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Factoring with two large primes 

The study of integer factoring algorithms and the design of faster factoring algorithms is 

a subject of great importance in cryptology (cf. [l J), and a constant concern for crypto- 

graphers. In this paper we present a new technique that proved to be extremely useful, 

not only to achieve a considerable speed-up of an older and widely studied factoring 

algorithm, but also, and more importantly, to make practical application of a new factor- 

ing algorithm feasible. While this first application does not pose serious threats to 

factorization-based cryptosystems, the consequences of the second application could be 

very encouraging (from the cryptanalysts point of view). 

The technique has led to various new factorization records. It took us 50 days to factor 

a 107 digit number using our new version of the multiple polynomial quadratic sieve, and 

60 days to factor a 111 digit number. This is quite a bit faster than the 120 days we 

needed for our previous 106 digit record with the old version [S]. We factored a 138 

digit number using a new special purpose factoring algorithm [7]. Combined with our 

new technique this took approximately 50 days; it would have been impossible without. 

For the 107 and the 138 digit number reported above we used the network of approxi- 

mately 300 CVAX processors at Digital Equipment Corporation’s Systems Research 

Center (SRC). For the other numbers a substantial amount of the computation was car- 

ried out by the participants to our electronic mail factoring network, as reported in 181. 

Let n be some large integer to be factored. In cryptanalytic applications it is usually 

known that n is the product of two unknown primes of approximately the same size. In 

other cases (cf. [2]) one first has to decide if n is prime or composite. It is well known 
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that this is usually not hard to do: use a probabilistic compositeness test [6] to prove that 

n is composite, and believe that n is prime if several attempts to prove compositeness 

have failed. In the latter case it remains to prove the prjmality of n , a problem for which 

efficient algorithms have been designed and implemented [3, 5, lo]. In the former case 

we should remark that the compositeness proof for n does in general not provide infor- 

mation which makes it easier to find a non-trivial factorization of n . 
Suppose that the compositeness of n has been established kyond doubt. How can we 

find a non-trivial factorization of n ? Again, if n is the modulus in some cryptosystem, it 

will have two carefully constructed large factors of approximately the same size, but for 

the rest n , or its factors, will have no specific properties that could make factoring easier. 

In such cases one has to resort to a general purpose factoring algorithm, a factoring algo- 

rithm that works no matter how dificulr the number might be and whose running time is 
solely determined by the size of n . 

For other numbers one could try the various special purpose factoring algorithms. 

These come in essentially two flavors. In the first place there are the methods that make 

use of properties an unknown factor of n might have. Because the factors are unknown, 

success is uncertain. It explains however why care has to be taken when designing a 

difficult composite n : if for instance one of the primes p dividing n is such that p fl is 
built up from s m a l l  primes only, then n can be factored quite easily. In case of failure of 

this type of special purpose algorithms, a general purpose method should be applied, 

d e s s  the second ype of special purpose algorithm can be applied. This concerns 

methods that make use of the special form that n might have. Their run time, however, 

does not depend on any properties of the factors of n . An example of such a method is 
the numberjield sieve [7], and will be discussed below. 

For cryptanalytic applications the general purpose algorithms are the ones to be stu- 

died. Until the surnmer of 1989 the best practical general purpose factoring algorithm 

was one of the multiple polynomial variations of the quadratic sieve algorithm (mpqs, for 

short) [ll, 121. The heuristic expected run time of mpqs is given by 

(1) exp((l+o (I))(logn )"2(loglogn)la). 

It is the only general purpose algorithm by which integers of more than 100 digits have 

been factored: a record factorization of a 106 digit integer in April 1989 took four 

months and used impressive computational resources [S]. 
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Many general purpose factoring algorithms, and mpqs is no exception, work in two 

stages. In the first stage one collects so-called relotiom, in the second stage one uses the 

relations to find solutions x , y E Z to x2  z y 2  mod n . Under reasonable assumptions 

each solution has a good chance to lead to a factorization of n by computing 

gcd(n , x j y  ). For mpqs a relation is an expression of the form 

(2) 

where evp E Zm and the product ranges over the primes (including -1) in the factor base 

(i.e., the number -1 and the primes less than some bound B). In mpqs, relations are 

found by means of a process called sieving (cf. 1111). On a fixed number of processors 

the number of relations found after t units of time will behave as cat, for some positive 

constant c depending on n . For a typical 100 digit number the number of elements of 

the factor base would be set  to 50,000. 

v2 ,  n p e v  mod n , 

If the number of relations (found in the first stage) is more than the number of ele- 

ments of the factor base, then a dependency modulo 2 can be found among the exponent 

vectors (in the second stage). Each such dependency leads to a solution to 

x2zy2modn,andthustoachanceoffactoringn. 

