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Abstract

In this paper, a new class of zero knowledge interactive proofs, a divertible zero knowl-
edge interactive proof, is presented. Informally speaking, we call (A,B,C), a triplet of
Turing machines, a divertible zero knowledge interactive proof, if (A,B) and (B,C) are
zero knowledge interactive proofs and B converts (A,B) into (B,C) such that any evidence
regarding the relationship between (A,B) and (B,C) is concealed. It is shown that any
commutative random self-reducible problem, which is a variant of the random self-reducible
problem introduced by Angluin et al., has a divertible perfect zero knowledge interactive
proof. We also show that a specific class of the commutative random self-reducible prob-
lems have more practical divertible perfect zero knowledge interactive proofs. This class of
zero knowledge interactive proofs has two sides; one positive, the other negative. On the
positive side, divertible zero knowledge interactive proofs can be used to protect privacy
in networked and computerized environments. Electronic checking and secret electronic
balloting are described in this paper to illustrate this side. On the negative side, iden-
tification systems based on these zero knowledge interactive proofs are vulnerable to an
abuse, which is, however, for the most part common to all logical idenification schemes.
This abuse and some measures to overcome it are also presented.
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1. Introduction

In this paper, we consider the following question: Let (A, B) be a zero kmowledge
interactive proof (ZKIP) system regarding a problem, where A is a prover and B is a
verifier. Can B prove this problem to another machine C in a zero knowledge manner
under the condition that B does not leave any evidence of his utilizing A’s power in order
to prove it to C7 In other words, this condition can be described as follows: B does
not leave any evidence of the relationship between the A-B interactions and the B-C
interactions. In many applications of this class of zero knowledge interactive proofs, this
condition plays an essential role.

First, a new class of zero knowledge interactive proofs is defined, divertible zero knowl-
edge interactive proofs, which satisfies the above-mentioned question. A new class of
problems, commuialive random self-reducible (CRSR) problems, are also defined. Basi-
cally, these are a variant of the random self-reducible problems introduced by Angluin et
al., [AL] and Tompa et al., [TW]. We show that any CRSR problem has a divertible perfect
zero knowledge interactive proof. We also show that a specific class of CRSR problems,
endomorphic CRSR (ECRSR) problems, have more practical (multi-keys and higher degree
version) divertible perfect zero knowledge interactive proofs.

Divertible zero knowledge interactive proofs have two sides; one positive, the other
negative. On the positive side, this class of zero knowledge interactive proofs can be
used to protect privacy in networked and computerized situations. For example, a blind
digital signature scheme based on divertible zero knowledge interactive proofs can be con-
structed. The blind digital signature schemes based on the RSA scheme and the GMR
scheme [GoMiRi] have been proposed for electronic check protocols and electronic secret
ballot protocols [C1, C2, Oh2, Da]. However, the scheme based on the RSA is not prov-
ably secure against adaptive chosen message attacks and is not efficient. The scheme
based on the GMR is provably secure against adaptive chosen message attacks under some
reasonable assumptions but is not efficient. In contrast, our scheme, based on divertible
zero knowledge interactive proofs, is provably secure against adaptive chosen message at-
tacks under some assumptions [MS, S] and is efficient when some efficient problems (e.g.,
square root mod/N) are used. In this paper, we show two applications of divertible zero
knowledge interactive proofs: one for electronic checking, and the other for secret elec-
tronic balloting. As a different type of application, this class of zero-knowledge proofs
can be used to construct subliminal-channel-free identification/signature systems based on
zero-knowledge proofs in a manner similar to that shown by Desmedt et al., [DGB, De].

On the negative side, we show a new abuse of divertible zero knowledge interactive
proofs, which is related to the mafia fraud described in [DGB]. These abuses, however, are
for the most part common to all logical identification schemes, in which security depends
only on secret information. In our abuse, Bob can pass himself off as Alice to anyone, when
Alice proves her identity to Bob, and he conceals any evidence regarding the relationship
between Bob’s proof and Alice’s proof. That is, although Bob proves himself to be Alice
with Alice’s help, he conceals any evidence that he used her help. To illuminate this
situation, we discuss a number of measures for overcoming these abuses.

