A GENERAL ZERO-KNOWLEDGE SCHEME *

Mike V. D. Burmester Dept. of Mathematics RHBNC - University of London Egham, Surrey TW20 OEX U.K.

Fred Piper Dept. of Mathematics RHBNC - University of London Egham, Surrey TW20 OEX U.K. Yvo Desmedt[†] Dept. EE & CS Univ. of Wisconsin – Milwaukee P.O. Box 784 WI 53201 Milwaukee U.S.A.

Michael Walker Racal Research Ltd. Worton Grange Industrial Estate Reading, Berks RG2 OSB U.K.

Extended Abstract

Abstract

There is a great similarity between the Fiat-Shamir zero-knowledge scheme [8], the Chaum-Evertse-van de Graaf [4], the Beth [1] and the Guillou-Quisquater [12] schemes. The Feige-Fiat-Shamir [7] and the Desmedt [6] proofs of knowledge also look alike. This suggests that a generalization is overdue. We present a general zero-knowledge proof which encompasses all these schemes.

I. Introduction

An interactive proof-system, or simply a proof, is an interactive protocol by which, on input I, a prover A(lice) attempts to convince a verifier B(ob) that either (a) $I \in \mathcal{L}, \mathcal{L}$ a language (proof of membership), or (b) that she "knows" a witness S for which (I, S) satisfies a polynomial-time predicate $P(\cdot, \cdot)$ (proof of knowledge). A proof is zero-knowledge if it reveals no more than is strictly necessary (for a formal definition of a proof of membership see [11]; for proofs of knowledge see [7]). Many zero-knowledge proofs have been described in the literature and various definitions of a proof-system have been suggested. The property of zero-knowledge has also been analyzed and refined (e.g., [7]). One might wonder why so many different zero-knowledge proofs have been proposed. One reason is that schemes which are

^{*} Some of the results in this paper have been briefly announced at the rump session of Crypto'88.

[†]Research partly done when visiting RHBNC and sponsored by SERC.

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT '89, LNCS 434, pp. 122-133, 1990. © Springer-Verlag Berlin Heidelberg 1990

based on zero-knowledge protocols must be easy to implement. Another is the complexity of protocols: practical considerations make it necessary to increase the speed of a protocol [8], to reduce its storage requirements [1,12] and to reduce the number of its iterations [2]. Finally the theoretical approach to zero-knowledge is closely related to the theory of computational complexity [11].

The purpose of this paper is to provide a general setting for these zeroknowledge protocols and to show that many known protocols fit into this setting. The advantages of having such a generalization are that:

- it illustrates the essential features of the protocol,
- it provides a proof that a general class of protocols are zero-knowledge, thereby establishing a straightforward set of criteria to determine whether or not a given protocol is zero-knowledge.

In this paper we consider an algebraic framework which includes the systems of Fiat-Shamir [8], Feige-Fiat-Shamir [7], Chaum-Evertse-van de Graaf [4], Beth [1], Desmedt [6] and Guillou-Quisquater [12]. We shall not discuss non-interactive zero-knowledge protocols [2].

The Fiat-Shamir scheme

To start with we briefly describe the set up of the Fiat-Shamir scheme [8]. This will help the reader to appreciate the setting for our scheme and to understand the details. In the Fiat-Shamir scheme we have:

- a set of secret numbers S_1, S_2, \ldots, S_m which are chosen from the group of units Z_n^* of the ring of integers modulo n.
- a set of public numbers $I_1, I_2, \ldots, I_m \in QR_n$, the set of quadratic residues.
- a predicate $P(I, S) \equiv (I = S^2(\text{mod}n))$, satisfied by all the pairs (I_j, S_j) .

The protocol repeats t = O(|n|) times:

- Step 1 A, the prover, selects a random integer X modulo n and sends B, the verifier, the number $Z = X^2 \pmod{n}$.
- **Step 2** B sends A the random bits q_1, q_2, \ldots, q_m as a query.
- Step 3 A sends B: $Y = X \cdot \prod_{i} S_{j}^{q_{i}} \pmod{n}$, when all $q_{i} \in \{0, 1\}$.
- **Step 4** B verifies that $Y \in Z_n^*$ and that $Y^2 = Z \cdot \prod_j I_j^{q_j} \pmod{n}$.

