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Abstract 

In this paper, a new class of zero knowledge interactive proofs, a divertible zero knowl- 

edge interactive proof, is presented. Informally speaking, we call (A,B,C), a triplet of 

Turing machines, a divertible zero knowledge interactive proof, if (A,B) and (B,C) are 

zero knowledge interactive proofs and B converts (A,B) into (B,C) such that any evidence 

regarding the relationship between (A,B) and (B,C) is concealed. It is shown that any 

commuiaaive random self-reducible problem, which is a variant of the random self-reducible 

problem introduced by Angluin et al., has a divertible perfect zero knowledge interactive 

proof. We also show that a specific class of the commutative random self-reducible prob- 

lems have more pracfical divertible perfect zero knowledge interactive proofs. This clans of 

zero knowledge interactive proofs has two sides; one positive, the other negative. On the 

positive side, divertible zero knowledge interactive proofs can be used to protect privacy 

in networked and computerized environments. Electronic checking and secret electronic 

balloting are described in this paper to illustrate this side. On the negative side, iden- 

tification systems based on these zero knowledge interactive proofs are vulnerable to an 

abuse, which is, however, for the most part common to all logical idenification schemes. 

This abuse and some measures to overcome it are also presented. 
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1. Introduction 
In this paper, we consider the following question: Let ( A , B )  be a zero knowledge 

interactive proof (ZKIP) system regarding a problem, where A is a prover and B is a 
verifier. Can B prove this problem to another machine C in a zero knowledge manner 
under the condition that  B does not leave any evidence of his utilizing A’s power in order 
to prove it to C? In other words, this condition can be described as follows: B does 
not leave any evidence of the relationship between the A-B interactions and the B-C 
interactions. In many applications of this class of zero knowledge interactive proofs, this 
condition plays an essential role. 

First, a new class of zero knowledge interactive prooh is defined, diveriible zero knowl- 
edge interactive proofs, which satisfies the above-mentioned question. A new class of 
problems, c o r n m u f a i i v e  r a n d o m  self-reducible (CRSR) problems, are also defined. Basi- 
cally, these are a variant of the r a n d o m  self-reducible problems introduced by Angluin et 
al., [AL] and Tompa et al., [TW]. We show that any CRSR problem has a divertible perfect 
zero knowledge interactive proof. We also show that a specific class of CRSR problems, 
e n d o m o r p h i c  CRSR (ECRSR) problems, have m o r e  praciical (mu l t i - keys  a n d  higher degree 
ver s ion )  divertible perfect zero knowledge interactive proofs. 

Divertible zero knowledge interactive proofs have two sides; one positive, the other 
negative. On the positive side, this class of zero knowledge interactive proofs can be 
used to  protect privacy in networked and computerized situations. For example, a blind 
digital signature scheme based on divertible zero knowledge interactive proofs can be con- 
structed. The blind digital signature schemes based on the RSA scheme and the GMR 
scheme [GoMiRi] have been proposed for electronic check protocols and electronic secret 
ballot protocols [Cl, C2, Oh2, Da]. However, the scheme based on the RSA is not prov- 
ably secure against adaptive chosen message attacks and is not efficient. The  scheme 
based on the GMR is provably secure against adaptive chosen message attacks under some 
reasonable assumptions but is not efficient. In contrast(, our scheme, based on divertible 
zero knowledge interactive proofs, is provably secure against adaptive chosen message at- 
tacks under some assumptions [MS, S] and is efficient when some efficient problems (e.g., 
square root modN) are used. In this paper, we show two applications of divertible zero 
knowledge interactive proofs: one for electronic checking, and the other for secret elec- 
tronic balloting. As a different type of application, this class of zero-knowledge proofs 
can be used to  construct subliminal-channel-free identification/signature systems based on 
zereknowledge proofs in a manner similar to that shown by Desmedt et al., [DGB, De]. 

