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Abstract 

In this work WC investigate the power of Public Randomness in the context 

of Public-key cryptosystcms. We consider the Diffie-Bellman Public-key model 

in which an additional short random string is shared by all users. This, which 

we call Public-Key Public-Randomness (PKPR) model, is very powerful as 

we show that it supports simple non-interactive implementations of important 

cryptographic primitives. 

We give the first completely non-interactive implementation of Oblivious 

Transfer. Our implementation is also secure against receivers with unlimited 
computational power. 

We propose the jirs~ implementation of non-interactive nature for Perfect 
Zero-Knowledge in the dual model of Brassard, Crbpeau, and Chaum for all 
NP-languages. 

1 Introduction 

The Public Key model, introduced by Difie and Hellman [DH], suggests an elegant 

and eficicnt way to eliminate the need for preliminary secure interaction which is 

essential in Private-Key Cryptography. Each party A publishes in a Public File his 

encryption key P/i and keeps secret his decryption key S,. Once the public file 

has been established, each user can reccivc any number of encrypted messages on a 

public channel from any other user that has access to the public file, without having 

to interact with them via exchanges of messages. Moreover, [DH] showed how to 
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produce unforgeable signatures for messages and how two users could establish a 
private key in this (non-interactive) model. 

The sccurity of thc protocols rests upon the very natural assumption that only 
limited computational resources are available to each user. The introduction of Com- 
plexity considerations in Cryptography caused much excitement and made possible 
applications never thought of beforc. Most notably, the Oblivious Transfer (OT) 
protocol by Rabin (see [HR]) and the Zero-Knowledge Proof System of [GMR] and 
[GMWl]. However, all proposed implemcntations of the OT require thc ability to 
intcract and thereforc cannot be used in the Public-Key model. Different non- 
interactive or bounded-interaction scenarios in which Zero-Knowledge was possible 
have been proposed ([BFM], [DMPl], [DMP2], [Dh/IP3], [BDMP], [I<], [ItMO]) but 
they all suffer of some practical drawbacks that limited their applicability. 

In this paper, we consider the Difie-Hellman model in which a short random string 
is shared beforehand by all users. Wc call this model Public-Key Public-Randomness 
Cryptosystem (PICPR Cryptosystcm). The sct up of the PKPR Cryptosystem does 
not require any preprocessing stage: Each uscr chooses and validates by hirnsclf 
his own public and private keys without any interaction. Moreover, no center or 
distributed fault-tolerant computation (in the sense of [GMW2, BGW, CCD, G B Y ,  B, 
RBI) is ever invoked to protcct against possible “cheating”. Even though interaction 
is ncver allowed, the PKPR Cryptosystem is very powerful as we show that important 
cryptographic primitives have simple non-interactive implementations in this model. 

Sumiiiary of the results. We give a completely non-interactive implcrnentation of 
Oblivious Transfer in the PIiPR model. This is the first non-intcractive implementa- 
tion of OT that does not requirc a trusted centcr or some distributed fault-tolerant 
computation. 
Our implementation is cssentially optimal. Indeed, a recent result of Ostrowsky and 
Yung [OY]  shows that it is not possible to achieve a non-interactive OT from scratch. 
We prove that a PICPR setting is enough to achieve non-intcractive OT. 
Our implementation is also sccure against receivcrs with unlirnitcd computing powcr. 
We givc thc first iniplementation of non-interactive nature for Pcrfect Zero-Knowledge 
(in the dual model of [BC] and [Ch]) for all NP-languagcs. Unlike previous imple- 
mcntations of non-interactivc Zero Knowledge with a common random string, our 
iniplcmcntation is vcry simple m d ,  most notably, allows any number of provers to 
be activc (this solves the open problem of many zndepcndent provers (sce [DMPl]), 
though in a slightly modified scenario). 

Our results are bascd on the well known and widcly used Quadratic Residuosity 
Assumption, and they demonstrate the added value of short Public Randomness in 
the context of Public key Cryptography. 



2 Preliminaries 

In this section we review some elcn~eiitary facts from number theory about quadratic 
residues and the probabilistic cncryption scheme based on the difficulty of deciding 
quadralic residuosity of [GM]. We follow thc notation of [BDMP]. 