B accepts A's proof only if for all t iterations the verifications in Step 4 are successful.

Remark: If $Y \notin \mathbb{Z}_n^*$ were allowed (as in the Fiat-Shamir protocol) then a crooked prover A' could convince the verifier B (who must adhere to the protocol) that some quadratic non-residues \overline{I} belong to QR_n . E.g., if A' chooses $X \equiv 0 \pmod{n}$, then B will always accept.¹

We will describe a protocol which generalizes this scheme and we will show that all the protocols in [1,4,6,7,8,12] are particular cases of this protocol. In Section III. we will prove that our protocol is a zero-knowledge proof of membership or a zero-knowledge proof of knowledge, depending on the setting.

II. A framework for a zero-knowledge proof

In our general scheme the "public numbers" I_1, I_2, \ldots, I_m are taken from a set \mathcal{H} and the "secret numbers" belong to a set \mathcal{G} . These numbers are related by a predicate $P(\cdot, \cdot)$, that is $P(I_j, S_j)$ for all j. We assume that \mathcal{H}, \mathcal{G} have some algebraic structure and we take P(I, S) to be the predicate (I = f(S)), where f is a homomorphism. Such predicates are a common feature of all the protocols we consider. We remark that the notion of group homomorphisms has also been used in [13] but in a different context. In our protocol we use the following:

- a monoid \mathcal{G}'' , with subsets $\mathcal{G}, \mathcal{G}'$ such that $\mathcal{G} \subset \mathcal{G}' \subset \mathcal{G}''$. All the secret numbers S_i belong to \mathcal{G} . \mathcal{G}' contains the identity and all the elements of \mathcal{G} are units (it means invertible elements).
- a semigroup \mathcal{H}'' , with subsets $\mathcal{H}, \mathcal{H}'$ such that $\mathcal{H} \subset \mathcal{H}' \subset \mathcal{H}''$. \mathcal{H}' has an identity and its elements are units.
- a (possibly one-way) homomorphism $f: \mathcal{G}'' \to \mathcal{H}''$ with $f(\mathcal{G}) = \mathcal{H}$.

The security parameter is $|n| = O(\log n)$, where $n = |\mathcal{H}|$. We shall regard this framework as being a particular instance of a general framework which is defined for all (sufficiently large) integers n. We therefore are tacitly assuming that $\mathcal{G} = \mathcal{G}_n$, $\mathcal{H} = \mathcal{H}_n$, etc. In this setting we have a framework for (a) a proof of membership for the language $\mathcal{L} = \bigcup_n \mathcal{H}_n$: the prover wants to prove that all the public numbers I_j belong to \mathcal{L} ; (b) a proof of knowledge for the predicate P(I, S): the prover wants to prove that she "knows" secret numbers S_j such that $P(I_j, S_j)$ for all j. Let us now describe the protocol.

¹An interesting case occurs when I_1 is a quadratic non-residue of p, $I_1 \equiv 1 \pmod{q}$, n = pq, and m = 1. If A' sends $Z = p^2$ in Step 1 and Y = p in Step 2 then B will always accept $(p = 5, q = 7, I_1 = 8 \text{ is worth exploring})$.

Protocol

First the verifier checks that all the $I_j \in \mathcal{H}'$. Then the protocol starts. Repeat t times:

Step 1 A selects a random $X \in \mathcal{G}''$ and sends B: Z = f(X) (A's cover).

Step 2 B sends A a random $\mathbf{q} = (q_1, \ldots, q_m) \in Q^m$ (B's query).

Step 3 When all $q_i \in Q$, A sends B: $Y = X \cdot \prod_j S_j^{q_j}$ (A's answer).

Step 4 B verifies that $Y \in \mathcal{G}'$ and that $f(Y) = Z \cdot \prod_j I_j^{q_j}$ (B's verification).

