
Factoring with two large primes

(Extended Abstract)

Arjen K. Lenstra
Bell Communications Research, rook 2Q334

435 South Street, Morristown, NJ 07960
entail: lenstra@fiash.belicore.com

Mark SManasse
Digital Equipment Corporation, Systems Research Center

130 Lytton Avenue, Palo Alto, CA 94301
email: tnsm@src.dec.com

Factoring with two large primes

The study of integer factoring algorithms and the design of faster factoring algorithms is

a subject of great importance in cryptology (cf. [l J), and a constant concern for crypto-

graphers. In this paper we present a new technique that proved to be extremely useful,

not only to achieve a considerable speed-up of an older and widely studied factoring

algorithm, but also, and more importantly, to make practical application of a new factor-

ing algorithm feasible. While this first application does not pose serious threats to

factorization-based cryptosystems, the consequences of the second application could be

very encouraging (from the cryptanalysts point of view).

The technique has led to various new factorization records. It took us 50 days to factor

a 107 digit number using our new version of the multiple polynomial quadratic sieve, and

60 days to factor a 111 digit number. This is quite a bit faster than the 120 days we

needed for our previous 106 digit record with the old version [S]. We factored a 138

digit number using a new special purpose factoring algorithm [7]. Combined with our

new technique this took approximately 50 days; it would have been impossible without.

For the 107 and the 138 digit number reported above we used the network of approxi-

mately 300 CVAX processors at Digital Equipment Corporation’s Systems Research

Center (SRC). For the other numbers a substantial amount of the computation was car-

ried out by the participants to our electronic mail factoring network, as reported in 181.

Let n be some large integer to be factored. In cryptanalytic applications it is usually

known that n is the product of two unknown primes of approximately the same size. In

other cases (cf. [2]) one first has to decide if n is prime or composite. It is well known

1.B. Dawwd (Ed.): Advances in Cryptology - EUROCRYPT ‘90, LNCS 473, pp. 72-82, 1991.
@ Springer-Verlag Berlin Heidelberg 1991

73

that this is usually not hard to do: use a probabilistic compositeness test [6] to prove that

n is composite, and believe that n is prime if several attempts to prove compositeness

have failed. In the latter case it remains to prove the prjmality of n , a problem for which

efficient algorithms have been designed and implemented [3, 5, lo]. In the former case

we should remark that the compositeness proof for n does in general not provide infor-

mation which makes it easier to find a non-trivial factorization of n .
Suppose that the compositeness of n has been established kyond doubt. How can we

find a non-trivial factorization of n ? Again, if n is the modulus in some cryptosystem, it

will have two carefully constructed large factors of approximately the same size, but for

the rest n , or its factors, will have no specific properties that could make factoring easier.

In such cases one has to resort to a general purpose factoring algorithm, a factoring algo-

rithm that works no matter how dificulr the number might be and whose running time is
solely determined by the size of n .

For other numbers one could try the various special purpose factoring algorithms.

These come in essentially two flavors. In the first place there are the methods that make

use of properties an unknown factor of n might have. Because the factors are unknown,

success is uncertain. It explains however why care has to be taken when designing a

difficult composite n : if for instance one of the primes p dividing n is such that p fl is
built up from s m a l l primes only, then n can be factored quite easily. In case of failure of

this type of special purpose algorithms, a general purpose method should be applied,

d e s s the second ype of special purpose algorithm can be applied. This concerns

methods that make use of the special form that n might have. Their run time, however,

does not depend on any properties of the factors of n . An example of such a method is
the numberjield sieve [7], and will be discussed below.

For cryptanalytic applications the general purpose algorithms are the ones to be stu-

died. Until the surnmer of 1989 the best practical general purpose factoring algorithm

was one of the multiple polynomial variations of the quadratic sieve algorithm (mpqs, for

short) [ll, 121. The heuristic expected run time of mpqs is given by

(1) exp((l+o (I))(logn)"2(loglogn)la).

It is the only general purpose algorithm by which integers of more than 100 digits have

been factored: a record factorization of a 106 digit integer in April 1989 took four

months and used impressive computational resources [S].

