash
functions or one-way functions, with respect to collision finding. Our motivation
is to demonstrate anr equivalence among a large set of possible definitions so
that any primitive which satislies one of the conditions will automatically satisfy
the other definitions. This will demonstrate the robustness of the definition of
CFHF, and may be suggesting a possible way to attack the problem of finding
new and less restrictive implementations of CFHF,

Next we define a few classes of functions according to the hardness properties
which they satisfy.

We identify the following lamilies of functions; essentially the idea is to
classify all possible ways a collision is gencrated by a family ol cryptographic
hash functions. We assume that all the functions below are accessible and
computable in polynomial-time.

o H is a Collision-frce hash family.

o F = {Fi} is a collection of pairs of functions such that there is a poly-

nomial p and when (f}, f2) €r Fr Pril{(z,y) : filz) = f(p)}] > O] >
1/q(k). But, for all polynomials ¢, for all efficient algorithms A, and for

all sufficiently large &, Pr[A(fi, J2) = (z,y) : fi(z) = faly)] < 1/q(k)
when fy, f2 €r Fi.

o G = {G,} is a collection of pairs of functions such that there is a polyno-
mial g and when (g, 92) €5 Fi Pr{i{z : g1(z) = ga(2)}| > 0} > 1/q(k).
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But, for all polynomials p, for all eflicient algorithms A, and for all
sufficiently large k, Pr(A(g:,92) = v : gi(x) = g2(2)] < 1/p(k) when
91,92 €r F.

o R is a collection of [unctions such that there is a polynomial 4 and when
r€p R Pr{|{z : r(z) = 0}] > 0} > 1/¢(|z]). But, for all polynomials p,
for all efficient algorithms A, and for all sufficiently large &k, Pr[A(r) =
z:r(2) = 0] < 1/p(k) when r € Ry

o Given a fixed polynomial-time computable {unction ¢’, & is a collection
of functions such that there is a polynomial ¢ and when s €p & Pr{|{z :
s(z) = ¢'(2)} > 0] > 1/¢(jz}). But, for all polynomials p, for all eflicient
algorithms A, and for all sufficiently large &, Pr{A(s,9') = z : s(z) =
()] < 1/p(k) when s € St

The above functions demonstrate various ways of defining collisions of hash
functions, assuming the above functions actually compress the size of their
argument. As mentioned is scction 2, we can assume that for a given function,
range elements with preimages of the same lengtl », have the same length I(n).

H is the original CFHF family, which implies that on the same function
finding a collision between two different arguments is hard. F is a family in
which a collision between two functions on two different arguments is hard
to find, while G is the family in which for two different functions a collision
on the same argument is hard to find. R is a family in which non-negligible
fraction belongs to the kernel and it is hard to find an element in the preimage
of the kernel (similarly it can defined with respect to any constant in range, the
family § captures the hardness of finding an argument colliding with a given
fixed efficiently computable [unction. Delow we show that collision freeness is
robust with respect to the exact notion of collision.

Theorem 5 The following relations on the function families ezist:
o The families F,G,R,S are informalion theoretically equivalent.

o The fumilies F,G,R,S arc information theoretically reducible to H.

Proof. The following reductions can be observed. F=R, randomly draw a
pair { fi, f2) and set the function 7(xoy) = fi1{(2)® f2(y). =R, randomly draw
a pair (g1, g2) and set the function r(z) = ¢1(2)® g2(z). In botk reductions, the
probability of the kernel is polynomially related to the probability of the non-
emptiness of the collision set. R=S, simply draw r eEg R and set s = r @ ¢'.
Similarly, S=R, simply draw s € S and set r = s g’. R=F, draw a random
r and set f; = 7 and f; = 0, and the same reduction R=>G. The probability of
the non-emptiness of the kernel in the above reductions is polynomially related
as well to the probability of the respected collision set. This concludes the proofl
of equivalence of F,G, R, and S.

Next we show that H=R. Let My = {h : {0,1}*} — {0,1}'®)}. Let
neq(z,y), where z,y are both k-bit long strings (otherwise, the function is
undefined), a function which gives I'®) if & = y and 0"%) otherwise. Given
h € Hy, defive r(z o y) = h(z) @ h(y) @ neg(z, y). Notice that the probability
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that the kernel of r is not empty is polynomially related to the probability of
collision in A.

Cl

The above theorem justifies the generality of the definition of collision-free
functions as the hardest condition among possible function families.
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