If the precondition is satisfied, and if for all iterations the conditions in Step 4 are satisfied then B accepts A's proof.

Remark: An important feature of this protocol is the inbuilt probability $(|(\mathcal{G}'' \setminus \mathcal{G}')|/|\mathcal{G}''|)$ that an honest prover fails to convince the verifier.

II.1. A group based framework

We now state conditions that make the protocol a zero-knowledge proof. First consider the case when $\mathcal{G} = \mathcal{G}' = \mathcal{G}''$ is a group. We assume that:

- 1. Conditions for computational boundedness of B:
 - 1.a) We can check if $I \in \mathcal{H}'$ in polynomial time.
 - 1.b) We can check if $Y \in \mathcal{G}'$ in polynomial time.
 - 1.c) Multiplication in \mathcal{H}'' can be executed in polynomial time.
 - 1.d) f is a polynomial time mapping.
- 2. Completeness condition: none.
- 3. Soundness conditions:

3.a) The set of exponents is Q is $\{0, 1\}$.

4. Zero-knowledge condition:

4.a) We can choose at random with uniform distribution an element $X \in \mathcal{G}''$.

4.b) m is $O(\log |n|)$.

5. Conditions for Proofs of knowledge:

5.a) $\mathcal{H}' = \mathcal{H}$.

5.b) Multiplication in \mathcal{G}' and taking inverses in \mathcal{G}' are polynomial time operations.

We show in Section III. that the conditions above are sufficient to make the protocol a zero-knowledge proof. However these conditions are rather restrictive and we only get the Chaum-Evertse-van de Graaf protocols [4]. In the following section we relax these conditions and show that the [1,6,7,8,12] are also particular cases of our protocol.

The Chaum-Evertse-van de Graaf protocols

Many protocols related to the discrete logarithm problem in a general sense were presented by Chaum-Evertse-van de Graaf [4]. The first one, called the multiple discrete logarithm, proves existence (and knowledge) of S_j such that $\alpha^{S_j} = I_j$, where α is an element of a group \mathcal{H}'' . Examples of \mathcal{H}'' are $Z_N^*(\cdot)$, where N is a prime or composite number. This is a particular case of our protocol for which

- $\mathcal{G} = Z_n(+)$, n is a multiple of the order of α ,
- $\mathcal{H}'' = \mathcal{H}'$ is a group, $\mathcal{H} = \langle \alpha \rangle$ is the group generated by α ,
- $Q = \{0, 1\}, m = 1, \text{ and } f \text{ is the group homomorphism } f : Z_n \to \mathcal{H}; x \to \alpha^x.$

We assume that the verifier knows an upper bound for n. Let us check the above conditions. Conditions 1.b and 5.b are satisfied even if one does not know what n is. Conditions 1.a and 1.c must be satisfied by \mathcal{H}' , which is automatically the case when $\mathcal{H}' = Z_N^*$. All the other conditions are trivially satisfied.

Next let us consider the Chaum-Evertse-van de Graaf protocol for the relaxed discrete log and show that it is also a particular case. This proves existence (and knowledge) of $S = (s_1, s_2, \ldots, s_k)$ such that $\alpha_1^{s_1} \alpha_2^{s_2} \cdots \alpha_k^{s_k} = I$, where $\alpha_1, \alpha_2, \ldots, \alpha_k, I$ are elements of a group \mathcal{H}'' . To relate this scheme to our protocol we use "direct product groups". We take:

- $\mathcal{G} = Z_{n_1}(+) \times Z_{n_2}(+) \times \cdots \times Z_{n_k}(+)$, where n_i is a multiple of the order of α_i $(1 \le i \le k)$,
- $\mathcal{H}'' = \mathcal{H}'$ is a group, $\mathcal{H} = \langle \alpha_1, \alpha_2, \dots, \alpha_k \rangle$,
- $Q = \{0,1\}, f: \mathcal{G} \to \mathcal{H}; (x_1, x_2, \ldots, x_k) \to \alpha_1^{\mathbf{z}_1} \alpha_2^{\mathbf{z}_2} \cdots \alpha_k^{\mathbf{z}_k}.$

