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The Public Key model, introduced by Diffie and Hellman [DH], suggests an elegant
and efficient way to eliminate the need for preliminary secure interaction which is
essential in Private-Key Cryptography. Each party A publishes in a Public File his
encryption key P, and keeps secrct his decryption key Sg4.
has been established, each user can reccive any number of encrypted messages on a
public channel from any other user that has access to the public file, without having
to interact with them via exchanges of messages. Moreover, [DH] showed how to
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produce unforgeable signatures for messages and how two uscrs could establish a
private key in this (non-interactive) model.

The security of the protocols rests upon the very natural assumption that only
limited computational resources are available to each user. The introduction of Com-
plexity considerations in Cryptography caused much excitement and made possible
applications never thought of before. Most notably, the Oblivious Transfer (OT)
protocol by Rabin (see [HR]) and the Zero-Knowledge Proof System of [GMR] and
[GMW1]. However, all proposed implementations of the OT require the ability to
interact and therefore cannot be used in the Public-Key model. Different non-
interactive or bounded-interaction scenarios in which Zero-Knowledge was possible
have been proposed ({[BFM], [DMP1], [DMP2], [DMP3}, [BDMP], [K], [KMO]) but
they all suffer of some practical drawbacks that limited their applicability.

In this paper, we consider the Diffie-Hellman model in which a short random string
is shared beforehand by all users. We call this model Public-Key Public-Randomness
Cryptosystem (PKPR Cryptosystem). The set up of the PKPR Cryptosystem does
not require any preprocessing stage: Each user chooses and validates by himself
his own public and private keys without any interaction. Moreover, no center or
distributed fault-tolerant computation (in the sense of [GMW2, BGW, CCD, GHY, B,
RBJ) is ever invoked to protect against possible “cheating”. Even though interaction
is never allowed, the PKPR Cryptosystem is very powerful as we show that important
cryptographic primitives have simple non-interactive implementations in this model.

Summary of the results. We give a completely non-interactive implementation of
Oblivious Transfer in the PKPR model. This is the first non-interactive implementa-
tion of OT that does not require a trusted center or some distributed fault-tolerant
computation.

Our implementation is essentially optimal. Indeed, a recent result of Ostrowsky and
Yung [OY] shows that it is not possible to achieve a non-interactive OT from scratch.
We prove that a PKPR setting is enough to achieve non-interactive OT.

Our implementation is also secure against receivers with unlimited computing power.
We give the first implementation of non-interactive nature for Perfect Zero-Knowledge
(in the dual model of [BC] and [Ch]) for all NP-languages. Unlike previous imple-
mentations of non-interactive Zero Knowledge with a common random string, our
implementation is very simple and, most notably, allows any number of provers to
be active (this solves the open problem of many independent provers (sce [DMP1]),
though in a slightly modified scenario).

Our results are based on the well known and widely used Quadratic Residuosity
Assumption, and they demonstrate the added value of short Public Randomness in
the context of Public key Cryptography.
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2 Preliminaries

In this section we review some elementary facts from number theory about quadratic
residues and the probabilistic encryption scheme based on the difficulty of deciding
quadratic residuosity of [GM]. We follow the notation of [BDMP].

For each natural number z, the set of positive integers less than z and relatively
prime to z form a group under multiplication modulo = denoted by Z. y € Z] is a
quadratic residuc modulo z iff there is 2 w € Z] such that w? = y mod z. If this is
not the case we call y a quadratic non residue modulo z. The quadratic residuosily
predicate 1s defined as follows

Qu(y) = { 0 if y is a quadratic residue modulo z and
R 1 otherwise.

If y1,92 € Z7, then
L Qu(yn) = Qu(y2) = 0 = Quy11p) = 0.

2. Qi(n1) # Qu(y2) = Qulmiyn) = L.

For any fixed y € Z, the elements {yq mod z | q is a quadratic residue modulo z}
constitute an equivalence class that has the same cardinality as the class of quadratic
residues.

The set ZF! is the subset of Z: consisting of all elements with Jacobi symbol +1.
The problem of deciding quadratic residuosity consists of evaluating the predicate Q..
This is easy when the modulus z is prime and appears to be hard when is composite.
Indeed, no efficient algorithm is known for deciding quadratic residuosity modulo
composite numbers whose factorization is not given. Actually, the fastest way known
consists of first factoring z and then compute Q.(y). This fact has been first used in
cryptography by Goldwasser and Micali [GoMi]. We use it in this paper with respect
to the following special moduli.