For each natural number z, the set of positive integers less than z and relatively 
prime to z form a group undcr multil>lication modulo 2: denoted by 2:. I/ E 2: is a 
quadratic residue modulo z iff there is a w E .Z: such that w2 y mod z. If this is 
not the case we call y a quadratic nori residue modulo x. The quadratic residuosity 
predicate is defined as follows 

0 
1 otherwise. 

if  y is a quadratic residue modulo 2 and 

If yl, yz E Zz, then 

1. Q,(y,) = cz,(y*) = 0 ==+ Qr(l /1y2)  = 0. 

2. Qz(l/l) # Q&) ===+, Q&/lY*) = 1. 

For any fixed y E Z;, the elerncnts {yq irrod z I q is a quadratic residue modulo Z} 

constitute an equivalence class tlial has the same cardinality as the class of quadratic 
residues. 
The set ZT1 is the subset of Z; consisting of all elements with Jacobi symbol 41. 
The problem of deciding quadratic residuosity consists of evaluating the predicate Q,. 
This is easy when the modulus x is prime and appears to be hard when is composite. 
Indeed, no efficient algorithm is known for deciding quadratic residuosity modulo 
composite numbers whose factorization is not given. Actually, the fastest way known 
consists of first factoring z and then compute QJy). This fact has been first used in 
cryptography by Goldwasser and Micali [GoMi]. We use it in this paper with respect 
to the following spccial moduli. 

Blum integers. Let n E JV. The sct of Blum integers of size n, BL(n), is defined 
as follows: 2 E BL(n)  if and only if x = pq,  where p and q are primes of length n 
both 5 3 mod 4. These integers were introduced in Cryptography by M. Blum [Bl]. 
Blurn integers arc easy to generate. There exists an efficient algorithm that, on input 
l", outputs the factorization of a randomly selected z E BL(n).  This class of integers 
constitutes the hardest input for any  known elticient factoring algorithm. Since no 
efficicnt algorithm is known for deciding quadratic residuosity modulo Blum integers, 
this justifies the following 

Quadratic Residuosity Assumptioia (QRA): For each efficient poly-size family of cir- 
cuits {Cn},,E,v, aU positive constants d ,  and all sufficiently large n, 

~ r ( z  t B L ( ~ ) ;  y c z,*' : c,,(x,y) = QJ~))  < 1/2 + n-d.  

That is, no poly-sizc family of circuits can guess the valueof the quadratic residuosity 
predicate substantially Letter than by random guessing. This assumption has been 
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used for the first time by [GMJ and is now widely uscd in Cryptography. For instance, 
thc proof systcm of [BDMP] is bascd on it. 

2.1 Encryption schemes 

In a seminal papcr, Goldwasser and Micali [GM] introduced a Public-key encryption 
scheme whose security is based on the quadratic residuosity assumption. The public 
key of user B contains a random integer zy product of two primes of the same length 
and y B ,  a random quadratic non residuc modulo zg with Jacobi symbol +l. B’s 
secret key contains the prime factors of xB. To secretly send B an I-bit message 
M = r n l  - r n l ,  A just encrypts each bit rn; by computing c; = y,”lrT mod zBl where 
ri is a randomly chosen element of Z:,. It is easily seen that each c; corresponding 
to a 0 bit is a quadratic residue and each c, corresponding to a 1 bit is a quadratic 
non residue modulo zo. This observation gives a very simple decryption algorithm: 
it is enough lor B to compute the quadratic residuosity of the c,’s he has received. 

What makcs decryption possible i n  this scheme is the fact that yu is a quadratic non 
residue. In fact, should g D  be a quadratic residue, then, independently of the value 
of nz,, each c, is a quadratic residuc, and thcrefore B has absolutely no infomalion 
to recover the bits rn,’s. 
In what follows, we will dcnote by E(z,y,nz) the algorithm that returns a random 
encryption of nz computed using the pair (cc, y) and D ( p ,  q ,  c) the algorithms that 
returns the decryption of the ciphertext computed using x’s  prime factors p and q. 

3 Public-Key Public-Randomness Cryptosystems 

A Public-Iiey Public-Randomness (PIiPR) Cryptosystem consists of: 

( u )  a random string u, called the reference string; 

(6) a set of transactions 7; 

(c) a key-space KO, which is the set of keys associated with 0; (each key is a pair 
< Pli‘, S K  >, where P K  is the public k e y  and SK is the pr iva te  k e y ; )  

( d )  a probabilistic polynoinial time algorilhm I<ey-Gencrutor which returns ran- 
domly choseii elements iri f\lb; 

( c )  a poly-time algoritlirn I~~~- i /2I -P i~ l~ lzcf iey  outputting VALID/NONVALID; 

(j) for each T E 7 a send/rcccivc pair of probabilistic polynomial time algorithms 
(ST7 4.). 

