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Abstract. A new method is featured which solves the sofhvare integrity problem by 

properly coding rather than enciphering. Adopting the lengthy and expensive solution which 

consists of having the whole program signedlencrypted by an authority would require fiil 

decryption and secure storage for the whole program before execution, whereas one signed 

instruction, pipe-lined decoding-executing, and secure recording of a few of the last read 

instructions sujj7ce in our case. A general use of the proposed system co& practically 

prevent any viral attack with minimum authority operation. 

0. Introduction 

Our goal is program integrity for the user, i. e. ensuring that, given an image code, any 

instruction insertion, deletion or modification before or during execution, will cause 

execution to stop. This requires that the image be stored under a suitable structure, which 

can be almost completely worked out by the same user who wrote the program. A one- 

way function F Piff76], such that in general F(X G3 Y) <> F(X) @ F(Y) (where G3 denotes 

addition modulo 2 on the binary representations of the operands), and a public-key 

signature scheme must be agreed upon before implementing the method. The signature 

consists of a private transformation D, exchlsively owned by an authority, and a publicly 

registered inverse transformation E. Also, a normalized instruction format must be defined. 

Suppose an algorithm A consisting of machine-code executable instructions i,,i,,..., i,. 

Assume that i. is not a branch instruction (it can be for instance an END or a RET 

instruction). Call 1, the instruction resulting from padding ii to a fixed length and adding 

a redundance pattern to i,. 
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1. User Preparation Phase 

In order for the user to turn a program he has written into a trurred program, he first 

normalizes it into a sequence I,, ..., I., where n is the number of instructions in the 

program. Then he replaces each ti with a trace Ti. The traces are computed in a reverse 

order, from T,, to TI.  In this way, the sequential program I,, ..., I, looks like 

TI = F(TJ 03 I, 
Tz = F(TJ Ct3 I3 

T,, = F(TJ 03 I ,  
T,, = F(IJ 

... 

I, does not appear in the sequence (1): it will be dealt with in section 2. Once the 

structure for a sequential program has been designed, we must solve the forward 

unconditional, forward conditional and subroutine branchings in order to be able to treat 

any program having no backward branches. Although for clarity we will present 11: as 
located in a sequential truce Ttr, this need not be true, as it will become evident. For the 

same reason, in the rest of the paper we will also sometimes write the traces following a 

branch as sequential ones. A forward unconditional branch at instruction Ik to instruction 

Ij is translated as 

... Tbl = F(TJ 03 I ,  
T,  = F(Tj) @ li 
Tk+, = ... 

... 
Tj = ... 

When is a forward conditional branch to instruction ii. the following traces are 

computed (also in an index decreasing order) 
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For a branch to subroutine (machine-code subroutine) we must also guard against the 

right subroutine being replaced at run-time; so, assuming that the instructions PI, ..., ZAm 

of the subroutine are already encoded as TAo, TAl, ..., TAm, we retrieve F(TA,) 43 PI from 

Po = D(F(TAI) C.33 PI) (see section 2 about the heading,trace TA0) and include it in the 

calling program as follows 

If I k  is a branch to lj with j < k ,  the branch trace structures proposed so far cannot be 

used to compute T,  (for a backward unconditional branch) or T, (for a backward 

conditional branch), since a trace T, is needed which has not yet been computed and 

depends on Tk (resp. T,.). So a backward unconditional branch at instruction I k  to 

instruction I j  is translated as 

... Ti-, = F(T;) CB F(T$ %3 1, 
T ;  = F(T,) 63 T-(j) 
Tj = ... 

... 
Tk.1 = F(TA @ 1, 
Tk = F(T-(j)) @ I, 
Tk,, = ... 

( 5 )  

Finally, the trace structure for a huckw~urd conditional branch is straightforward 

... Ti-, = F(T-j) C.33 F(Ti) 9 I, 
T ;  = F(TJ 9 T-(j)  
Ti = ... 

Tk.1 = F(TJ @ 1, 
... 

' k  = F ( T K )  F ( T k + l )  &+I 

T, = F(T-(j)) 0 I, 
T,,, = ... 

Both in ( 5 )  and (6) ,  T-(j) has been computed by applying a one-to-one function to j .  
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2. Authority Endorsement Phase 

After user trace computation, the authority owning the private transformation D endorses 

the trace sequence by computing a closing trace To = D(F(T,) 0 f,). Notice that the 

missing instruction I ,  appears now in the trace sequence, and that the whole program need 
not be supplied to the authority, but just F(T,) 8 1,. 

3. Program Execution with Controlled Instruction Flow 

Theorem 1 (Correctness). The program i,, i,, ..., in can be retrieved and executed from its 

corresponding trace sequence To, TI ,  T,, .._, T,. 

Proof (sketch). We have six cases: (a) sequential instruction blocks, (b) forward 

unconditional branchings, (c) forward conditional branchings, (d) subroutine branchings, (e) 

backward unconditional branchings, and (f) backward conditional branchings. Due to lack 

of space, we only prove the first case here. The run-time setting used consists of a 

coprocessor p ’ ,  whose task is retrieving the instructions Zk and forwarding them to a usual 

processor p ;  it is assumed that p’ and p are pipe-lined. The path between p and p‘ must 

be a secure one, so that it is advisable that both processor and coprocessor be encapsulated 

in a single chip (with a hybrid circuit [Ebe186], this is achieved at low redesign cost). 