Note: The protocol described in [DGB] as a subliminal-channel-free identification system
based on the Fiat-Shamir scheme satisfies the property of divertible zero knowledge inter-
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active proofs. That iS, although the notion of divertible zero-knowledge interactive proofs
has not been proposed previously, an implementation of this class of zero knowledge in-
teractive proofs based on the Fiat-Shamir scheme has been shown in [DGB], where this
protocol corresponds to a protacol to be shown in Appendix B.

2. Divertible zero knowledge interactive proofs

There are two types of interactive proofs. One is an interactive proof for member-
ship in language L, in which a membership of an instance in language L is demonstrated
[GMR]. The other is an interactive proof for posscssion of information, in which a prover’s
possession of information is demonstrated [FFS, TW]. In this paper, we concentrate on the
interactive proof for possession of information. The results in this paper can be applied to

the interactive proof for language membership.

(A4, B) is an interactive pair of Turing machines, where 4 is the prover, and B is the
verifier [GMR, TM]. Let T € {4, B}. T(s) denotes T begun with s on its input work tape.
(A, B)(z) refers to the probability space that assigns to the string o the probability that
(4, B), on input z, outputs o. (A(s),B(t))(z), A’s history, denotes the triplet (z, 5,0,™m),
where p is the finite prefix of 4’s random tape that was read, and m is the final content of
the communication channel tape on which B writes. Similarly, (A(s),B(¢))(z), B’s history,
denotes the triplet (z,?,p0',m’), where p’ is the finite prefix of B’s random tape that was
read, and m’ is the final content of the communication channel tape on which A writes.
B# means B with oracle A, where B4’s oracle tapes correspond to B’s communication

channel tapes with A. R C X x Y 15 a relation.

Definition 1.  An interactive triple of Turing machines (A, B,C) is a divertible (com-

pulational/perfect) zero knowledge interactive proof that the prover can compute some y

satisfying (z,y) € R, if the following conditions hold.

(i) {4, B®) is a (computational/perfect) zero knowledge interactive proof that the prover
can compute some y satisfying (z,y) € R [TW].

(i) (B4, C) is a (computational/perfect) zero knowledge interactive proof that the prover
can compute some y satisfying (z,y) € R.

(iii) Only A can compute some y satisfying (z,y) € R.

(iv) For any prover A* accepted by a valid verifier C, any verifier C*, any (z,y) € R, and
any strings s and ¢, ((A*(y, s),BC ") (z), (BA"W:*) .C*(¢))(z)) and ((A*(y, 5),C)(=),
(A(y),C*(t))(z)) are (polynomially indistinguishable/equivalent), where A is a valid

prover.

3. Commutative random self-reducible problems and divertible perfect zero
knowledge interactive proofs

3.1 Commutative random self-reducible

Definition 2.  Let A be a countable infinite set. For any N € A, let [NV| denote the
length of a suitable representation of NV. For any N € N, let Xy, Y» be finite sets, and
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Ry C Xy x Yy be a relation. Let

domRy = {z € Xy | (z,y) € Ry for some y € Yy}

denote the domain of Ry,

Ryn(z) ={y| (z,y) € Rn}

the tmage of z € X, and

Rnv(Xn)={y|(=,y) € Ry,z € Xy}

the tmage of Ry.

R is commuiative random self-reducible (CRSR) if and only if there is a polynomial time
algorithm A that, given any inputs N € N, z € domRy, and r € Ry(Xn), outputs
z' = A(N,z,r) € domRy satisfying the following five properties.

R1.

R2.

R3.

R4.

RS.

If r is randomly and uniformly chosen on Ry(Xy), then z' is uniformly distributed
over domRy.

There is a polynomial time algorithm that, given N, z,r, and any y’ € Rx(z’), outputs
y € Ry(2).

There is a polynomial time algorithm that, given N, z,r, and any y € Ry (z), outputs
some y' € Ry(z'). I, in addition, » is randomly and uniformly chosen on Ry(Xw),
then g’ is uniformly distributed on Ry(z’).

A law of composition e : Ry (Xn) x Ry(Xn) — By (Xy) is defined, and (Ry(Xn), ®)
is a commutative group. In addition, the following relation holds.