Blum integers. Let n € V. The set of Blum integers of size n, BL(n), is defined
as follows: z € BL(n) if and only if ¢ = pq, where p and ¢ are primes of length n
both =3 mod 4. These integers were introduced in Cryptography by M. Blum [B1].
Blum integers arec easy to generate. There exists an efficient algorithm that, on input
1", outputs the factorization of a randomly selected z € BL(n). This class of integers
constitutes the hardest input for any known elficient factoring algorithm. Since no
efficient algorithm is known for deciding quadratic residuosity modulo Blum integers,
this justifies the following

Quadratic Residuosity Assumption (QRA): For each efficient poly-size family of cir-
cuits {Cr}nen, all positive constants d, and all sufficiently large n,

Pr(z — BL(n); y « 2}': Culw,y) = Q) < 1/2+n7%

That is, no poly-size family of circuits can guess the value of the quadratic residuosity
predicate substantially better than by random gucssing. This assumption has been
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used for the first time by [GM] and is now widely used in Cryptography. For instance,
the proof system of [BDMP] is based on it.

2.1 Encryption schemes

In a seminal paper, Goldwasser and Micali [GM] introduced a Public-key encryption
scheme whose security is based on the quadratic residuosity assumption. The public
key of user B contains a random integer z, product of two primes of the same length
and y,, a random quadratic non residue modulo z, with Jacobi symbol +1. B’s
secret key contains the prime factors of z,. To secretly send B an [-bit message
M =my---my, Ajust encrypts each bit m; by computing ¢; = y7ir} mod z,, where
r; is a randomly chosen element of Z;B. It is easily seen that each c; corresponding
to a 0 bit is a quadratic residue and each ¢; corresponding to a 1 bit is a quadratic
non residue modulo z,. This observation gives a very simple decryption algorithm:
it is enough for B to compute the quadratic residuosity of the ¢;’s he has received.

What makes decryption possible in this scheme is the fact that y, is a quadratic non
residue. In fact, should y, be a quadratic residue, then, independently of the value
of my, each ¢; is a quadratic residue, and therefore B has absolutely no information
to recover the bits m;’s.

In what follows, we will denote by E(zx,y,m) the algorithm that returns a random
encryption of m computed using the pair (z,y) and D(p,q,c) the algorithms that
returns the decryption of the ciphertext computed using z’s prime factors p and q.

3 Public-Key Public-Randomness Cryptosystems

A Public-Key Public-Randomness (PKPR) Cryptosystem consists of:
(¢) arandom string o, called the reference string;
(6) a set of transactions T;

(c) a key-space [,, which is the set of keys associated with o; (each key is a pair
< PK,SK >, where PK is the public key and SK is the private key;)

{d) a probabilistic polynomial time algorithm Key.Generator which returns ran-
domly chosen elements in K,

(e) a poly-time algorithm Verify_PublicKey outputting VALID/NONVALID;
{(f) for cach T € T a send/receive pair of probabilistic polynomial time algorithms

(ST’ RT)

Initialization of the PKPR cryptosystem.
Each user U chooses by himself his own public and private keys by following the
procedure:
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e Randomly select a key < PK,, 5K, > by running Key-Generator on input o.

e PI(, is made public. The private key SK, is kept sccret.

Performing a transaction.

Let T € T be a transaction (defined by a protocol program, e.g. oblivious transfer,
secure message sending, Zero-Knowledge proof, ctc.). User A, having z as input,
performs T with another user B, by following the procedure:

¢ Verify B’s public key PK, by making sure that Verify_PublicKey (o, PKy)
=VALID.

e Run the (possibly probabilistic) procedure S.(PK,,z) and send B the output
Y.

B docs not reply upon recciving y, he just privately computes R, (y, PK,,SK,).

Notice that each transaction is non-intcractive. Also, for the set-up of the Cryp-
tosystem no center or distributed fault-tolerant computation is required: each user
chooses and validates by himself his own public key. Any other user can check the
correctness of the construction of a public key, without any interaction. All is needed
is the availability of a common random reference string, whose length does not depend
on the number of users, but only on the desired level of security.