74

Many general purpose factoring algorithms, and mpqs is no exception, work in two

stages. In the first stage one collects so-called relotiom, in the second stage one uses the

relations to find solutions x , y E Z to x2 z y 2 mod n . Under reasonable assumptions

each solution has a good chance to lead to a factorization of n by computing

gcd(n , x j y). For mpqs a relation is an expression of the form

(2)

where evp E Zm and the product ranges over the primes (including -1) in the factor base

(i.e., the number -1 and the primes less than some bound B). In mpqs, relations are

found by means of a process called sieving (cf. 1111). On a fixed number of processors

the number of relations found after t units of time will behave as cat, for some positive

constant c depending on n . For a typical 100 digit number the number of elements of

the factor base would be set to 50,000.

v2 , n p e v mod n ,

If the number of relations (found in the first stage) is more than the number of ele-

ments of the factor base, then a dependency modulo 2 can be found among the exponent

vectors (in the second stage). Each such dependency leads to a solution to

x2zy2modn,andthustoachanceoffactoringn.

For mpqs the two stages are in theory asymptotically equally hard (they both take time

(1). see [6] for an analysis and futther description of the dgorithm). For numbers in our

current range of interest however the nm time is entirely dominated by the first stage: if

relations could be found twice as fast, the algorithm would run twice as fast. Gaining a

factor two in the run time means, roughly, that we can factor integers having three more

digits (cf. [l]).

A considerable speed-up of the first stage of the basic mpqs method can indeed be

achieved quite easily by using the large prime variatioti, an idea that is already quite old

[I 1 1. It appears that the sieving stage of the algorithm can easily be changed so that it

not only finds relations of the form (2), but relations of the following form as well:

(3)

where qy (the large prime) is a prime not in the factor base, and less than the square of

the largest prime in the factor base. We will distinguish between relations (2) and (3) by

calling them small (2) and partial (3) relations. So, a small relation is for instance given

by a number v such that the least absolute residue v 2 mod n completely factors over the

factor base; for a partial relation there may still be one too large prime in the factoriza-

v 2 I q. n p + mod n ,

75

tion. One would expect therefore that the sieving stage produces many more partials

than smalls, and that is indeed what happens.

Unfortunately, however, the partials themselves are worthless for the rest of the factor-

ization process, unlike the smalls. It is only by combining the partials that they can be

made into something that is as useful as a small relation. Suppose that both u and w

give rise to partial relations, and suppose that we are so lucky that qu = qw. Multiplica-

tion of the two relations then gives

(4) (u-w)*=qJnp+++ modn,

a so-called big relation. Since u -w can be divided by q,, (modulo t i , unless n and 4. are

not co-prime), such a big relation is just as useful as a small relation.

How much luck is involved in finding a big relation? The birthday paradox tells US

that even a moderate number of partials will already lead to relations with matching large

primes, and therefore big relations. To give an example (cf. [S]): of the approximately

320,000 relations gathered for a certain 100 digit number, 20,500 were small, and the

remaining approximately 300,000 partials gave rise to 29,500 big relations. For this
same 100 digit number the progress of the total number of relations as a function of the

time is illustrated in Figure 1. For other number the graphs of the numbers of small and

big relations behave similarly.
soooo

20500

The large prime variation of mpqs affects the run time only in the o (1) (cf. (1)). In prac-

tice it means a speed-up by a factor of approximately 2.5. Notice that it is straightfor-

ward to find the matching large primes: sort the partials according to their large p rhe ,

and match each pair of consecutive relations with the same large prime.

76

An obvious extension of the large prime variation is to allow two instead of only one

large prime in a relation, i.e., a relation of the form

(5) v 2 = q 1 ~ q z ~ ~ ~ ~ modn,

where the qiv are primes not in the factor base. These relations wiU be c d e d partial-

partials (or pp’s for short). Notice that there should be far more pp’s than partials. Like

the partials, the pp’s can be combined into relations that are just as useful as s m d or big

relations. This can for instance be seen as follows. Identify each large prime with a ver-

tex in a graph, and put an edge between IWO vertices each time they occur in the same

partial-partial relation. A cycle in the resulting graph corresponds to a combination of

pp’s where the large primes occur an even number of times, which makes that combina-

tion useful for factoring. Notice that we are only interested in independent cycles,

because dependent cycles would give rise to trivial dependencies in the matrix of

exponents.