Initialization of the PKPR cryptosystem. 
Each user U chooses by himself his own public and private keys by following the 
procedure: 
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Randondy select a key < P I < u , S I ~ u  > by running Iiey-generator on input u. 

PICu is madc public. The private key SKU is kept secret. 

Performing a transaction. 
Let T E 7 be a transaction (defined by a protocol program, e.g. oblivious transfer, 
secure message sending, Zero-Knowledge proof, etc.). User A,  having z as input, 
performs T with another user B ,  by following thc procedure: 

0 Vcrify B's public key P K B  by making sure that VerifiJPubficli'ey (c, PIC,) 
=VALID. 

Run the (possibly probabilistic) procedure S,(PK,,s) and send B the output 
Y-  

L3 does not reply upon rccciving y, he jus l  privately computes R,(y,PIC,, SK,). 
Notice that each transaction is non-intcractive. Also, for thc set-up of the Cryp- 

tosystem no center or  distributed fault-tolerant computation is required: each user 
chooses and validates by himself liis own public key. Any other user can check the 
correctncss of the construction of a public key, without any interaction. All is needed 
is the availability of a. common random reference string, whose length does not depend 
on the number of users, but only on the desired level of security. 

4 Oblivious Transfer 

Oblivious Transfer has  btyn introduced by Rabin (see [HR]), who first gave an imple- 
mcntation (for honest players) based on the difficulty of factoring. OT is a protocol 
for two parties: thc Ssiider who has a string s, and the Receiver. Each of the following 
two events is equally likely to occur at  the end of the protocol. 

0 The Receiver learns the string s. 

The Receiver does not get any information about s. 

Moreover, at the end of thc protocol, the Sender does not know whether the Receiver 
got s or not. Thc wide applicability of the OT was recognized since the early days 
of modern cryptography; the papcr by Blum [B2] is a an example of how OT can be 
used to implement several other protocols. 

A different flavor of OT, the I - o u t 3  Oblivious Tmnsjcr was later introduced by 
Even, Goldreich, and Lcmpel [EGL]. Mere, the sender has two strings so and s1. Each 
of the following two events is equally likely to occur at the end of a 1-out-2 Oblivious 
Transfer: 

0 The Receiver learns the string so, and does not get any information about s1. 

The Receiver learns the string s l ,  and docs not get any information about SO. 
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The sender has no information on wliich string the receiver gets. It is clear that 
1-out-2 Oblivious Transfcr can be used to implement an Oblivious Transfer. CrBpeau 
[Cr] showed how to achieve a 1-out-2 Oblivious Transfer by using Rabin’s OT, thus 
establishing their equivalence. The rest of this section is organized as follows. In 
Section 4.1 we formally define what we mean by Non-Interactive Oblivious Transfer 
(NIOT) in the PKPR model and in Section 4.2 we give an implementation of NIOT 
in the PI-CPR model. 

4.1 Non-Interactive Oblivious Transfer in the PKPR model 
A Non-Interactive Oblivious Transfer is a quadruple of algorithms (Key-Generator, 
Verify-PublicKey, Sender,  Receiver). Suppose the sender A has two strings (SO, s1) 
that he wants to obliviously transfer to the receiver B. Informally, the mcchanics 
of the transfer is the following. First, A verifics B’s public file PI{* by making 
sure that V e r i f i ~ _ P u b l i c l ~ e y ( ~ ~ ,  PIC,) =VALID. Then A computes and sends B the 
message nisg = S e n d e r ( P K , ,  so, sl). To retrieve one of the two strings, B computes 
Receiver(Pli,,  SK,, CT, m q ) ,  where Sli, is its own private key. 

Definition 1 A Non-Interactive Oblivious Transfer is a quadruple of algorithms 
(Key-Generator, Veri jgPublicI iey ,  Sender, Receiver), where Key-Generator and Sender 
are probabilistic polynomial time and \fe?$j-PubkcI<ey and Receiver are deterministic 
polynomial time, such that 

1. Meuningfullness: The receiver gets one of the two strings. 

2. Verifiability: The validity of the construction can be eficiently verified. 

3. 1 out-of 2: The recciver gets onIy one string uiad not even u bit of the other. 