As in Chaum-Evertse-van de Graaf, \mathcal{H}'' has to be commutative, (\mathcal{G} is commutative). There is one difference between the Chaum-Evertse-van de Graaf scheme and our description of it. In the former, A sends $\alpha_1^{z_1}, \alpha_2^{z_2}, \ldots, \alpha_k^{z_k}$ in Step 1, whilst in ours A sends $f(X) = \alpha_1^{x_1} \alpha_2^{x_2} \cdots \alpha_k^{x_k}$. This means that the prover makes more multiplications, the verifier makes fewer multiplications, and less is communicated.

Chaum-Evertse-van de Graaf take m to be 1, which is not necessary. Indeed when m > 1 the protocol proves knowledge of the multiple relaxed discrete log. It proves knowledge of $S_1 = (s_{11}, \ldots, s_{1k}), S_2 = (s_{21}, \ldots, s_{2k}), \ldots, S_m = (s_{m1}, \ldots, s_{mk})$, such that $\alpha_1^{s_{11}} \cdots \alpha_k^{s_{1k}} = I_1, \alpha_1^{s_{21}} \cdots \alpha_k^{s_{2k}} = I_2, \ldots, \alpha_1^{s_{k1}} \cdots \alpha_k^{s_{kk}} = I_k$.

Chaum-Evertse-van de Graaf also discussed a protocol for the simultaneous discrete log. This proves knowledge of S such that $\alpha_1^S = I_1, \alpha_2^S = I_2, \ldots, \alpha_k^S = I_k$. For this protocol we have $\mathcal{G} = Z_n(+), \mathcal{H} = \langle \alpha_1 \rangle \times \langle \alpha_2 \rangle \times \cdots \langle \alpha_k \rangle$, and $f : \mathcal{G} \to \mathcal{H}; x \to (\alpha_1^x, \alpha_2^x, \ldots, \alpha_k^x)$. The other sets an the remarks about the conditions are similar to those for the multiple discrete logarithm.

II.2. A monoid based framework

We relax the conditions of the group based framework by allowing the sets $\mathcal{G}, \mathcal{G}', \mathcal{G}''$ to be distinct, by taking the set of exponents Q to be any set of integers, and by introducing some new conditions and modifying others. We use the same numbering and list only those conditions which are new or modified.

- 2. Completeness conditions:
 - 2.a) $|\mathcal{G}'| / |\mathcal{G}''| \ge 1 |n|^{-c}$, c any constant. 2.b) $\mathcal{G}' \cdot \mathcal{G} \subset \mathcal{G}'$.
- 3. Soundness conditions:
 - 3.a) There is an *a* such that: (i) $|(Q \pm a) \cap Q| \ge \psi |Q|$, where $(Q \pm a) = (Q+a) \cup (Q-a)$ and $\psi \in (0,1]$ is a constant, and (ii) if $f(Y') = f(Y) \cdot I^a$ for some $Y, Y' \in \mathcal{G}'$ and $I \in \mathcal{H}$ then there exists an element $S \in \mathcal{G}$ such that P(I, S).
- 4. Zero-knowledge condition:
 - 4.b) $m \log |Q|$ is $O(\log |n|)$.
- 5. Condition for Proofs of knowledge:
 - 5.b) (replaces 3.a (ii)) Given $Y, Y' \in \mathcal{G}'$ and $I \in \mathcal{H}'$ with $f(Y') = f(Y) \cdot I^a$, we can obtain in polynomial time an element $S \in \mathcal{G}$ such that P(I, S).

Remark: In most cases Q is of the form [0:m] or [1:m], a = 1 and $\psi = 1$. If Y is a unit and $1 \in Q$ then Condition 3.a is trivially satisfied for a = 1 and $S = Y^{-1}Y'$.