If the pp’s are only combined among themselves, then this process can be seen as

drawing random edges in a (big) graph. It is well known that it takes many edges before

a cycle can be expected, so that the yield will be quite low. But if the pp’s are combined

with the partials the picture changes dramatically as can be seen in Figure 2, where the

total number of combined relations as a function of the total number of partials and pp’s

is given for a 107 digit number we recently factored. The same algorithm can be used:

view partials as pp’s where one of the luge primes equals 1, build the same graph, and

look for independent cycles. Of course, in this way the big relations will be found as

well. In the same picture we have given the number of big relations, i.e., combinations

of two partials not involving pp’s. Although the number of small relations is not a func-

tion of the number of pp’s, the number of smalls and the total (i.e., smalls plus combina-

tions) are given in Figure 2 as well. Compared to the ordinary large prime variation we

achieved a speed-up of approximately a factor 2.5. The asymptotic run time for mpqs

remains the same, i-e., using pp’s only affects the o(1) in (1). The factorization of the

107 digit number took approximately 50 days, on many fewer machines than the previ-

ous 106 digit record. We used a factor base of 65,000 elements.

77

I I I I I , t”“

Figure 2

We got a similar picture for our current record general purpose factorization of a 111

digit composite factor of 2a4+l:

2M4+l = 17 * 353 * 209089 * 33186913 * 1251287137 * 2931542417 *
38608979869428210686559330362638245355335498797~1 *
84694409 19770574oO576969390843473~06225873994236085602665729.

The number we factored is the product of the last two factors. With a factor base consist-

ing of 80,000 elements, we needed 14,300 small relations, and a total of 1,050,000 par-

tials and pp’s generating 66,100 cycles.

It can be seen in Figure 2 that combining partials and pp’s only begins to pay off after

finding an enormous number of relations. This could be one explanation for the fact that

nobody used this method before: for smaller numbers fewer relations are needed, so that

by the time the pp’s have acquired enough weight, the other relations will already have

done the job. For smaU numbers using pp’s might even be counter-productive. This can

be explained as follows. During the sieving stage the algorithm looks for so-called

reports. For each report, the algorithm attempts to factor a certain number, using the

primes in the factor base. If this attempt is successful, a small relation has been found. If
the attempt fails, but the remaining cofactor is sufficiently small, then a partial relation

has been found, because the cofactor is automatically prime. This implies that partial

relations can be found at almost no extra cost; the only extra cost is caused by the fact

that one has to allow for more reports to find more partials (and consequently more

failures as well), but that will be made up for by the extra partials that will tK found.

If one allows two large primes there should be even more reports, which makes the

sieving stage dower, and there is the additional problem that the remaining cofactor must

78

be factored into two large primes (if it is not prime already, or too large to be interesting).

So, one is faced with the problem of considerably more reports which are moZe expensive

to process per report, and a considerable fraction of which wi l l be worthless.

For small n there are many reports even if one allows only a single large prime. With

two large primes processing reports would become a dominating term in the run time.

Combined with the effect described above that pp's only start being useful if there are a

lot of them, this implies that using two large primes makes the algorithm slower for rela-

tively small n .
For larger n the sieving stage of the single large prime variation produces very few

reports. There one can easily afford more (and more expensive) reports, without notice-

able effect on the total sieving time. Because many relations are needed, one gets the

chance to build a huge database of pp's, and consequently the algorithm will run faster.

In the full version of this paper we will describe how we proceeded to find the combina-

tions (i.e., the cycles in the graph), and how we coped with the gigantic amounts of data.

Notice that using two large primes in mpqs can be very advantageous, but that it also

works perfectly well, though slower, without it. We now discuss a more important appli-

cation of the same idea, and of the same cycle finder, that could have far-reaching conse-

quences. This other application existed before the one described above, and actually
made us realize that it would be a useful idea for mpqs as well.