4. Obliviousness: The sender cannol predict which string is going to be received. 

4.2 Implementing Oblivious Transfer in the PKPR Model 
We show how to implement a (non-interactive) Oblivious Transfer in the PKPR set- 
ting. At this aim, we  describe the Key-Generator algorithm and the VeriJjPulZicKey 
algorithm needed to initialize the public file and the Sender and Receiver algorithm 
to actually perform the OT. 
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Algorithm liey-Generator(a) 
Input: An n3-bit rcfercncc string (T = 010.. .OB,Z, where 1u;I = n for i = 1,2,. . . ,nZ. 

1. Select public and secret keys. 
Randomly select two n-bit primes p , q  z 3 mod 4 and set z = pq. 
Randomly select r E Z;, z E Zz' and computc y = -r2 mod z. 

2 .  Validote pubfic key. 
Set Vat= empty string. 
For i = 1, ..., n2 

if at E .Z:' tlieii 

if QZ(u1) = O thcik append fi, mod z to  Val.  
if Qz(ul)  = 1 then append -mod z to Val.  

clsc append ui to Val.  

3 .  Sct Pli = (2, y, P, V a l )  and Sli = ( p ,  q ) .  

Output:(Pli, Sli). 

Algorithm VeriJyJ)ublicICey(u, PIC) 
Input: 
1,2,. . . ,n2. A Public Key PI< = (z, y,z, V a l ) ,  where Val = v1 o . . . o vn2. 

An n3-bit reference string u = u1 o . . . o un2, where Icql = n for i = 

For i = 1, ..., n2 
if u, E 2:' then veriiy that either (T; = v: mod 2 or ya; = v! mod z. 

Output: If all checks are S U C C ~ S S ~ U ~ ~ Y  passed then output VALID else NONVALID. 

The validation of the public key is just a non-interactive Zero-Knowledge proof of the 
N P  statement "z is product of two primes and 9 is a quadratic non residue modulo 
2'. This proof is obtained in a direct manner, that is without making use of reduction 
to 3SAT and, most importantly, the same string u can bc uscd by any number of 
users to certify thcir own public ltcy entry. 

To provc that the algorithm Ve~i j2 /Pul l ic l<ey  satisfies the Verifiability require- 
mcnt, we have to show that if either I is not product of two primes or y is not a 
quadratic non residue then with very high probability the algorithm Verifi jPublicKey 
outputs NONVALID. As this is a non-interactive Zero-Knowledge proof, the proof of 
the verifiability can be obtained by using the techniques of [DMPl] and [BDMP]. 
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Algorithm Sender(PIi ,  so, s1 ) 
Input :  A public key PIi = (1, y, 2, V d ) .  Two strings SO,SI .  

Compute and send tlic pair nisg = ( E ( z ,  z ,  so), E ( z ,  zy mod 2, ~1)). 

Algorithm Receiuer(PIi, S I i ,  u, nzsg) 
Input :  A public key PI< = (z,y,z, I'd) dong with the corresponding secret key 
S K  = ( p , q ) .  An ??-bit reference string a = o1 o ... o un2, where la;] = n for 
i = 1 ,2 , .  . . ,u2.  A pair insg = ( a , ~ ) .  

1. If z is a quadratic resitluc then 

If D ( a , p , q )  = 0 then o u t p u t  D(p ,p ,q )  else STOP. 

2. If z is a quadratic non residue then 
If D ( P , p , q )  = 0 then output D(cr,p,q) else STOP. 

Theorem 1 Under  the QRA, the  above quadruple of algorithms (Key-Generator, 
VerifZl_PublicKey, Sendei; Receiver) is u Non- Interactive Oblivious Transfer. 

Proof. We shall prove that the quadruple (i<ey-Generutor, Verijg-PubZicKey, Sender, 
Receiver) meets the four requirerncnts of Definition 1. We have already seen that the 
Verifiability requirement is met. Thus, all is left to prove is that MeaningJuZlness, 1 
out-of 2, and Obliviousness are met too. 

Meaningjullness and 1 out-of 2. 
As y B  is a quadratic non residue and zB is product of two primes, for each z E 2:; 
exactly one betwccn z ,  and yozo mod z, is a quadratic lion residue. Therefore, B 
receives exactly one of su,sI. If B rcccivcs so (sl), then s1 (so) has been encrypted 
using a quadratic residuc modulo x a i d  a l l  B gets is a sequcnce of random quadratic 
residues modulo xD. 