For mpqs the two stages are in theory asymptotically equally hard (they both take time 

(1). see [6] for an analysis and futther description of the dgorithm). For numbers in our 

current range of interest however the nm time is entirely dominated by the first stage: if 

relations could be found twice as fast, the algorithm would run twice as fast. Gaining a 

factor two in the run time means, roughly, that we can factor integers having three more 

digits (cf. [l]). 

A considerable speed-up of the first stage of the basic mpqs method can indeed be 

achieved quite easily by using the large prime variatioti, an idea that is already quite old 

[ I 1  1. It appears that the sieving stage of the algorithm can easily be changed so that it 

not only finds relations of the form (2), but relations of the following form as well: 

(3) 

where qy (the large prime) is a prime not in the factor base, and less than the square of 

the largest prime in the factor base. We will distinguish between relations (2) and (3) by 

calling them small (2) and partial (3) relations. So, a small relation is for instance given 

by a number v such that the least absolute residue v 2  mod n completely factors over the 

factor base; for a partial relation there may still be one too large prime in the factoriza- 

v 2  I q. n p +  mod n , 
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tion. One would expect therefore that the sieving stage produces many more partials 

than smalls, and that is indeed what happens. 

Unfortunately, however, the partials themselves are worthless for the rest of the factor- 

ization process, unlike the smalls. It is only by combining the partials that they can be 

made into something that is as useful as a small relation. Suppose that both u and w 

give rise to partial relations, and suppose that we are so lucky that qu = qw. Multiplica- 

tion of the two relations then gives 

(4) (u-w)*=qJnp+++ modn, 

a so-called big relation. Since u -w can be divided by q,, (modulo t i ,  unless n and 4. are 

not co-prime), such a big relation is just as useful as a small relation. 

How much luck is involved in finding a big relation? The birthday paradox tells US 

that even a moderate number of partials will already lead to relations with matching large 

primes, and therefore big relations. To give an example (cf. [S]): of the approximately 

320,000 relations gathered for a certain 100 digit number, 20,500 were small, and the 

remaining approximately 300,000 partials gave rise to 29,500 big relations. For this 
same 100 digit number the progress of the total number of relations as a function of the 

time is illustrated in Figure 1. For other number the graphs of the numbers of small and 

big relations behave similarly. 
soooo 

20500 

The large prime variation of mpqs affects the run time only in the o (1) (cf. (1)). In prac- 

tice it means a speed-up by a factor of approximately 2.5. Notice that it is straightfor- 

ward to find the matching large primes: sort the partials according to their large p rhe ,  

and match each pair of consecutive relations with the same large prime. 
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An obvious extension of the large prime variation is to allow two instead of only one 

large prime in a relation, i.e., a relation of the form 

( 5 )  v 2 = q 1 ~ q z ~ ~ ~ ~  modn,  

where the qiv are primes not in the factor base. These relations wiU be c d e d  partial- 

partials (or pp’s for short). Notice that there should be far more pp’s than partials. Like 

the partials, the pp’s can be combined into relations that are just as useful as s m d  or big 

relations. This can for instance be seen as follows. Identify each large prime with a ver- 

tex in a graph, and put an edge between IWO vertices each time they occur in the same 

partial-partial relation. A cycle in the resulting graph corresponds to a combination of 

pp’s where the large primes occur an even number of times, which makes that combina- 

tion useful for factoring. Notice that we are only interested in independent cycles, 

because dependent cycles would give rise to trivial dependencies in the matrix of 

exponents. 

If the pp’s are only combined among themselves, then this process can be seen as 

drawing random edges in a (big) graph. It is well known that it takes many edges before 

a cycle can be expected, so that the yield will be quite low. But if the pp’s are combined 

with the partials the picture changes dramatically as can be seen in Figure 2, where the 

total number of combined relations as a function of the total number of partials and pp’s 

is given for a 107 digit number we recently factored. The same algorithm can be used: 

view partials as pp’s where one of the luge primes equals 1, build the same graph, and 

look for independent cycles. Of course, in this way the big relations will be found as 

well. In the same picture we have given the number of big relations, i.e., combinations 

of two partials not involving pp’s. Although the number of small relations is not a func- 

tion of the number of pp’s, the number of smalls and the total (i.e., smalls plus combina- 

tions) are given in Figure 2 as well. Compared to the ordinary large prime variation we 

achieved a speed-up of approximately a factor 2.5. The asymptotic run time for mpqs 

remains the same, i-e., using pp’s only affects the o(1) in (1). The factorization of the 

107 digit number took approximately 50 days, on many fewer machines than the previ- 

ous 106 digit record. We used a factor base of 65,000 elements. 
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Figure 2 

We got a similar picture for our current record general purpose factorization of a 111 

digit composite factor of 2a4+l: 

2M4+l = 17 * 353 * 209089 * 33186913 * 1251287137 * 2931542417 * 
38608979869428210686559330362638245355335498797~1 * 
84694409 19770574oO576969390843473~06225873994236085602665729. 