In [7] a new factoring algorithm, the numberfield sieve (nfs), is presented. This algo-

rithm is an example of the second type of special purpose dgorithms as described above,

because it only applies to n of the form re-s , where r is a small positive integer, and s

is a non-zero integer of small absolute value. This is precisely the type of number that

can be found in [2] . To factor an n of this form, the number field sieve runs in heuristic

expected time

(6) exp((c+a (1)Xlogn)1/3(10glogn P3),

with c = 2 (U 3 P 1.526. The algorithm has proved to be quite practical. Among 0th-

ers, we factored a 138 digit number that would have been absolutely impossible for

mpqs. Using two large primes was of crucial importance to obtain this factorization.

The most exciting news about the nfs is that the algorithm can be generalized to

integers of arbitrary form [4]. It is suspected [9] that the resulting general purpose factor-

ing algorithm again rum in time (6). though with a slightly bigger value for c . The prac-

79

tical consequences remain to be seen. There is no doubt, however, that its chances of

becoming practical are close to zero without the cycle finder.

For a description of the n f s we refer to [7]. Here we will only explain how two Iarge

primes can be used. Like mpqs, both the n f s and the generalized n f s consist of the two
familiar stages, a relation collection stage, and an elimination stage. For nfs relations are

expressions of the following form:

(7) n4(g ' r) = n p mod n .

The product at the left hand side ranges over elements g of some algebraic number field

K = Q(a) of norm equal to 1 or of prime norm I B , for some bound B , and the product

at the right hand side ranges over the primes IB . The exponents vg and e,, are integral,

and $ i s some homomorphism from Z[a] to ZlnZ. We refer to 171 for the choice of K
and +. The form of n is important to be able to find a 'nice' number field. Relations are

found by looking for coprime integers u and b such that the algebraic integer

a+b a E Z[a] and the integer u +bm E Z, with rn = +(a), can be factored into smal l

prime elements (and units) in Z[a] and primes in Z, respectively. This is done in the

sieving stage of the nfs.

Suppose that the product on the left hand side ranges over B 1 elements, and the right

hand side over B 2 elements. If we have more than B 1+B 2 relations, then we can, as in

mpqs, use linear dgebra to generate solutions to x2 = y 2 mod n , and thus factor n .
We have seen that for mpqs the number of small relations obtained is a linear function

of the effort spent on finding relations. With the nfs the situation is different There the

yield becomes quite noticeably lower and lower, with the possibility of the unpleasant

discovery, after spending years of CPU time, that the algorithm is not going to make it

because the supply of solutions to (7) as generated by the nfs dries up. The theory simply

tells US to start d over again with a bigger value for B . From a practical point of view

this is less desirable: for numbers in OUT current range of interest B would have to be

chosen so large that storing the exponent matrix, even in sparse form, becomes prob-

lematic, let alone finding a dependency among its rows.

So, to make the nfs practical, it is important to keep B as small as we can, while avoid-

ing the problem of running out of solutions to (7). This can be achieved as follows.

While sieving we nor only collect relations as in (7). but we collect the following types Of

relations as well:

80

- As (7), but allow one large prime element at the left hand side, the parrial-filk or p f s ;

- As (7), but allow one large prime at the right hand side, thefull-parfialr orb’s;

- As (7), but allow both a large prime element at the left hand side and a large prime at

the right hand side, the partial-partials or pp’s.

Relations as in (7) will be calledfifl-fulls orffs.

The sieving stage can easily be changed so that it not only collects the f f s, but the

pf‘s, fp ’s and pp’s as well. For pf‘s and fp’s this is trivial, as it was for partial relations in

mpqs. For pp’s this follows Erom the fact that the large prime element and the large

prime involved come from different numbers (namely from a+ba and from a+bm,
respectively). So, the problem of slower performance that mars finding pp’s in mpqs

when applied to comparatively small numbers does not occur here.

Clearly, the sieving stage should find many more pf‘s and fp ’s than f f s, and even more

pp’s. The pf‘s can be combined among themselves, just as the partials in mpqs, with the

difference that we divide pf s with the same large prime element instead of multiplying

them to avoid the problem of computing a generator for the large prime ideal. Similarly,

f p ’ s with the same large prime can be combined, either by multiplication or by division,

to produce a useful relation. And the pp’s, finally, can be used in almost the same way as

the pp’s in mpqs. The difference is that the pp’s now give rise to a bipartite graph (with

vertices identified with prime elements in Z[a] connected to vertices identified with

primes in Z), plus one extra vertex (identified with 1) to put the p f s and the f p ’ s in the

same graph.