Obliviousness. 
We prove that the existence of a pair of algorithms (ADV,, AD\<) such that for some 
c > 0, all suficiently large n, and all (sO,sl) 

Pr ( a  + { 0 , 1 } ~ ~  ; (PIC, SIL) - I~ey-Certerutor.(o); 
nisg - ADl/o(a, PI i ,  so, sl) 
: Receiver( S I i ,  P I i ,  0, msg) # STOP 
A ADV1(PK,u,s~,sl, nwq) = neeeiver(Sli,PI<,a,fizsg) ) 2 l /2  + n-' 

contradicts the QRX. We shall in fact eshibit an algorithm &(.,.) that decides 
quadratic residuosity that uses ADI/" and ADV, as subroutines. 
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Algorithm Q(z, z) .  

Input: z E B L ( n ) ,  z E &!’ 

1. Conslrucl Public key 
Set CY and Vul=cmpty string. 

Randomly select 

For i = l,.. . , n 2  
E ZG and set y = -rz mod 2. 

Randomly select an rr-bit integer sz. 
If s, 6 22’ append s, to o. 

else 
Toss a fair coin 
If IIEAD then append ys; mod 2 to u and ys, to Vd. 
If TAIL then append s: mod 2 to CY and si to VuL 

2. Set Pli = (z, y, z ,  I’d) and select two strings so, $1. 

3. Set (a,,!?) = ADVo(a,Pli,so,sl) 

4. If A D V ~ ( P ~ ; , a , s o , s l , ( n , P ) )  = so then Output(1) else Output(0). 

Let us  now cornpuk 

Pr(z  t B L ( ~ > ;  z - ~ $ 1  :C)(Z, z )  = Q+.(Z) )  =1/2 (PI.(Z + B L ( ~ ) ;  z + QNR, :Q(z, 2) = I>+ 
Pr(z  + B L ( n ) ; z  + QR,:Q(z,.)=O)) 

where QR, and Q N R x  are the classes of quadratic residues and quadratic non 

Now, wc observe that if z E QRNx then certainly Receiver(SIC, PI(,a, m ~ )  = So,  

residues modulo 5 ,  respectively. 

as so has been encrypted using z. Therefore 

Pr(z  t BL(n);  z t QNRZ‘ : Q(z,z) = 1) 2 1/2 + 7t-‘ 
The same reasoning can be done for the case in which z E QR,, thus yielding 

Pr(z  t BL(7r); z t 2,” : Q ( 5 , z )  = Q,(z)) 2 1/2 + n-‘ 
which contradicts the QItA. 

QED 

Dependent Oblivious Transfers. 
The same public key, Ph’, = (y,, z o ) ,  caii be used LO perform many OT’s. However, 
these OT’s will not be independent as the outcome of one of them determines the 
outcome of all of them. This is useful when we want that only one of two strings is 
received and no1 cvcn one single bit of the other is leaked. If j independent OT’s are 
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desired, it is enough to have j differcnt kD E Zzi in  B’s public key. The problem of 
obtaining j indepcndent OT’s using the same public key (whose size does not depend 
on j )  has its own interest and is currcntly open. In the final paper we give a partial 
solution to it hascd on k-wisc indepcndcncc. 

I - o u t 4  Oblivious Transfer. 
An immediate geiicralization of the I-out-3 OT is tlie 1-out-k OT. This is a protocol 
where A transfcr to B exactly one of k strings so,sl, ...,~k-~, in such a way that (1) 
B docs not get any information on the othcr k - 1 strings, and (2) A does not know 
which string B got. Our protocol can be easily modified to implement a 1-out-k OT. 
Uscr B randomly cliooscs a Blum intcger xu, and z i ,  ..., 2 i - I  E Z:’, such that exactly 
one z; is a quadratic non rcsiduc. Tlicn, B computes P K ,  = (x8: z ~ ,  ..., .z:-1, ~ u i , ) ,  
Sli, = (prime factors of xu), where \/do = (Non-Interactive Zero-Knowledge proof, 
in thc scnsc or [BFM], t h a t  PI<, has been correctly computed). To oblivious transfer 
one of SO, s1, ..., S L ~ ,  user A computcs and sends B a random permutation 7r of them, 
computes and sends B the encryptions E ( s ~ , z ~ , s , ( , ~ ) ,  i = 0, ..., k - 1. Notice that 
if A docs not permute the s, this is a protocol for 1-out-k disclosure in which the 
receiver “secretly” chooses 1 out of k secrets (defined in [BCR]). 