(zlyy.r) € RN

There is a polynomial time algorithm that, given N,z, and z’, outputs some z* €
domRy such that (z*,7"1) € Ry.

In the conditions for CRSR in Definition 2, R1-RJ are the same as those for random

self-reducible (RSR) shown in [TW], but R4 and R5 are added. In CRSR, 7 € Ry (XnN)
replaces r € {0,1}* from RSR. Therefore, the set of CRSR relations is a subset of RSR

relations.

Example 1. Let a function fy : Y — X as follows:
(1) Laws of composition x : X x X — X and 0 : ¥ x ¥ — Y are defined, and (X, %),

(Y,0) are commutative groups.

(2) fn is homomorphic. That is,

fN(l/l ° 3/2) = fN(yl) * v (y2),

where y1,y2 € Y.

(3) fn is regular. Here, fy is regular [GKL] if there exists a function m(:) such that for

every £ € X the cardinality of Ry () equals m(|z|), where Ry (z) = {y | fx(y) =z €
X,yeY}
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(4) For any y € Y, if r is randomly and uniformly chosen on Y, then y * r is uniformly

distributed over Y.
(5) There are polynomial time algorithms to compute laws of composition * and o, and

to take inverses of these groups.
Then, the relation R is commutative random self-reducible, if

(2, fn(2)) € Rn,
domXy = X,
Ry(Xy) =Y,

A(N,z,r) =z = fn(r)

Example 2. The following three examples E1, E2, and EJ are random self-reducible.
Among them, E1 and E2 arc comumutative random self-reducible, because they are in-
cluded in Example 1. However, EJ is not commulalive random sell-reducible, because
commutativity of a group for the condition R4 does not hold.
E1 (square roots mod ¥).

(z = y* mod N,y) € Ry,

A(N,z,r) = r*z mod N.

E2 {discrete logarithms).
(z=a’ mod p,y) € R(p,a’),

A((p,a),z,r) = a"z mod p.

E3 (graph isomorphism).
(G' = n(G), n) € Rg,

A(G, G ¢) = 6(G),

where G and G’ are graphs, and 7 : G — (' and ¢ : G’ — G are isomorphic transforma-
tions on graphs.

The following proposition is a collorary of Theorem 4 in [TW].

Proposition 1.  On inputs N and z, there is a pclynomial time perfect zero knowledge
interactive proof that the prover can compute some y satisfying (z,y) € Ry, if R satisfies
the following conditions:
TO R is CRSR.
T1 There is a probabilistic polynomial time algorithm that, given N,z’, and ¢/, deter-
mines whether (z',y') € Ry
T2 There is a probabilistic polynomial time algorithm that, given N, outputs random
pairs (¢',y') € Ry with ' uniformly distributed over domRy and y' uniformly
distributed over Ry (z’).

Theorem 1.  Let the relation R be CRSR and satisfy T1 and T2. Then, on inputs
N and z, there is a polynomial time divertible perfect zero knowledge interactive proof
(A, B, C) that the prover can compute some y satisfying (z,y) € Ry.



Proof Sketch:

139

We start by describing a construction of divertible perfect zero knowledge interactive proof
(A4, B,C) that the prover can compute some y satislying (z,y) € .

Construction: On inputs N and z, the (4, B, C) procedure is as follows.
The following procedure is repeated t = O(|N|) times, where z €z X denotes that z is

uniformly and randomly chosen on X.

(Procedure)

r erRN (Xn)

x' =A(N, x, r)

[z=r (if B’ =0)

z=y *r (otherwise) ——mMmMM

(Relationship among variables when e = 1)

A (N, x,

A (N, x7,

A

r) =

v
X

v

u) =x"

R

B C
eer (0, 1}
uegr RN (Xn)
x" =A (N, x°, u)
x*=x' (if e=0)
(x*, r~1)e Ry
(otherwise)
X"
>
B8
< Ber (O, 1}
B' =5Be
z' =uezl-2e
2
> ”
X =
A(N, x, z')7?
(it B=0)
(x ", z' )eRn?
(otherwise)
v
o7
yer

s (yer)teu
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Correctness:  Clearly, this construction satisfies conditions (i), (ii), and (iii) of Definition
1. Thus, we will show that the construction satisfies condition (iv). First, since e is
uniformly and randomly chosen on {0,1}, then 3’ is uniformly distributed over {0,1}
independent from £. Since u is uniformly and randomly chosen on Ry{Xn), then, from
condition R1 of Definition 2, &” is uniformly distributed over Ry (Xy) independent from