4 Oblivious Transfer

Oblivious Transfer has been introduced by Rabin (see [HR]), who first gave an imple-
mentation (for honest players) based on the difficulty of factoring. OT is a protocol
for two parties: the Sender who has a string s, and the Receiver. Each of the following
two events is equally likely to occur at the end of the protocol.

e The Recciver lecarns Lhe string s.
o The Receiver does not get any information about s.

Moreover, at the end of the protocol, the Sender does not know whether the Receiver
got s or not. The wide applicability of the OT was recognized since the early days
ol modern cryptography; the paper by Blum [B2] is a an example of how OT can be
used to implement several other protocols.

A different flavor of OT, the I-out-2 Oblivious Transfer was later introduced by
Even, Goldreich, and Lempel [EGL]. Here, the sender has two strings so and s;. Each
of the following two events is equally likely to occur at the end of a 1-out-2 Oblivious
Transfer:

o The Recciver lcarns the string so, and does not get any information about s;.

o The Receiver Icarns the string s;, and does not get any information about so.

h
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The sender has no information on which string the receiver gets. It is clear that
1-out-2 Oblivious Transfer can be used to implement an Oblivious Transfer. Crépeau
[Cr] showed how to achieve a 1-out-2 Oblivious Transfer by using Rabin’s OT, thus
establishing their equivalence. The rest of this section is organized as follows. In
Section 4.1 we formally define what we mean by Non-Interactive Oblivious Transfer
(NIOT) in the PKPR model and in Section 4.2 we give an implementation of NIOT
in the PKPR model.

4.1 Non-Interactive Oblivious Transfer in the PKPR model

A Non-Interactive Oblivious Transfer is a quadruple of algorithms (Key-Generator,
Verify.PublicKey, Sender, Receiver). Suppose the sender A has two strings (sg, s1)
that he wants to obliviously transfer to the receiver B. Informally, the mechanics
of the transfer is the following. First, A verifics B’s public file PK, by making
sure that Verify_PublicKey(o, PK,_) =VALID. Then A computes and sends B the
message msg = Sender(P K ,, s, 51). To retrieve one of the two strings, B computes
Receiver(PIK,,,SK,, 0, msg), where SK is its own private key.

Definition 1 A Non-Interactive Oblivious Transfer is a quadruple of algorithms
(Key-Generator, Verify_PublicKey, Sender, Receiver), where Key-Generatorand Sender
are probabilistic polynomial time and Verify.PublicKey and Receiverare deterministic
polynomial time, such that

1. Meaningfullness: The receiver gets one of the two strings.
2. Verifiability: The validity of the construction can be efficiently verified.
3. 1 out-of 2: The recciver gets only one string and not even a bit of the olher.

4. Obliviousness: The sender cannol predict which string is going lo be recetved.

4.2 Implementing Oblivious Transfer in the PKPR Model

We show how to implement a (non-interactive) Oblivious Transfer in the PKPR set-
ting. At this aim, we describe the Key-Geunerator algorithm and the Verify PublicKey
algorithm needed to initialize the public file and the Sender and Receiver algorithm
to actually perform the QT.
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Algorithm Key_Generator(o)
Input: An#n3-bit referencestring o = 010...00,2, where |o} = nfori = 1,2,...,n%
1. Select public and sccret keys.
Randomly select two n-bit primes p, ¢ = 3 mod 4 and set z = Pq.
Randomly select r € ZZ, z € Z}' and compute y = —r? mod z.
2. Validate public key.
Set Val= empty string.
Fori=1,...,0°
ifo; € Z;H then
if Qz(0;) = 0 then append /o, mod z to Val.
if @;(o;) = 1 then append ,/y0; mod z to Val.
elsc append o; to Val.

3. Set PK = (z,y,2,Val) and SK = (p,q)-
Output:(PK,SK).

Algorithm Verify_PublicKey(o, PK)

Input: An n3-bit reference string ¢ = o, 0...0 0,2, where |o;| = n for i =
1,2,...,n% A Public Key PK = (z,y,2z,Val), where Val = vy 0...0v,.

Fori=1,...,n?

if ¢ € Z}! then verify that either o; = v? mod z or yo; = v} mod z.

Output: If all checks are successfully passed then output VALID else NONVALID.

The validation of the public key is just a non-interactive Zero- Knowledge proof of the
NP statement “z is product of two primes and y is a quadratic non residue modulo
z”. This proof is obtained in a direct manner, that is without making use of reduction
to 3SAT and, most importantly, the same string ¢ can be used by any number of
users to certify their own public key entry.