The Fiat-Shamir scheme

This protocol was discussed earlier. We take, $\mathcal{G}'' = \mathcal{H}'' = Z_n(\cdot)$, *n* a product of two distinct primes, $\mathcal{G}' = \mathcal{G} = \mathcal{H}' = Z_n^*(\cdot)$, $\mathcal{H} = QR_n$, $Q = \{0,1\}$, a = 1 and $f: Z_n \to Z_n; x \to x^2$, which is a homomorphism of the monoid Z_n . The reader can easily check that all conditions of Section II.2. are satisfied.

The Feige-Fiat-Shamir scheme

For this scheme $I_j = \pm s_j^2$ [7] (to be consistent with our general presentation we have modified slightly the notation), so that the secrets S_j consists of two parts: the sign part and the s_j . To make the relation of the Feige-Fiat-Shamir scheme with our protocol we use direct products of monoids. Let n = pq, p, q distinct primes with $p \equiv q \equiv 3 \pmod{4}$. Take

- $\mathcal{G}'' = \{-1, +1\}(\cdot) \times Z_n(\cdot), \quad \mathcal{G}' = \{-1, +1\} \times Z_n^0, \quad Z_n^0 = Z_n \setminus \{0\}, \quad \mathcal{G} = \{-1, +1\} \times Z_n^*,$
- $\mathcal{H} = \mathcal{H}' = Z_n(\cdot), \ \mathcal{H} = Z_n^{+1} = \{y \in Z_n^* \mid (y \mid n) = 1\}$, where $(y \mid n)$ is the Jacobi symbol,
- $Q = \{0,1\}, a = 1 \text{ and } f : \{-1,1\} \times Z_n \to Z_n; (g,x) \to gx^2.$

This scheme is essentially the same as the Feige-Fiat-Shamir scheme except that in Step 3 of the protocol the prover sends $Y = X \prod_j S_j^{q_j}$, where Y is a pair with a sign part $y_1 \in \{-1, 1\}$ and a number part $y_2 \in Z_n$, whereas in Feige-Fiat-Shamir only a number is sent. However in the latter the verifier must check if $Y^2 = Z \cdot \prod_j I_j^{q_j} \pmod{n}$ or if $Y^2 = -Z \cdot \prod_j I_j^{q_j} \pmod{n}$. By doing this he knows exactly what the sign y_1 is. Therefore, for us the prover sends one extra bit in Step 3 whereas in Feige-Fiat-Shamir the verifier has to check one more equation. The two schemes are essentially the same, only the actual implementation is slightly different. Observe that the remark about the Fiat-Shamir protocol in the introduction applies to this protocol as well: if $Y \notin Z_n^0$ were allowed then we do not have a proof system.

The Desmedt scheme

For this scheme [6] take the same parameters as we discussed for the Feige-Fiat-Shamir scheme, except that $f : \{-1,1\} \times Z_n \to Z_n$; $(h,x) \to hx^{2^{|i|}}$. Take $I_j = R_j/g_i(1) \pmod{n}$, where $g_i(x) = g_{i_d}(g_{i_{d-1}}(\cdots(g_{i_1}(g_{i_0}(x)))\cdots)))$, with $g_0(x) = x^2 \pmod{n}$ and $g_1(x) = 4x^2 \pmod{n}$.

The Guillou-Quisquater scheme

Take

• $\mathcal{G}'' = \mathcal{H}'' = Z_n(\cdot), n \text{ a product of two different primes}, \mathcal{G}' = \mathcal{G} = \mathcal{H}' = Z_n^*,$

•
$$\mathcal{H} = \{ y \in Z_n^* \mid y = x^v, x \in Z_n^* \}, v \text{ a prime}, Q = [0:v-1], a = 1 \}$$

•
$$f: Z_n \to Z_n; x \to x^v$$
.

For m = 1 we get the Guillou-Quisquater scheme [12]. We observe that:

- 1. When $v^{mt} = O(|n|^c)$, c a constant, this scheme is insecure (since then "guessing the query" is a convincing strategy). So we must have $mt \log v > \log |n|$.² In Section III. we shall see that this scheme is sound when $t > \log |n|$.
- 2. The zero-knowledge proof in Section III. requires that $tv^m = O(|n|^c)$, c a constant. This proof cannot be used when either $t \succ |n|^c$, or $v^m \succ |n|^c$.