The number we factored is the product of the last two factors. With a factor base consist- 

ing of 80,000 elements, we needed 14,300 small relations, and a total of 1,050,000 par- 

tials and pp’s generating 66,100 cycles. 

It can be seen in Figure 2 that combining partials and pp’s only begins to pay off after 

finding an enormous number of relations. This could be one explanation for the fact that 

nobody used this method before: for smaller numbers fewer relations are needed, so that 

by the time the pp’s have acquired enough weight, the other relations will already have 

done the job. For smaU numbers using pp’s might even be counter-productive. This can 

be explained as follows. During the sieving stage the algorithm looks for so-called 

reports. For each report, the algorithm attempts to factor a certain number, using the 

primes in the factor base. If this attempt is successful, a small relation has been found. If 
the attempt fails, but the remaining cofactor is sufficiently small, then a partial relation 

has been found, because the cofactor is automatically prime. This implies that partial 

relations can be found at almost no extra cost; the only extra cost is caused by the fact 

that one has to allow for more reports to find more partials (and consequently more 

failures as well), but that will be made up for by the extra partials that will tK found. 

If one allows two large primes there should be even more reports, which makes the 

sieving stage dower, and there is the additional problem that the remaining cofactor must 
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be factored into two large primes (if it is not prime already, or too large to be interesting). 

So, one is faced with the problem of considerably more reports which are moZe expensive 

to process per report, and a considerable fraction of which wi l l  be worthless. 

For small n there are many reports even if one allows only a single large prime. With 

two large primes processing reports would become a dominating term in the run time. 

Combined with the effect described above that pp's only start being useful if there are a 

lot of them, this implies that using two large primes makes the algorithm slower for rela- 

tively small n . 
For larger n the sieving stage of the single large prime variation produces very few 

reports. There one can easily afford more (and more expensive) reports, without notice- 

able effect on the total sieving time. Because many relations are needed, one gets the 

chance to build a huge database of pp's, and consequently the algorithm will run faster. 

In the full version of this paper we will describe how we proceeded to find the combina- 

tions (i.e., the cycles in the graph), and how we coped with the gigantic amounts of data. 

Notice that using two large primes in mpqs can be very advantageous, but that it also 

works perfectly well, though slower, without it. We now discuss a more important appli- 

cation of the same idea, and of the same cycle finder, that could have far-reaching conse- 

quences. This other application existed before the one described above, and actually 
made us realize that it would be a useful idea for mpqs as well. 

In [7] a new factoring algorithm, the numberfield sieve (nfs), is presented. This algo- 

rithm is an example of the second type of special purpose dgorithms as described above, 

because it only applies to n of the form re-s , where r is a small positive integer, and s 

is a non-zero integer of small absolute value. This is precisely the type of number that 

can be found in [2] .  To factor an n of this form, the number field sieve runs in heuristic 

expected time 

(6) exp((c+a (1)Xlogn )1/3(10glogn P3), 

with c = 2 ( U 3 P  1.526. The algorithm has proved to be quite practical. Among 0th- 

ers, we factored a 138 digit number that would have been absolutely impossible for 

mpqs. Using two large primes was of crucial importance to obtain this factorization. 

The most exciting news about the nfs  is that the algorithm can be generalized to 

integers of arbitrary form [4]. It is suspected [9] that the resulting general purpose factor- 

ing algorithm again rum in time (6).  though with a slightly bigger value for c . The prac- 
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tical consequences remain to be seen. There is no doubt, however, that its chances of 

becoming practical are close to zero without the cycle finder. 

For a description of the n f s  we refer to [7]. Here we will only explain how two Iarge 

primes can be used. Like mpqs, both the n f s  and the generalized n f s  consist of the two 
familiar stages, a relation collection stage, and an elimination stage. For nfs relations are 

expressions of the following form: 

(7) n4(g ' r )  = n p  mod n . 

The product at the left hand side ranges over elements g of some algebraic number field 

K = Q(a) of norm equal to 1 or of prime norm I B , for some bound B , and the product 

at the right hand side ranges over the primes IB . The exponents vg and e,, are integral, 

and $ i s  some homomorphism from Z[a] to ZlnZ. We refer to 171 for the choice of K 
and +. The form of n is important to be able to find a 'nice' number field. Relations are 

found by looking for coprime integers u and b such that the algebraic integer 

a+b a E Z[a] and the integer u +bm E Z, with rn = +(a), can be factored into smal l  

prime elements (and units) in Z[a] and primes in Z, respectively. This is done in the 

sieving stage of the nfs. 