5 Non-Interactive Perfect Zero-Knowledge Argu- 
ment s 

Bit-Commitment  i n  tlie Public-Key Public-Randomness Model. 
A bit commitment protocol is a fundamental %-party cryptographic protocol. It allows 
one party A to hide (commit) onc bit 6 from the other party B and, later, to show 
(decommit) it to B. Even though B does not know which bit A has committed 
to, he is guarantced that the bit dccommitted is the bit A originally committed to. 
If B is poly-time, the bit commitment can be implemented as: A chooses a secure 
encryption schemc (in the sensc of [GM]) and commits to a bit by encrypting it. B, 
being poly-time, cannot decrypt and computc b. To decommit 6, A simply shows the 
random bit uscd for the encryption. 
Suppose that A is polynomial time and B has infinite computing power. We use the 
unconditionally secure blobs of [BC] for the cornmitrncnt of A to B. B publishes in 
his public file a random integcr product of two primes xB, s, a random quadratic 
rcsidue modulo xg, and a NIZK proof of correctness of the publication. To commit 
to a bit b, A pcrforms the proccdurc: ( I )  randomly select r E 2; ; (2) compute and 
send B w = sb  D rz  mod xL(. If A warits to decommit the bit 6 c k m i t t e d  by w ,  hc 
rcvcals r, that must bc the square of eithcr w or w / s ,  mod z,. It  is clear that  B ,  
by just  looking a t  w ,  cannot figure out whether A knows a root of w or W / S ,  mod 
5,. On the other hand, if  A knows a square root of both w and W / S ,  mod zB, then 
he can compute a square root of .bD as well. This implies that A can extract square 
roots of random squares arid thus lie is able to factor random composite numbers, in 
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contradiction with the Quadratic Residuosity Assumption. Notice that the same pair 
(zB,sB) can be uscd to pcrforin any numbcr of bit commitmcnts to B. Later, we will 
use this bit commitnient scheme to obtain Non-Interactive Perfect Zero-Knowledge 
Arguments for all NP languages. 

Zero-Knowledge P roof s  and Arguments.  
Goldwasser, Micah, and Rackoff [Gh/lR] introduced the notion of Interactive Zero- 
Knowledge Proof System. This allows an iririnitcly powerful (but not trusted) prover 
to convince a probabilistic polynomial time verifier that a certain theorem is true with- 
out revealing any other information. They also distinguished between Computational 
Zero-Knowledge and Perfect Zei-o-I<no~ufcdge. In a Computational Zero-Knowledge 
Proof all the inforniation about the theorcm and its proof is givcn, but it would take 
more than polynoinial time for the veiifier to extract it. On the other hand, a Perfect 
Zero-Knowledge Proof coiiveys no information at all and even an all powerful verifier 
could not extract any information froni it .  Perfect Zero-Knowledgeness is thus a de- 
sirable property in a proof as a prover can ilcver he sure of the computational power of 
the verifier he is talking to. Urlfortunatcly, although all NP languages have Computa- 
tional Zero-Knowlcdge proofs [GM Wl] ,  Perfect Zero-Knowledge for an NP-complete 
language would cause the Polynomial Time I-Iierarchy to collapse [F, BIIZ]. 

The concept of Irrlelncliue Zero-Iinowledge Argument has becn introduccd by 
Brassard and Cripcau [BC] and Chaum [Cli]. Hcre, we have a probabilistic polyno- 
mial time prover that wants to convince a (possibly unlimited computing powerful) 
verifier that a certain theorem is true in Zcro-Ihowledge. (The tcrm “Argument” is 
used instead of “Proof” as an all powerful prover could cheat the verifier.) As the 
verifier may have infinile computational power, in this setting all Zero-Knowledge Ar- 
guments must indced be Perfect Zero-Knowledge. Surprisingly, Brassard and CrCpeau 
[BC] were able to show that, in this scenario, all NP languages have Perfect Zero- 
Knowledge Argumcnts. 

Although, different non-interactive sccnarios in which Zero-Knowledge Proofs are 
possible have been proposed, all implementations of Pcrfcct Zero-Knowlcdge Argu- 
ments require interaction. A protocol requiring only constant numbcr of rounds is 
due to Brassard, CrCpeau, and Yung [BCY]. 