To prove that the algorithm Verify_PublicKey satisfies the Verifiability require-
ment, we have to show that if either z is not product of two primes or y is not a
quadratic non residue then with very high probability the algorithm Verify PublicKey
outputs NONVALID. As this is a non-interactive Zero-Knowledge proof, the proof of
the verifiability can be obtained by using the techniques of [DMP1] and {BDMP].
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Algorithm Sender(P K, sg,51)
Input: A public key PR = (z,y,z,Val). Two strings sg, 5.

Compute and send the pair msg = (£(z, z, so), E(z,zy mod z, s1)).

Algorithm Receiver(PK,SK, o, msg)
Input: A public key PK = (z,, z, Vul) along with the corresponding secret key
SK = (p,q). An n3-bit reference string ¢ = ¢ o ... 0 0,2, where |o;| = n for
i=1,2,...,n% A pair msg = (e, f).

7127

1. If z is a quadratic residue then

If D(a,p,q) = 0 then output D(8,p,q) else STOP.

2. If z is a quadratic non residue then
If D(B,p,q) = 0 then output D(a,p,q) else STOP.

Theorem 1 Under the QRA, the above quadruple of algorithms (Key-Generator,
Verify_PublicKey, Sender, Rcceiver) is a Non-Interactive Oblivious Transfer.

Proof. Weshall prove that the quadruple (Key.Generator, Verify-PublicKey, Sender,
Receiver) meets the four requirements of Definition 1. We have already seen that the
Verifiability requirement is met. Thus, all is left to prove is that Meaningfullness, 1
out-of 2, and Obliviousness are met too.

Meaningfullness and 1 out-of 2.

As y, is a quadratic non residue and z, is product of two primes, for each z € Z;*';
exactly one between =, and y,z, mod z, is a quadratic non residue. Thercfore, B
receives exactly one of sy, s;. Il B receives so (s1), then s; (sg) has been encrypted
using a quadratic residuc modulo 2 and all B gets is a sequence of random quadratic
residues modulo ;.

Obliviousness.
We prove that the existence of a pair of algorithms (ADVy, ADV}) such that for some
c > 0, all sufficiently large n, and all (s, s,)

Pr(oc — {0,1}*; (PK,S5K)— Key_Generator(c);
msg — ADVy(o, PR, sq, 51)
: Receiver(SK, PK,0,msg) # STOP
ANADV(PK,0,50,51,msg) = Recetver(SK,PK,o,msg) } > 1/24 n™¢

contradicts the QRA. We shall in fact exhibit an algorithm Q(-,-) that decides
quadratic residuosity that uses ADVy and ADV; as subroutines.
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Algorithm Q(z, z).
Input: z € BL(n), z€ Z}'

1. Consiruct Public key
Set ¢ and Val=cmpty string.
Randomly select » € Z2 and set y = —r* mod 2.
Fori=1,...,n%
Randomly select an n-bit integer s;.
Il s; ¢ Z}! append s; to 0.
clse

Toss a fair cain
1If HEAD then append ys? mod z to o and ys; to Val.

If TAIL then append s? mod z to ¢ and s; to Val.
2. Set PK = (z,y, z, Val) and select two strings sg, s1.
3. Set (a, ) = ADVy(o, PI\", S0, 51)
4. f ADVi(PK,0,s0,s1,(a,3)) = so then Output(1) else Output(0).

Let us now compulce

Pr(z «— BL(n);z — ZF1:Q(z,2)=Q.(2)) =1/2(Pr(z «~ BL(n);z — QN R;:Q(z,2) =1)+
Pr(z — BL(n);z — QR;:Q(z,2)=0))

where QR, and QNR, arc the classes of quadratic residues and quadratic non
residues modulo z, respectively.
Now, we observe that if z € QRN, then certainly Receiver(SK, PK,o,msg) = so,
as sg has been encrypted using z. Therefore

Pr{z — BL(n);z — QNR!' : Q(z,z) =1) 2 /24"
The same reasoning can be done for the case in which z € QR,, thus yielding
Pr(z « BL(n)iz — Z': Q(z,2) = Qul2)) 2 1/2 4+ 0™

which contradicts the QRA.
QED

Dependent Oblivious Transfers.