Suppose that the product on the left hand side ranges over B 1 elements, and the right 

hand side over B 2 elements. If we have more than B 1+B 2 relations, then we can, as in 

mpqs, use linear dgebra to generate solutions to x2 = y 2  mod n , and thus factor n . 
We have seen that for mpqs the number of small relations obtained is a linear function 

of the effort spent on finding relations. With the nfs  the situation is different There the 

yield becomes quite noticeably lower and lower, with the possibility of the unpleasant 

discovery, after spending years of CPU time, that the algorithm is not going to make it 

because the supply of solutions to (7) as generated by the nfs dries up. The theory simply 

tells US to start d over again with a bigger value for B . From a practical point of view 

this is less desirable: for numbers in OUT current range of interest B would have to be 

chosen so large that storing the exponent matrix, even in sparse form, becomes prob- 

lematic, let alone finding a dependency among its rows. 

So, to make the nfs  practical, it is important to keep B as small as we can, while avoid- 

ing the problem of running out of solutions to (7). This can be achieved as follows. 

While sieving we nor only collect relations as in (7). but we collect the following types Of 

relations as well: 
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- As (7), but allow one large prime element at the left hand side, the parrial-filk or p f s ;  

- As (7), but allow one large prime at the right hand side, thefull-parfialr orb’s; 

- As (7), but allow both a large prime element at the left hand side and a large prime at 

the right hand side, the partial-partials or pp’s. 

Relations as in (7) will be calledfifl-fulls orffs. 

The sieving stage can easily be changed so that it not only collects the f f  s, but the 

pf‘s, fp ’s  and pp’s as well. For pf‘s and fp’s this is trivial, as it was for partial relations in 

mpqs. For pp’s this follows Erom the fact that the large prime element and the large 

prime involved come from different numbers (namely from a+ba and from a+bm, 
respectively). So, the problem of slower performance that mars finding pp’s in mpqs 

when applied to comparatively small numbers does not occur here. 

Clearly, the sieving stage should find many more pf‘s and fp ’s  than f f  s, and even more 

pp’s. The pf‘s can be combined among themselves, just as the partials in mpqs, with the 

difference that we divide pf s with the same large prime element instead of multiplying 

them to avoid the problem of computing a generator for the large prime ideal. Similarly, 

f p ’ s  with the same large prime can be combined, either by multiplication or by division, 

to produce a useful relation. And the pp’s, finally, can be used in almost the same way as 

the pp’s in mpqs. The difference is that the pp’s now give rise to a bipartite graph (with 

vertices identified with prime elements in Z[a] connected to vertices identified with 

primes in Z), plus one extra vertex (identified with 1) to put the p f s  and the f p ’ s  in the 

same graph. 

To give some examples, for a certain 122 digit number we needed a total of 49,000 

relations. After two weeks sieving (on many machines simultaneously) we had gathered 

10,688 ff s, 116,410 pf‘s, 103,692 f p ’ s  and 1,138,617 pp’s. By that time it had become 

clear that our choice of B was too low to factor the number using only ff‘s, because the 

supply of ff s was drying up rapidly. The same was true for the p f  s and f p ’ s .  Although 

the 116,410 pf‘s gave already 5,341 combinations, and the 103,692 fp ’s  gave 5,058 rela- 

tions, it was clear that they were coming in too slowly to make our choice of B feasible 

for this number, at least without using pp’s. Using the cycle finder we found more than 

28,000 independent cycles involving pp’s, which was enough to factor the number. It 

took five days (on a single machine) to find a dependency in the resulting matrix. We are 

not sure what value for B we should have chosen to obtain this factorization without 



81 

using pp’~, but it is unlikely that we could have factored the number within a reasonable 

amount of time in that case. 

For a 138 digit number, it took seven weeks to gather 17,625 ffs and a total of 

1,741,365 pfs, fp’s, and pp’s, which gave 62,842 combinations. It took two weeks to 

process the resulting 80,000x80,000 matrix. Without pp’s we would never have suc- 

ceeded. B ’would have to be taken so large that the sieving would take almost forever, 

and we would not even be able to store the sparse representation of the resulting matrix. 

Notice that relations that follow from combinations lead to denser rows in the matrix 

of exponents than the ff s. So, although the combinations are just as useful for factoring 

as the ff’s, they lead to a denser matrix, and therefore to a slower second stage. The 

same holds for mpqs. However, this is a small price to pay if the only alternative leads to 

unsurmountable problems. 

As remarked above, we gained our first experience with pp’s because we had to while 

experimenting with the nfs. This naturally led us to the application of the same idea in 

mpqs. 

We have seen that this relatively simple technique of finding cycles among partial and 

partial-partial relations is very useful for mpqs, and of great importance to make nfs prac- 

tical. If the generalized n f s  ever becomes practical, there can be little doubt that an 

important role will be played by the partial-partial relations. We therefore feel that it is 

an important technique that should be brought to the attention of everyone interested in 
factoring. 
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