Now, for a sequential instruction block, operation at cycle k is: Tk is being read, 

T,, is available in a coprocessor internal register, Tk.2 is being evaluated by p’ and I,, is 

being executed by p (actually the i,, stripped from Ik.z is executed, after redundance 

checking). Evaluating a trace T, means to retrieve the instruction contained in the trace 

(Im+, for a sequential trace, I ,  for a branch trace to T,, see section 1). Then, following this 

scheme, after reading To and TI  during cycles 0 and I, at cycle 2 T2 is read and p’ 

evaluates To by computing F(T,) 8 E(T,,) = I , .  It must be pointed out this computation is 

feasible because of the transformation E being easy and public and T, being available to 

p ’ .  Thus instruction 1, has been retrieved, if its redundance pattern is all right, of come. 
Now suppose that at cycle k-1 I ,  through I,, have been retrieved and the program has 

been executed till IL~ .  Then at cycle k,  I,, is executed and I,, is retrieved from TLz by 
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computing F(T,,) @ Tk.* = I,-,. Again this is possible because of T,, being available at 

cycle k and F being public and easily computable. The result follows by induction. 

Execution stops at cycle n+2 after executing f", which means that only two overhead cycles 

have been introduced (the first read at cycle 0 is unavoidable even for a conventional 

execution, see diagram 1). As for T,, this trace is only used during evaluation of T,, for 

1, 

I ,  ... I,t 1-1 1. * * P 
EXECUTE * 

* P' 
READ To T,  T2 T, ._. T. * 

CYCLE 0 1 2 3 _.. n n+l  n+2 

DIAGRAM 1. Sequential Block. n+2 Usable Cycles for n*Instructions. 

4. Run-Time Integrity 

Theorem 2 (Run-Time Intepritv). If a program i,, ..., i. is stored as To, .-., T, and is 

evaluated as described in section 3, any instruction substitution, deletion or insemon before 

or during execution will be detected at run-time, thus causing the processor to stop 

executing before the substituted, deleted or inserted instruction(s). Moreover, only the last 

five read traces must be kept in the internal secure memory of the processor (they are kept 

even in case of interrupt). 

Proof (Sketch). Since the arithmetic link between two consecutively executed insrructions 

in the sequential case (I t  and I,,,) is essentially the same as in a forward unconditional 

branching (Ik and I j ) ,  both cases can be reduced to a single one. Thus five cases must be 

considered for the proof: 1) sequential instruction blocks and forward unconditional 

branchings, 2) forward conditional branchings, 3) subroutine branchings, 4) backward 

unconditional branchings, and 5 )  backward conditional branchings. Because of space 

reasons, we will only develop the proof for a sequential block, which uses only the last 

read trace (no need for all five last ones); some additions to the main idea are used for 
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the other cases. First consider that an intruder attempts a substitution, by replacing It 
with Ik*; it follows from (1) that he can then choose either to maintain T,, or to modify 

it. If he mes the first thing, he must find a T,* s. t. F(T,*) @ I,* = T,,, but this is 

unfeasible given the unidirectionality of F. Consequently T,, is changed to TLl*; now if 
nothing more is done it will not be possible for the processor p' to remeve It ,  by 

evaluation of Tt2 (the resulting garbage is not likely going to be a valid instruction because 

of the redundance field). Thus a change in It causes p to stop after execution of I,,, which 

is a good behaviour. On the other hand if we recompute T,,* = F(T,,*) CB Ik., then p' will 

not be able to recover I,, and execution will stop earlier. Eventually if we proceed the 

backward recomputation, we see by induction that T, will be replaced by TI*, and this will 

be detected since To cannot be replaced (it is signed by the authority), and it will not be 

possible to remeve a valid I ,  by evaluation of To at cycle 2. Thus a modification of I ,  
enforces a modification of T,.,, due to the unidirectionality of F.  For this change to remain 

undetected, backward recomputation of traces should be made, but this is stopped by the 

signature in To; in any case, a defective instruction is never executed. If a change of a 
subset of instructions I,, ..., I ,  is attempted a similar argument can be used because this 

also implies changing some traces. As for deletion of a bace T, from a sequential flow, 

it also breaks the natural arithmetic link because it amounts to substituting T,,, for Th and 
we have shown that substitutions are detected. Finally, insertion of a new trace T, between 

T, and Ti+, is neither feasible: we can compute Tt. = F(T,+,) @ Ik. so as to link with Tk+,, 
but this is useless for we cannot link T,  and T,. without changing the former or having a 
garbage I,,, in T,, which will be both detected, as shown ab0ve.m 

5. Applications and Conclusion 

Our system allows branches and guarantees full  integrity while requiring secure storage 

only for the last five read traces; also decoding and execution are pipe-lined. The work 

performed by the authority in our scheme is rather small, so that a grear deal ofurers maY 
share a single aurhoriry, which simplifies most of applications. For example, imagine a 

large software company, where all programmers write and prepare their programs as 
specified in sections 1 and 2 i n  order to protect against computer viruses. Then a single 
authority Can be used to endorse every program. Finally, our proposal requires that only 

FV,) @ 1, be supplied to the authority for endorsement; the preparation phase can be 
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carried out by the user himself, so that the authority need not know what is being signed, 

but just a user's valid identification (software privacy). 
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