. In addition, from condition R3 of Definition 2, z' is uniformly distributed over a set
Z’ = {z' | ¢ is validly verified by C }. Thus, the construction satisfies condition (iv) of
Definition 1. QED

The parallel version of the divertible zero knowledge interactive proof can be con-
structed in manners similar to those of the Fiat-Shamir scheme [[S, FFS]. (Here, its
parallel version is not a zero knowledge interactive proof, but it has been proven to reveal

no useful knowledge {FFS, OO, Ok].

3.2 Divertible zero knowledge interactive proof for digital signatures

An application to digital signatures of zero knowledge interactive proofs is shown in
[FS, MS, GQ2, OO]. In this section, a blind digital signatures scheme is shown based on
the divertible zero knowledge interactive proofs.

Definition 3.  An interactive couple of Turing machines (4, B) is a divertible (com-
pulational/perfect) zero knowledge interactive proof for digital signatures, if the [ollowing
conditions hold.
(i) (A, B) is a parallel version of (computational/perfect) zero knowledge interactive proof
that the prover can compute some y satisfying (z,y) € R.

(ii) B4 outputs a digital signature z of m based on the (computational/perfect) zero
knowledge interactive proof with respect to (z,y) € R, where m is a message chosen
by B.

(iii) Only A can compute some y satisfying (z,y) € R.

(iv) For any message m chosen by any party, any prover A* accepted by a valid verifier
C, and any string s, ((A*(y, 8),B(m))(z), Z(B* W*)(m,z)) and ((A*(y,s),C)(=),
Z(A(y))(m,z)) are (polynormally 1nd15tmguxshable/equlvalent) where A 15 a valid
generator of digital signatures based on the (computational/perfect) zero knowledge
interactive proofls with respect to (&, y) € 2. Z(1)(m, x) denoles the probability space
that assigns to the signature z the probability that T outputs z, on input z and m.

Theorem 2. On inputs N and z, there is a polynomial time divertible perfect zero
knowledge interactive proof for digital signatures (A4, B) that the prover can compute
some y satisfying (z,y) € Ry, if the relation R is CRSR and satisfies T1 and T2’
T2’ There is a probabilistic polynomial time algorithm that, on input y’, outputs z'
satisfying (z/,3’) € Ry. I, in addition, ¢’ is randomly and uniformly chosen on
Rn(Xn), then z' is uniformly distributed on domy.
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Proof Sketch:
Counstruction.  On inputs NV and z, the procedure of (4, B) is as follows.

A B C
rierRuy (Xn)

>|eier {0, 1)
uy eryY

x" =

A (N; x|-1 U[)

Xi"=x" ({if e|=0)

(xi", 7' e Ry
(otherwise)

m : Nessage

Bi=hy (m, x17,

c,oxt")
Bi' =81@e)
B1' . . B¢
<
Z|1=ry Zy ot ot Zy
(if 8" =0) }l—m—mmm >
Z|=Yy *rI| zi' =u) ez 12l
(otherwise)
m, zi ozt o,
By " Bt
>i(xy" =
AN, x, z.")
(if p.=0)
{(x:1", 21" )e Rn
(otherwise)
Bi=h; (m, xi”
"xt") ?

Correctness. It can be proven in a manner similar to the proof of Theorem 1 that this
construction satisfies conditions (i)-(iv) of Definition 3. QED.

Note: When we replace §; by «”; (i = 1,...,t) as a part of signature information of m,
we do not need to replace condition 72 by T2'.

4. Practical implementation of divertible zero knowledge interactive proofs
Some practical protocols such as multi-key version and higher degree version [C3, I'S,
FFS, GQ, OO, Ohl] have been proposed based on a basic zero knowledge proof protocol
for quadratic residuosity {GMR] or discrete logarithm problem.
In this section, we show that a specific class of CRSR problems, erndomorphic CRSR
(ECRSR) problems, has multi-keys and higher degree version divertible zero knowledge
interactive proofs.
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Definition 4. For any N € NV, let Xy be a finite set, and Ry € Xy x Xy be a relation.