The same public key, PR, = (y5,2,), cau be used to perform many OT’s. However,
these OT’s will not be independent as the outcome of one of them determines the
outcome of all of them. This is useful when we want that only one of two strings is
received and nol cven one single bit of the other is leaked. If j independent OT’s are
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desired, it is enough to have j different z, € Z,‘,"; in B’s public key. The problem of
obtaining j indepcndent OT’s using the same public key (whose size does not depend
on j) has its own interest and is currently open. In the final paper we give a partial
solution to it based on k-wisc independence.

l-out-k Oblivious Transfer. '

An immediate gencralization of the 1-out-2 OT is the 1-out-& OT. This is a protocol
where A transfer to B exactly one of k strings so, s1, ..., Sk_1, in such a way that (1)
B does not get any information on the other & — 1 strings, and (2) A does not know
which string B got. Our protocol can be easily modified to implement a 1-out-k OT.
User B randomly chooses a Blum integer 2, and 20,...,2571 € Z;__*‘;, such that exactly
one z; is a quadratic non residuc. Then, B computes PK, = (:L‘B,ZOB, vy 22-1, Val,),
SK, = (prime factors of z ), where Val, = (Non-Interactive Zero-Knowledge proof,
in the sense of [BFFM], that PA,, has been correctly computed). To oblivious transfer
one of sg, 81, ..., 8¢_1, user A computes and sends B a random permutation 7 of them,
computes and sends B the encryptions E’(.rmz;,s,r(,-)), t=0,..,k—1. Notice that
if A does not permute the s; this is a protocol for 1-out-k disclosure in which the
receiver “secretly” chooses 1 out of & secrets (defined in [BCR}).

5 Non-Interactive Perfect Zero-Knowledge Argu-
ments

Bit-Commitment in the Public-Key Public-Randomness Model.

A bit commitment protocol is a fundamental 2-party cryptographic protocol. It allows
one party A to hide (commit) onc bit b from the other party B and, later, to show
(decommit) it to B. Even though B does not know which bit A has committed
to, he is guaranteed that the bit decommitted is the bit A originally committed to.
If B is poly-time, the bit commitment can be implemented as: A chooses a secure
encryption scheme (in the sensc of [GM]) and commits to a bit by encrypting it. B,
being poly-time, cannot decrypt and compute b. To decommit b, A simply shows the
random bit used for the encryption.

Suppose that A is polynomial time and B has infinite computing power. We use the
unconditionally secure blobs of [BC] for the commitment of A to B. B publishes in
his public file a random integer product of two primes z,, s, a random quadratic
residue modulo z,, and a NIZK proof of correctness of the publication. To commit
to a bit b, A performs the procedure: (1) randomly select r € Z7 ; (2) compute and
send B w = s r? mod z,. Il A wants to decommit the bit b committed by w, he
reveals r, that must be the squarc of either w or wfs, mod z,. It is clear that B,
by just looking at w, cannot figure out whether A knows a root of w or w/s, mod
T,. On the other hand, il A knows a square root of both w and w/s, mod z, then
he can compute a square root of s, as well. This implies that A can extract square
roots of random squares and thus he is able to factor random composite numbers, in
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contradiction with the Quadratic Residuosity Assumption. Notice that the same pair
(z5,85) can be used to perform any number of bit commitments to B. Later, we will
use this bit commitment scheme to obtain Non-Interactive Perfect Zero-Knowledge
Arguments for all NP languages.

Zero-Knowledge Proofs and Arguments.

Goldwasser, Micali, and Rackoff [GMR] introduced the notion of Interactive Zero-
Knowledge Proof System. This allows an infinitely powerful (but not trusted) prover
to convince a probabilistic polynomial time verifier that a certain theorem is true with-
out revealing any other information. They also distinguished between Computational
Zero-Knowledge and Perfect Zero-Knowledge. In a Computational Zero-Knowledge
Proof all the information about the theorem and its proof is given, but it would take
more than polynomial time for the verifier to extract it. On the other hand, a Perfect
Zero-Knowledge Proof conveys no information at all and even an all powerful verifier
could not extract any information from it. Perfect Zero-Knowledgeness is thus a de-
sirable property in a proof as a prover can never be sure of the computational power of
the verifier he is talking to. Unfortunately, although all NP languages have Computa-
tional Zero-Knowledge proofs [GMW1], Perfect Zero-Knowledge for an NP-complete
language would cause the Polynomial Time Hierarchy to collapse [FF, BHZ].