The Beth scheme

In this scheme [1], a centre possesses the security numbers $x_1 \ldots x_m \in Z_{q-1}$ and makes public α , a primitive root of GF(q) and the values $y_j = \alpha^{x_j}$ for all j. For each user the centre chooses a random $k \in Z_{q-1}$ and gives the user $r = \alpha^k$ as one part of her public number. The other part consists of the numbers $ID_1, \ldots, ID_m \in Z_{q-1}$. The centre determines the secret numbers S_1, \ldots, S_m by solving the congruence

$$x_j r + k S_j \equiv I D_j \mod (q-1), \qquad j = 1, \dots, m.$$
(1)

In Step 1 of the protocol the prover sends $z = r^{-t}$ (t random in Z_{q-1}) to the verifier. In Step 2 the verifier replies with $\mathbf{b} = (b_1 \dots b_m)$, $b_i \in Q \subset Z_{q-1}$, and finally in Step 3 the prover sends $u = t + \sum_i b_j S_j \in Z_{q-1}$. The verification is

$$\prod_{j} y_{j}^{rb_{j}} r^{u} z = \alpha^{\sum_{j} b_{j} I D_{j}}.$$
(2)

Let us now make the relation with our protocol. Take

- $\mathcal{G} = \mathcal{G}' = \mathcal{G}'' = Z_{q-1}(+), \ Q \subset Z_{q-1}, \ \mathcal{H}'' = \mathcal{H}' = GF(q)^*(\cdot),$
- $\mathcal{H} = \langle r \rangle, \ r \in GF(q)^*, \ \text{and} \ f: Z_{q-1} \to GF(q)^*; \ x \to r^x.$

²This means that $\log |n|(mt \log v)^{-1} \to 0$ as $|n| \to \infty$.

Clearly f is a homomorphism of \mathcal{G} onto \mathcal{H} . This is a discrete logarithm proof which looks very similar to the Beth scheme, except for the relation between the public and secret keys of A and the consequences in Step 4. Let us discuss this difference. We have,

$$I_j = f(S_j) = r^{S_j} = \alpha^{kS_j} = \alpha^{ID_j} \alpha^{-x_j r} = \alpha^{ID_j} y_j^{-r},$$

using (1), so that we can rewrite (2) in the form

$$f(u) = r^{u} = z^{-1} \alpha^{\sum_{j} ID_{j}b_{j}} \prod_{j} y_{j}^{-rb_{j}} = z^{-1} \prod_{j} (\alpha^{ID_{j}} y_{j}^{-r})^{b_{j}} = z^{-1} \prod_{j} I_{j}^{b_{j}}$$

This is the same as the verification in our protocol for Y = u, $Z = z^{-1}$ and $\mathbf{q} = \mathbf{b}$. So the Beth scheme is essentially a particular case of our protocol. Observe that the verifier can use the I_j 's instead of the $\alpha^{ID_j}y_j^{-r}$, which simplifies the computations (if $0, 1 \in Q$ then the verifier can obtain I_j by sending the query $\mathbf{q} = q_1 \cdots q_m$ with all entries zero except the *j*-th entry which is 1). The difference between the Beth scheme and our scheme is that in the former it is hard for the user to make her own ID_j 's, whereas in the latter it is trivial to make the I_j 's. This is exactly the same difference as exists between the Fiat-Shamir versions in [8] and the Fiat-Shamir scheme of [7,9].

III. Fundamentals of the scheme

Theorem 1 If the conditions of Section II.1. are satisfied with $\mathcal{G} = \mathcal{G}' = \mathcal{G}''$, then the conditions in Section II.2. are also satisfied.

Proof. Trivial (take a = 1, $\psi = 1$ and $S = Y^{-1}Y'$).