R is endomorphic commutative random self-reducible (ECRSR) if

(1) A law of composition e : Xy x Xy — Xy is defined, and (X, ) is a commutative
group.

(2) (= =y*,y) € Ry, where z € Xy, y € Xy, L is an integer, and

L times

L ™ e,
y- =ye---ey,

(3) There exists a function m(-) such that for every = € dom Ry the cardinality of Ra(z)
equals m(|N|).

(4) For any y € Xy, if r is randomly and uniformly chosen on Xy, then yer is uniformly
distributed over X .

(5) There are polynomial time algorithms to compute the law of composition e, and to
take inverse of this group.

Here, using ECRSR relations, we show a protocol that is a divertible zero knowledge
interactive proof with multi-keys and higher degree.

Protocol (multi-keys and higher degree version divertible zero knowledge interactive proof)

On inputs N, L and z1, z3,..., =k, the following procedure is repeated t = O(|NV}) times.
A B C

r e Ry (Xn)

x' =fxinr x > eier (0,1,..,L-1)

uerRn (XN)

<"
>
B= (Bi,..,B8x)
< gyer {0,1..,L-1)
B'ir=Bi—e; (modL)
' 2'= (8'4)
z=r'-1fly;ﬂ‘
i z
> -cy
z'=u> z «[lx;
i

1 (Bi<er)

0 (otherwise)

Ci
Ci

> .2 L _ 1-8
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Theorem 3. If the relation R is ECRSR, then this protocol is a polynomial time
divertible perfect zero knowledge interactive proof that the prover can compute some y;
satisfying (2:,v:) € Ry for all i € {1,2,...,k}.

Notes:

(1) Variations of this protocol are shown in Appendix B, which are based on the Fiat-
Shamir type protacol (Appendix A).

(2) When t =1,k - |Z| = O(]N|), this protocol has not been proven to be zero knowledge,
however, it has been proven to reveal no useful knowledge [FFS, OO, Ok].

(3) By combining the ideas shown in Section 3.2 and this section, we can easily construct
multi-keys and higher degree version divertible perfect zero knowledge interactive proofs
for digital signatures.

5. Applications
In this section, the positive properties of divertible zero knowledge interactive proofs

are shown. They can be useful for electronic checking and secret electronic balloting. In

these applications, divertible zero knowledge interactive proofs for digital signatures shown
in Section 3.2 are used as follows:

(1) After authority A checks the identity of member B, A gives B his digital signature on
a message made by B through the zero knowledge interactive proofs between A and
B. However, A cannot see his own signature or the message that he signs. That is, 4
makes a blind signature.

(2) B presents A’s signature on B’s messsage to a verifier C. C checks whether the
message was signed by A. However, C cannot determine who made the message.

(3) Even if A and C are colluding with each other, they cannot know who made B’s
message with A’s signature. This is because there is no information that shows the
relationship between the A-B interaction for the generation of 4’s signature and B’s
message with A’s signature.

When the above-described digital signature protocol is used for an electronic checking
protocol, A is a banker, B a customer and C' the owner of a shop. A gives B a check, after
A checks the identity of B. B uses the check at C’s shop, where C checks the validity
of the check. Even if A and C are in collusion with each other, they cannot know who
used the check at C’s shop. This protocol is useful for privacy protection regarding this
customer’s activities.

On the other hand, when this digital signature protocol is used for a secret ballot, 4
is a ballot publisher, B a voter, and C a ballot counter. After A checks the validity of B
based on voter registration records, A signs (stamps) the outside of an unopened envelope
that contains a ballot for B and a facing piece of carbon paper. B takes B’s ballot with
the carbon image of 4’s signature out of the envelope, and sends it to C. C counts it,
after C' checks the validity of the carbon image of the signature on the ballot. Even if A
and C are in collusion with each other, they cannot know whose ballot it is. Therefore,
the privacy of each voter is guaranteed.