The concept of Interactive Zero-Knowledge Argument has been introduced by
Brassard and Crépeau [BC| and Chaum [Ch]. Here, we have a probabilistic polyno-
mial time prover that wants to convince a (possibly unlimited computing powerful)
verifier that a certain theorem is true in Zero-Knowledge. (The term “Argument” is
used instead of “Proof” as an all powerful prover could cheat the verifier.) As the
verifier may have infinite computational power, in this setting all Zero-Knowledge Ar-
guments must indeed be Perfect Zero-Knowledge. Surprisingly, Brassard and Crépeau
[BC] were able to show that, in this scenario, all NP languages have Perfect Zero-
Knowledge Arguments.

Although, different non-interactive scenarios in which Zero-Knowledge Proofs are
possible have been proposed, all implementations of Perfect Zero-Knowledge Argu-
ments require interaction. A protocol requiring only constant number of rounds is
due to Brassard, Crépeau, and Yung [BCY].

We show that Non-Inleractive Zero-Knowledge Arguments for all NP languages
arc possible in the PKPR sctting, under the Quadratic Residuosity Assumption.
Moreover, our implenientation supports any polynomial (in the length of the reference
string o) number of distinct provers. Unlike [BFM], [DMP1], [BDMP], our prools are
directed to a single user, and thus are not publicly verifiable.

To prove that all NP languages have Perfect Zero-Knowledge Arguments, it is
enough to prove it for an NP-complete language. We choose Hamiltonian graphs as
NP-complete language. The ingredients for our construction are Blum’s interactive
protocol [B3], an efficient technique of [KMQ], our implementations of OT and bit
commitment schemes. More efficient prolocols can be obtained by suitably using
the interactive protocol of [IY] that simulates directly any given computation, or
envelope-bascd protocols as in [KMO].
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Non-Interactive Perfect Zero-Knowledge Arguments for Hamiltonian Graphs.
We show how to give a Perfect Zero-Knowledge Argument that a graph is Hamil-
tonian, in the Public-Key Public-Randomness Modcl. This in turn yields Perfect
Zero-Knowledge Argument for all NP languages. We first describe the content of the
public file and then show how the proof is actually performed.

The public file. V randomly chooses two primes p, and g, of the same length,
computes z, = p,q,, then V chooses s, a random quadratic residue modulo z,,

Y., a random quadratic non residue modulo z,, and a random z!,...,2" € Z7FL.
\'4 v

B
V publishes the public key PK, = (z,,s,,y,, 2,...,20, Val,), where Val, =
(NIZK proof that P/, has been correctly computed), and keeps secret the private
key SK, = (p,, ¢, ). The NIZK proof is computed on input the reference string and
certifies that x,, is a Blum integer and s, (y,) is a quadratic residue (non residue)

modulo z,,.

Proving that G is Hamiltonian. Suppose that the prover P wants to show that
the graph G has an Hamiltonian path to a (possibly unlimited computing powerful)
verifier V. He performs the following program.

Fori:=1,...,ndo

1. Randomly select a permutation ; of the vertices of G and compute G =
7:(G), an isomorphic copy of G.

2. Using s,, commit bit by bit the adjacency matrix of G; and the permuta-
tion T

3. Let o; be the concatenation of the decommitment keys of the adjacency
matrix of G; and the permutation m; and 5; the concatenation of the decom-
mitment keys of the entry of the adjacency matrix of G; that corresponds
to edges in the Hamiltonian path.

Oblivious transfer the pair (a;, ;) using y';, and zf,.

We now give an informal proof that the above protocol is a Perfect Zero-Knowledge
Argument. A formal proof will be given in the final version. For each i, the verifier
14 gets either the adjacency matrix of G; and the permutation ; (and thus can check
that G; is indeed an isomorphic copy of G) or an hamiltonian path in G; (and thus can
check that G, is Hamiltonian). By the properties of the Oblivious Transfer, P does
not know which one V is going to receive. Therefore, if G is not Hamiltonian, either
G is not isomorphic to G (in which case P is caught with probability 1/2) or G is not
Hamiltonian (again P is caught with probability 1/2). Thus, under the QRA, there is
only an exponentially low probability for a poly-time prover to convince a verifier that
a non-hamiltonian graph is hamiltonian (soundness requirement of a proof system).
The Perfect Zero-Knowledgeness of the protocol {ollows from the properties of the
commitment scheme and of the NIZK proof contained in Val,.
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6 Related works