We show that Non-fnLeractzce Zcro-Iinowledge Arguments for all NP languages 
arc possible in  tlie PKPR scttirig, unclcr the Quadrhtic Rcsiduosity Assumption. 
Moreover, o u r  iniplcmcnt~~ion S l I p l > O 1 t 5  any polyiioniial ( in  tlic Icngth of the refcrence 
string 0) numbcr of distiiict piovers. Unliltc [BFM], [DMPl] ,  [BDMP], our proofs are 
directed to a single user, and thus arc not publicly verifiable. 

To prove that all NP languages havc Perfect Zero-Knowledge Arguments, it is 
enough to prove it for an NP-complete language. We choose Hamiltonian graphs as 
NP-complete language. The ingredients for our construction arc Blum’s interactive 
protocol [B3], an efficient technique of [I<MO], our implementations of OT and bit 
commitment schemes. More efficient protocols can be obtained by suitably using 
the intcractivc protocol of [IY] that simulatcs directly any givcn computation, or 
envelope-bascd piotocols as in  [KMO]. 
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Non-Interactive Perfect  Zero-Knowledge Arguments for Haiiiiltonian Graphs. 
We show how to give a Perfcct Zcro-Iinowlcdge Argument that a graph is Ilamil- 
tonian, in the Public-Key Public-Randomness Modcl. This in  turn yiclds Perfect 
Zero-Knowledgc Argument lor all NP languages. We first describe the content of the 
public file and then show how thc proof is actually performed. 

The public file. V randomly chooses two primes pv and qv of the same length, 
computes 2, = p v q v ,  thcn V chooses s, a random quadratic residue modulo x,, 
y,, a random quadratic non residue modulo z,, and a random r:, ..., z: E 2:;. 
V publishes thc public key PA', = ( z v , s V , y V ,  2: ,..-, z; ,  Val,), where Vd,, = 
(NIZK proof that PIC, has been correctly computed), and keeps secret the private 
key S K ,  = ( p v ,  q , ) .  The NIZIC proof is computed on input the reference string and 
certifies that x, is a Blum integer and s, (y,) is a quadratic residue (non residue) 
modulo 2,. 

Proving that G is Hairriltonian. Suppose that thc prover P wants to show that 
the graph G has an Hamiltonian path lo a (possibly unlimited computing powerful) 
verifier V. He performs the following program. 

F o r z = l ,  ..., i t  do 

1. h n d o n d y  select a permutation K, of the vertices of G and compute (?i = 

2. Using s,, commit bit by bit thc adjacency matrix of ez and the permuta- 

?r,(G), an isomorphic copy of G. 

tion T,. 

3. Lct a, be the concatenation of the decommitment keys of the adjacency 
matrix of 6: and the permutation K, and ,Bt the concatcnation of the decom- 
mitmeiit keys of the entry of the adjacency matrix of et that corresponds 
to edgcs in the Hamiltonian path. 
Oblivious transfer the pair (a,,P,) using y: and 2:. 

We now give an informal proof that the above protocol is a Perfect Zero-Knowledge 
Argument. A formal proof will bc  givcn in the final version. For each i, the verifier 
V gets either the adjacency matrix of 6': and the permutation K, (and thus can check 
that e, is indeed an isomorphic copy of C) or an hamiltonian path in e, (and thus can 
check that e, is Ilamiltonian). By tlic properties of the Oblivious Transfer, P does 
not know which one V is going to rcccivc. Tliercforc, if G is not Iiamiltonian, either 
2, is not isomorphic LO G (in  which case P is caught with probability 1/2) or is not 
Hamiltonian (again P is caught wiLh probability 1/2). 'Thus, undcr the QRA, there is 
only an exponentially low probability for a poly-time prover to convince averifier that 
a non-hamiltonian graph is haniillonian (soundness requirement of a proof system). 
The Perfcct Zero-Knowledgeness of the protocol follows from the properties of the 
commitment scheme and of the NIZK proof contdned in Val,. 
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6 Related works 

Non-Interactive Oblivious Transfer. Ilccently, Ostrowsky and Yung [OY] proved that 
it is not possible to  achieve a non-interactive OT from scratch. That is, two partics 
that have ncvcr met beforehand need aI, least 2 rounds to perform an OT. It is thcn 
natural to ask: What additional resourccs are requircd for a “non-interactive OT” to 
be possible? We prove that a PIiPR setting is enough to achieve non-interactive OT. 
Adopting a diffcrent perspective, we prove that 2 rounds are enough for an OT from 
A to B, if a random string is aviiilnblc. The rounds are (1) B selects and sends A his 
public kcy, and (2) A performs a non-interactive O T  using B’s public key. Thus, our 
implementation is essentially optimal in view of [OY]. 