The above check protocol and secret ballot protocol were proposed in [C1, C2, Oh2].
However, the digital signatures used in these protocols are the RSA scheme or an RSA-like
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scheme. Hence, lhese protocols are not provably secure and are not efficient. In conlrast,
when divertible zero knowledge interactive proofs for digital signatures are used for these
protocols, they are provably secure under some conditions and are efficient if square root
mod NV is adopted as a proof problem.

6. Abuses and the protective measures

In this section, we turn to the negative side of divertible zero knowledge interactive
proofs. We show some abuses and a number of measures to counter them.

6.1 Abuses

(1) Identification based on divertible zero knowledge interactive proofs

Let us explain our abuse by using an example similar to that shown in [DGB]. A(lice)
identifies herself to B(ob). B impersonates A and claims to be A. Then, C(harlie) checks
the identity of B who is claiming to be A. Even if A and C are aware of the abuse, they
cannot obtain any evidence but the relationship between the time when A claimed to be
A and that B claimed to be A. To make it easier understand, we assume B and C are the
owners of a restaurant and a jewelry shop with electronics payment respectively, where
customers can pay electronically. A is a customer of B’s restaurant. At the moment that
A is ready to pay and to prove her identity to B, B determines to buy an expensive thing
at C’s shop, and C is starting to check B’s (in fact A’s) identity. While C is checking the
identity of B, B is checking the identity of A, where the interaction between A and B is
affected by the interaction between B and C and vice-versa. In this abuse, B leaves no
evidence that proves the relationship between the A- B interaction and the B-C interaction.

(2) Digital signatures based on divertible zero knowledge interactive proofs

By using the divertible zero knowledge interactive proof, we can construct an abuse
of digital signatures, as described below.

A identifies herself to B. B tries to forge A’s signature on any message made by B.
Then, C checks the validity of the forged signature, which , B is claiming, was generated
by A. Even if A and C are aware of the abuse, they cannot obtain evidence of it. For
illustractive purposes, consider an example similar to that in (1). B is a shop owner, and C
is a banker. A is a customer of B’s shop. While B is checking the identity of A, B is forging
A’s signature on a promissory note to C’s bank written by B. Here, B’s interaction with 4
is determined according to the promissory note. In this abuse, B leaves no evidence which
proves the relationship between the A-B interaction and the signature message forged by

B.

6.2 Protective measures

Here, we show two types of measures to protect against the above-described abuses;
operational measures and algorithmic measures. Note that in the applications shown
in Section 5, only operational measurcs can Le used to counler these abuses, because
algorithmic measures cannot used without losing the positive properties of divertible zero
knowledge interactive proofs.
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(1) Operational measures

Regarding the abuse in identification, essentially there is no operational protective
measure except using a unique physical description as mentioned in [DGB]. In order to
protect against the abuse in digital signatures, using a key for digital signatures different
from that for identification is effective. Then, even if a forged signature message from
Alice is made by Bob through the abuse described in Section 6.1, she can claim that the
signature is invalid, although it is valid with respect to her identification key.
(2) Algorithmic measures

For these divertible perfect zero knowledge interactive proofs, it is essential that a
verifier can determine the values of random bits to be sent to a verifier. Therefore, there
are algorithmic measures in which the values are not determined by only the verifier. Two
measures are shown in the following.
(i) Measure 1

In the first measure, the values of random bits to be sent from a verifier to a prover are
determined by the cooperation of the verifier and the prover. Here, the values cannot be
controlled by either the prover alone or the verifier alone. A coin flipping protocol for two
persons has been shown in [B, BL]. In this measure, the previous perfect zero knowledge
interactive proofs are used, replacing the verifier’s coin flips with two people’s coin flips.
The other procedures in the divertible perfect zero knowledge interactive proofs are the
same.
(i) Measure 2

Recently, non-interactive zero knowledge proofs have been proposed {[BFM, DMP].
In these zero knowledge proofs, the prover and verifier share common random bits before
the prover starts the proofs. Therefore, these proofs are algorithmic measures to protect
against this abuse, because the common random bits are not determined only by the
verifier.