Non-Interactive Oblivious Transfer. Recently, Ostrowsky and Yung [OY] proved that
it is not possible to achieve a non-interactive OT from scratch. That is, two parties
that have never met beforehand need al least 2 rounds to perform an OT. It is then
natural to ask: What additional resources are required for a “non-interactive OT” to
be possible? We prove that a PKPR setling is enough to achieve non-interactive OT.
Adopting a different perspective, we prove that 2 rounds are enough for an OT from
A to B, if a random string is available. The rounds are (1) B selects and sends A his
public key, and (2) A performs a non-interactive Ol using B’s public key. Thus, our
implementation is essentially optimal in view of [0Y].

Non-interactive Oblivious Transfer with a Center. Bellare and Micali {[BM] intro-
duced the problem of achieving non-interactive OT in a Public-key scenario where a
trusted center is on duty and proposed an implementation based on a complexity as-
sumption related to the Discrete Logarithm problem (the Diffie-Hellman assumption
[DH]). In their model, the trusted center publishes a central public key and each user
that wants to put his key on the public file has to validate it by interacting with the
center. A center may be replaced by a collective distributed fault-tolerant computa-
tion if the majority of users is “honest”. We show that a short random string can
replace the trusted center (or a distributed fault-tolerant computation). Therefore,
in our model, there is no need for interaction to validate the public file: each user can
prove the correctness of the choice of his own public key by himself.

Non-interactive Zero-Knowledge. Blum, Feldman, and Micali [BFM] (with improve-
ments in [DMP1] and [BDMP]) were the first to propose a non-interactive scenario
in which Zero-Knowledge (in the scnse of [GMR]) proofs of membership for all NP-
languages were possible. A random short reference string is required for the proof-
system. Their implementations can only support a limited number of provers. Re-
cently, De Santis and Yung [DY] and Feige, Lapidot, and Shamir [FLS] proved that
many provers can share the same random string. All these implcmentations are
quite involved. Other models in which non-interactive (or bounded-interaction) Zero-
Knowledge is achievable have been proposed. [DMP2] proved that after a prepro-
cessing stage, it is possible to give a NIZK prool of any short NP-theorem. This
proof-system is based on a very general assumption (existence of one-way functions)
but has limited applicability. {K] showed how to achieve Zero-Knowledge proofs using
only OT’. [KMO] gave protocols more cfficient than [K], and furthermore showed
that it is possible to move all the needed OT’s in a short pre-processing stage. All
these protocols arc restricted to two partics.

Non-interactive Zero-Knowledge with a Center. Bellare and Micali [BM] showed how
to implement NIZK proofs in a Public-key cryptosystem in which a center is available.
In their implementation, the center has to compute and publish a central public key
(which is common to all users). Then, cach user chooses by himself its own public
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key, and must validate it by proving the correctness of its computation by shortly
interacting with the center. Their implementation is based on a complexity assump-
tion related to the Discrete Logarithm problem (the Diffie-Hellman assumption [DH]),
whereas our implementation is based on the Quadratic Residuosity Assumption.

The Public-key Public-Randomness model shows how to dispose of an active center
by having just a short random string known beforehand to all users. To validate
his choice of the public key, each user computes by himself and publishes a proof of
correctness in his public file.

Perfect Zero-Knowledge Arguments. Brassard and Crépeau [BC] and Chaum [Ch]
consider a model where the prover is poly-bounded and the verifier has unlimited
computational power. All NP-languages have Perfect Zero-Knowledge Arguments
(that is Zero-Knowledge proofs in the BCC model). Actually Brassard, Crépeau,
and Yung [BCY] proved that there are perfect Zero-Knowledge arguments that use
a constant number of rounds (only 6) for any NP-language. In this paper, we prove
that all NP-languages have Non-Interactive Perfect Zero-Knowledge Arguments in the
PKPR setting. Our is the first impleinentation of non-interactive nature for Perfect
Zero-Knowledge Arguments.

Note added in proof

Bert van Boer [Bo] has independently proved that it is possible to have a non-
interactive Oblivious Transfer after an interactive preprocessing stage. His protocol
relies on the Quadratic Residuosity Assumption. Using the techniques we discussed
in this paper, his implementation can be adapted to work also in the PKPR setting.
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