Theorem 2 If the Conditions 1-4 of Section II.2. are satisfied, if $m \log |Q| \leq \log |n|$ and if t is bounded by $\log |n| \prec t \leq |n|^c$, c any constant, then the protocol in Section II. is a (perfect) zero-knowledge proof of membership for the language $\mathcal{L} = \bigcup_n \mathcal{H}_n$. If, furthermore, Conditions 5 are satisfied³ then the protocol is a (perfect) zero-knowledge proof of knowledge for the predicate P(I, S).

Proof. (sketch) We remark that we do not rely on unproven assumptions.

Completeness: (If A is genuine then B accepts the proof of A with overwhelming probability)

This is obvious since the mapping f is an operation preserving mapping.

³We can relax the condition $n = |\mathcal{H}|$ to $n = |\mathcal{G}|$ in this case.

Soundness: (If A' is crooked then the probability that B accepts the proof of A' is negligible)

The proof is an extension of the one in Feige-Fiat-Shamir [7]. Suppose that A' convinces B with non-negligible probability. We consider the execution tree T of (A', B): this is a truncated tree which describes the responses of A' to the requests of B. A vertex of T is super heavy if it has more than $\omega = 1 - \frac{1}{4}\psi$ sons (ψ is the constant in Condition 3.a of Section II.2.; in [7] we have heavy vertices with $\omega = \frac{1}{2}$). In the final paper we will show that the condition $\log |n| \prec t$ guarantees that T has at least one super heavy vertex. The following Lemma makes it possible to show that there exist S_i such that $P(I_i, S_i)$ for all j.

Lemma 1: At a super heavy vertex, for each $j \in [1:m]$ there exists at least one pair of queries $\mathbf{q} = (q_i)$, $\mathbf{q}' = (q'_i)$ with $q'_i = q_i$ for all $i \neq j$ and $q'_j = q_j + a$, which A' answers correctly.

Proof: Will be given in the full paper.

Apply this Lemma to a super heavy vertex. For each pair of sons we have:

$$f(Y) = f(X) I_1^{q_1} \cdots I_{m-1}^{q_m} I_m^{q_m}$$

$$f(Y') = f(X') I_1^{q'_1} \cdots I_{m-1}^{q'_{m-1}} I_m^{q'_m}$$

with f(X) = f(X'). To find the S_j we use a recursive procedure: first we find S_m and then we use it to calculate S_{m-1} and continue in the same way until we find all the S_j . Suppose that **q** and **q'** differ in the last place. Since $I_m^{q_m}$ and $I_m^{q'_m} = I_m^{q_m+a}$ are units the equations above can be written in the form,

$$f(Y) I_m^{-q_m} = f(X) I_1^{q_1} \cdots I_{m-1}^{q_{m-1}}$$

$$f(Y') I_m^{-q_m-a} = f(X') I_1^{q_1} \cdots I_{m-1}^{q_{m-1}},$$

so that $f(Y') = f(Y) I_m^a$. Then using Condition 3.a we obtain an S_m such that $P(I_m, S_m)$. This solution is not necessarily the S_m , but it is a good substitute.

This procedure is repeated to find $S_{m-1}, S_{m-2}, \ldots, S_1$. This completes the proof, for proofs of membership. For proofs of knowledge we have to show that there exists a polynomial time Turing machine, the *interrogator* M, that will extract the secrets from A'. M is allowed to reset A' to any previous state: this means that it can "obtain" all the sons from a super heavy vertex and hence all the S_j in the manner described earlier, this time using Condition 5.b. It remains to show how the interrogator can find a super heavy vertex in polynomial time. In the extended proof we will show that:

Lemma 2: At a suitable level i of the execution tree the fraction of super heavy vertices is at least γ , where $\gamma \in (0, 1]$ is a constant.

Proof: Will be given in the full paper.

In the final paper we prove that M will find a super heavy vertex (with overwhelming probability) in polynomial time.