7. Open problems
Many problems regarding the divertible zero knowledge interactive proofs remain

open. Here, we introduce some typical ones:

(1) What class of relations has divertible zero knowledge interactive proofs except CRSR
relations? (Do all NP relations have divertible zero knowledge interactive proofs?)

(2) What class of relations has divertible perfect zero knowledge interactive proofs ex-
cept CRSR relations? (Do all RSR relations have divertible perfect zero knowledge
interactive proofs?)

(3) What class of relations has multi-keys or higher degree version divertible zero knowl-
edge interactive proofs except ECRSR relations? (Do all CRSR relations have multi-
keys or higher degree version divertible zero knowledge interactive proofs?)

Acknowledgements: The authors would like to thank Prof. Adi Shamir for his valuable
suggestions, especially on the formal definition of divertible zero knowledge interactive
proofs. They would also like to thank Prof. Yvo Desmedt for informing them of the
related protocols in [DGB].
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Appendix A

In this appendix, we show two types of perfect zero knowledge interactive proofs
based on the commmutative random self-reducible relation. One is the Tompa-Woll type
[TW], and the other is the Fiat-Shamir type. Although all of the protocols shown in this
paper are based on the Tompa-Woll type, we can construct similar protocols based on the
Fiat-Shamir type, including the multi-keys and higher degree versions (Appendix B).

(Tompa-Woll type)

Prover Verifier
r er Rn (Xn)
x' =A (N, x, r) x’
>
B BER (O.v l)
<

Z=r (if g=0) z

{z=y-r (otherwise) e > x" =A(N, x, z)?
(if B=0)

(x", z)e Rn?
(otherwise)
(Fiat-Shamir type)
Prover Verifier
(x", r) € Rn x'
>
8 Ber {0, 1)
<

z=r (if g=0)

z=y~1 e r (otherwise) ——mM8M8M8M™— > (x', z)e Ry ?
(if 8=0)

x' =A (N, x, z) 7

(otherwise)
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Appendix B

In this appendix, we show some protocols of divertible zero knowledge interactive
proofs based on the Fiat-Shamir type (Appendix A), including the multi-keys and higher
degree versions.

Protocol B1 is the Fiat-Shamir type of the protocol shown in the proof of Theorem 1
(basic version). In this protocol, we must replace condition R5 with R5’ shown as follows:

R5’. There is a polynomial time algorithm that, given N, z, and 2', outputs some z* €
dom Ry such that (z*,yer~1) € Ry.

Prolocol B2 is the IMal-Shamir type of the protocol shown in Section 4 (inulti-keys
and higher degree version). The protocol described in [DGB] as a subliminal-channel-
free identification system based on the Fiat-Shamir scheme corresponds to the quadratic
version of Protocol B2.

(Protocol Bl)
On inputs N and z, the following procedure is repeated ¢ = O(|N|) times.

(x", r) Ry x'
>|eer (0, 1)
uerRn (Xn)
x” =A (N, x°, u)
x*=x" (if e=0)
(X.l Y'I"I)ERN

(otherwise)
X"
>
B
< BER (Or l)
B' =8®e
X
<
z=r (if B8' =0) z
z=y~! « r (otherwise) >
Z' =u.zl-20
-
>
X "=
A(N, x, z' )7
(if g=1)
(x ", z" }eRn?

(otherwise)
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(Protocol B2)
On inputs N, L and z;, z3,..., 2, the following procedure is repeated ¢ times.

!
Note: We can replace z” = ut e 2’ o [[;2;%, z = re [,y fiZ =ueze[[ 2%, and
1

" = Z'L'st?i with 27 = ul ez’ 0[], 2, z = roH,.y‘.ﬁ", 2 =uveze ][,z and
z”'_'zlL.Hi zi—ﬂi'

A B C
r er Ry (Xn)
, L '
x'" =r X
>| erer (0,1..,L-1}
uerRy (Xx)
" L 1] _el
x"=u e x ]l x)
1
xII
>
B8 = (Blr--yak)
< B1er {011--1L'1)
B'1=81+e: (modL)
' B'= (8")
z=r 0y i <
i z
> z'=us z*I:Ixx_cl
i
ci=1 (B"1<ey)
¢ =0 (otherwise)
.7 ,L 8,
x"=1z -I;IXI
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