Non-interactive Oblivious Transfer with a Center. Bcllare and Micali [BM] intro- 
duced the problem of achieving non-interactivc OT i n  a Public-key scenario where a 
trusted ccnter is 011 duty aiid proposed an iniplementation based on a complexity as- 
sumption relatcd to the Discrcte Logarithm problem (the Diffie-Hellman assumption 
[DII]). In  their model, the trustcd ccntcr publishes a ccntral public kcy and each user 
that wants to put his kcy on thc public file has to validate it by interacting with the 
ccnter. A ccnter may be replaced by a collcctive distributed fault-tolerant coniputa- 
tion if the majority of users is “honebt”. Wc show that a short random string can 
rcplace the trusted centcr (or a distributed fault-tolcrant computation). Therefore, 
in our model, there is no need for interaction to validate the public file: each user can 
prove the correctness of the choice of his own public key by himself. 

Non-interactive Zero-Knowleclge. Bluni, Feldman, and Micali [BFM] (with improve- 
ments in [DMPI] and [BDMP]) wcrc the first to propose a non-interactive scenario 
in which Zero-I<nowledgc: (in the scnsc of [GMR]) proofs of membership for all NP- 
languages wcre possible. A rar~do111 short, rcfcrcnce s t r~ng  is rcquircd for the proof- 
system. Their implcmentations can only support a liniitcd number of provers. Re- 
cently, De Santis and Yung [DY] and Fei’eigc, Lapidot, and Shamir [FLS] proved that 
many provers can share the same random string. All thesc implcmentations are 
quitc involved. Other models in which non-interactive (or boundcd-interaction) Zero- 
Knowledge is achievable have bccn proposed. [DMP2] proved that after a prepro- 
cessing stage, it is possible to give a NIZK proof of any short NP-theorem. This 
proof-systcm is based on a very general assumption (existcnce of onc-way functions) 
but has limited applicability. [I<] sl~owcd how to achieve Zero-Knowledge proofs using 
only OT’s. [KMO] gave protocols more cficicnt than [I<], and furthermore showed 
that it is possible to movc all the nccded OT’s in a short pre-processing stage. All 
these protocols arc restrictcd to two parties. 

Non-interactive Zero-Knowledge with a Center. Bellare and Micali [BM] showed how 
to implement NIZX proofs in a Public-key cryptosystem in which a center is available. 
In their implementation, the center I i a s  to compute and publish a central public key 
(which is common to all users). Thcn, each user chooscs by himself its own public 
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key, and must validate it by proving the correctness of its computation by shortly 
interacting with the center. Thcir implementation is based on a complexity assump- 
tion related to the Discrete Logarithm problem (thc Diffie-Nellman assumption [DH]), 
whereas OUT implementation is based on the Quadratic Residuosity Assumption. 

The Public-key Public-Randomness modcl shows how to dispose of an active center 
by having just a short random string known beforehand to all users. To validate 
his choice of the public key, each uscr computes by tiimsclf and publishes a proof of 
correctness in his public file. 

Perfect Zero-Knowledge Arguments. Brassard and Crlpeau [BC] and Chaurn [Ch] 
consider a model where the provcr is poly-bounded and the verifier has unlimited 
computational power. A11 NP-languages have Perfcct Zero-Knowledge Arguments 
(that is Zero-Knowledge proofs in the BCC model). Actually Brassard, Crkpeau, 
and Yung [BCY] proved that there are perfect Zero-Knowledge arguments that  use 
a constant nuinber of rounds (only 6) Tor any NP-language. In this paper, we prove 
that all NP-languages have Non-Interactive Perfect Zcro-Knowledge Arguments in the 
PKPR setting. Our is the first impleinentation of non-interactivc nature for Perfect 
Zero-Knowledge Argunien ts. 

Note added in proof 
Bert van Boer [Bo] has independently proved that it is possible to have a non- 
interactive Oblivious Transfer after an intcractive preproccssing stage. His protocol 
relies on the Quadratic Residuosity Assumption. Using the techniques we discussed 
in this paper, his implenientation can be adapted to work also in the PICPR setting. 
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