Zero-knowledge: (For each B' there exists a probabilistic expected polynomial time Turing Machine $M_{B'}$ which can simulate the communication of A and B') The simulator proceeds as follows:

- Step 1 $M_{B'}$ chooses a random X from \mathcal{G}'' (using Condition 4.a) and a random vector **q** from Q^m and sends to B': $Z = f(X)(\prod_i I_j^{q_j})^{-1}$.
- Step 2 $M_{B'}$ reads the answer of B', q'. If q' = q then it sends X to B'. If $q' \neq q$ then it rewinds B' to its configuration at the beginning of the current iteration and repeats Step 1 and Step 2 with new random choices.

When all the iterations are completed, $M_{B'}$ outputs its record. The expected number of probes for a complete run is $t |Q|^m = O(|n|^c)$. Observe that the probability distribution output by $M_{B'}$ is identical to that of the transcript set of (A, B'). So this scheme is a *perfect* zero-knowledge scheme [11].

IV. Conclusion

In this paper we have shown that the schemes described in [1,4,6,7,8,9,12] are all particular cases of one protocol. This protocol has been further generalized to include the Goldreich-Micali-Wigderson graph isomorphism scheme [10], the Chaum-Evertse-van de Graaf-Peralta scheme [5], and schemes based on encryption functions, such as the Brassard-Chaum-Crepeau [3] scheme and the Goldreich-Micali-Wigderson proof of 3-colourability [10]. However this is not in the scope of the monoid based framework.

REFERENCES

- T. Beth. A Fiat-Shamir-like authentication protocol for the El-Gamalscheme. In C. G. Günther, editor, Advances in Cryptology, Proc. of Eurocrypt'88 (Lecture Notes in Computer Science 330), pp. 77-84. Springer-Verlag, May 1988. Davos, Switzerland.
- [2] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In Proceedings of the twentieth ACM Symp. Theory of Computing, STOC, pp. 103-112, May 2-4, 1988.

- [3] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences, 37(2), pp. 156-189, October 1988.
- [4] D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In D. Chaum and W. L. Price, editors, Advances in Cryptology — Eurocrypt'87 (Lecture Notes in Computer Science 304), pp. 127-141. Springer-Verlag, Berlin, 1988. Amsterdam, The Netherlands, April 13-15, 1987.
- [5] D. Chaum, J.-H. Evertse, J. van de Graaf, and R. Peralta. Demonstrating possession of a discrete logarithm without revealing it. In A. Odlyzko, editor, Advances in Cryptology. Proc. Crypto'86 (Lecture Notes in Computer Science 263), pp. 200-212. Springer-Verlag, 1987. Santa Barbara, California, U.S.A., August 11-15.
- [6] Y. Desmedt. Subliminal-free authentication and signature. In C. G. Günther, editor, Advances in Cryptology, Proc. of Eurocrypt'88 (Lecture Notes in Computer Science 330), pp. 23-33. Springer-Verlag, May 1988. Davos, Switzerland.
- [7] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of Cryptology, 1(2), pp. 77-94, 1988.
- [8] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In A. Odlyzko, editor, Advances in Cryptology, Proc. of Crypto'86 (Lecture Notes in Computer Science 263), pp. 186– 194. Springer-Verlag, 1987. Santa Barbara, California, U. S. A., August 11-15.
- [9] A. Fiat and A. Shamir. Unforgeable proofs of identity. In Securicom 87, pp. 147-153, March 4-6, 1987. Paris, France.
- [10] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In The Computer Society of IEEE, 27th Annual Symp. on Foundations of Computer Science (FOCS), pp. 174-187. IEEE Computer Society Press, 1986. Toronto, Ontario, Canada, October 27-29, 1986.
- [11] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. Siam J. Comput., 18(1), pp. 186-208, February 1989.
- [12] L.C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In C. G. Günther, editor, Advances in Cryptology, Proc. of Eurocrypt'88 (Lecture Notes in Computer Science 330), pp. 123-128. Springer-Verlag, May 1988. Davos, Switzerland.
- [13] R. Impagliazzo and M. Yung. Direct minimum-knowledge computations. In C. Pomerance, editor, Advances in Cryptology, Proc. of Crypto'87 (Lecture Notes in Computer Science 293), pp. 40-51. Springer-Verlag, 1988. Santa Barbara, California, U.S.A., August 16-20.