To give some examples, for a certain 122 digit number we needed a total of 49,000

relations. After two weeks sieving (on many machines simultaneously) we had gathered

10,688 ff s, 116,410 pf‘s, 103,692 f p ’ s and 1,138,617 pp’s. By that time it had become

clear that our choice of B was too low to factor the number using only ff‘s, because the

supply of ff s was drying up rapidly. The same was true for the p f s and f p ’ s . Although

the 116,410 pf‘s gave already 5,341 combinations, and the 103,692 fp ’s gave 5,058 rela-

tions, it was clear that they were coming in too slowly to make our choice of B feasible

for this number, at least without using pp’s. Using the cycle finder we found more than

28,000 independent cycles involving pp’s, which was enough to factor the number. It

took five days (on a single machine) to find a dependency in the resulting matrix. We are

not sure what value for B we should have chosen to obtain this factorization without

81

using pp’~, but it is unlikely that we could have factored the number within a reasonable

amount of time in that case.

For a 138 digit number, it took seven weeks to gather 17,625 ffs and a total of

1,741,365 pfs, fp’s, and pp’s, which gave 62,842 combinations. It took two weeks to

process the resulting 80,000x80,000 matrix. Without pp’s we would never have suc-

ceeded. B ’would have to be taken so large that the sieving would take almost forever,

and we would not even be able to store the sparse representation of the resulting matrix.

Notice that relations that follow from combinations lead to denser rows in the matrix

of exponents than the ff s. So, although the combinations are just as useful for factoring

as the ff’s, they lead to a denser matrix, and therefore to a slower second stage. The

same holds for mpqs. However, this is a small price to pay if the only alternative leads to

unsurmountable problems.

As remarked above, we gained our first experience with pp’s because we had to while

experimenting with the nfs. This naturally led us to the application of the same idea in

mpqs.

We have seen that this relatively simple technique of finding cycles among partial and

partial-partial relations is very useful for mpqs, and of great importance to make nfs prac-

tical. If the generalized n f s ever becomes practical, there can be little doubt that an

important role will be played by the partial-partial relations. We therefore feel that it is

an important technique that should be brought to the attention of everyone interested in
factoring.

References

G. Brassard, Modern Cryptology, Lecture Notes in Computer Science, vol. 325,1988,

Springer-Verlag .

JBrillhart, D.H. Lehmer, J.L. SelMge, B. Tuckerman, S.S. Wagstaff, Jr., Facforizu-

tions of bnf l , b = 2,3,5,6,7,10,11,12 up to highpowers, second edition, Contem-

porary Mathematics, vol. 22, h e r . Math. SOC., Providence, Mode Island 1988.

W. Bosma, M.-P. van der Hulst, A.K. Lenstra, “An improved version of the Jacobi

sum primality test,” in preparation.

J. Buhler, H.W. Lenstra, Jr., C. Pomerance, in preparation.

82

H. Cohen, A.K. knstra, “Implementation of a new primdity test,” M h . COW., V.

48,1987, pp. 103-121.

A.K. Lenstra, H.W. Lenstra, Jr., “Algorithms in number theory,” in: J. van

Leeuwen, A. Meyer, M. Nivat, M. Paterson, D. Perrin (eds), Handbook ofrheorerical

computer science, to appear.

A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, J.M. Pollard, “The number field

sieve,” to appear.

A.K. Lenstra, M.S. Manasse, “Factoring by eIectronic mail,” Proceedings Eurocrypt

‘89.

H.W. Lenstra, Jr., personal communication.

10 F. Morain, “Prknality testing: News fiom the front,” Proceedings Eurocrypt ’89.

11 C. Pomerance, “Analysis and comparison of some integer factoring algorithms,” pp.

89-139 in: H.W. Lenstra, Jr., R. Tijdeman (eds), Computation01 methods in number

theory, Mathematical Centre Tracts 154, 155, Mathematisch Centrum, Amsterdam,

1982.

12 R.D. Silverman, “The multiple polynomial quadratic sieve,” Math. Comp., v. 48,

1987, pp. 329-339.

	Factoring with two large primes(Extended Abstract)

	References