On the negative side, we show a new abuse of divertible zero knowledge interactive 
proofs, which is related to the m a f i a  f r a u d  described in [DGB]. These abuses, however, are 
for the most part common to all logical identification schemes, in which security depends 
only on secret information. In our abuse, Bob can pass himself off a.s Alice to anyone, when 
Alice proves her identity to Bob, and he conceals any evidence regarding the relationship 
between Bob’s proof and Alice’s proof. That is, although Bob proves himself to be Alice 
with Alice’s help, he conceals any evidence that he used her help. To illuminate this 
situation, we discuss a number of measures for overcoming these abuses. 

N o t e :  The protocol described in [DGB] as a subliminal-channel-free identification system 
baed  on the Fiat-Shamir scheme satisfies the property gf divertible zero knowledge inter- 
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active proofs. That  is, although the notion of divertible zero-knowledge interactive proofs 
has not been proposed previously, an implementation of this class of zero knowledge in- 
teractive proofs based on the Fiat-Shamir scheme has been shown in [DGB], where this 
protocol corresponds to  a protbcol to be shown in Appendix B. 

2. Divertible ze ro  knowledge interact ive proofs 

There are two types of interactive proofs. One is an interactive proof JOT member- 
ship in language L ,  in which a membership of an instance in language L is demonstrated 
[GMR]. The other is an intcractive proof /or posscss iun  o j  z7ijurnrct~ia7~, in which a provcr’s 
possession of information is demonstrated [FFS, TW]. In this  paper, we concentrate on the 
interactive proof for possession of information, The results in this paper can be applied to 
the interactive proof for language membership. 

( A ,  B )  is an interactive pair of Turing machines, where A is the prover, and B is the 
verifier [GMR, TM]. Let T E { A ,  B}.  T ( s )  denotes T begun with 3 on its input work tape. 
( A ,  B ) ( z )  refers to  the probability space that assigns to the string B the probability that 
( A ,  B ) ,  on input z, outputs Q. ( A ( s ) , B ( t ) ) ( z ) ,  A’s history, denotes the triplet (5, s , p , m ) ,  
where p is the finite prefix of A ’ s G d o m  tape that was read, and m is the final content of 
the communication channel tape on which 5 writes. Similarly, ( A ( s ) , B ( t ) ) ( z ) ,  - B’s history, 
denotes the triplet (z,t,p‘,m’), where p’ is the finite prefix of B’s random tape that 
read, and rn’ is the final content of the communication channel tape on which A writes. 
B A  means B with oracle A ,  where BA’s oracle tapes correspond to B’s communication 
channel tapes with A. R C X x Y is a relation. 

Definition 1. An interactive triple of Turing machines ( A ,  B ,  C) is a diverfible (corn- 
putaiional/perfect) zero knowledge interactive proof that the prover can compute some y 
satisfying (z, y) E R, if the following conditions hold. 
(i) ( A ,  Bc) is a (computational/perfect) zero knowledge interactive proof that the prover 

can compute some y satisfying (5, y) E R [TW]. 
(ii) ( B A ,  c) is a (computational/perfect) zero knowledge interactive proof that the prover 

can compute some y satisfying (2, y) E R. 
(iii) Only A can compute some y satisfying (2, y) E R. 
(iv) For any prover A’ accepted by a valid verifier C, any verifier C*, any (z, y) f R, and 

any strings s and t ,  ( (A*(y ,  S) ,B‘- (~) ) (Z) ,  (BA’(” ’ ) ,C*(t) ) (z))  and ((A*(y,  s),C)(z), 
(A(y ) , c* ( t ) ) ( z ) )  - are (polynomially indistinguishablefivalent), where A is a valid 
prover. 

3. Commuta t ive  random self-reducible problems and divertible per fec t  zero  
knowledge in te rac t ive  proofs  

3.1 Commuta t ive  random self-reducible 

Definition 2. Let Af be a countable infinite set. For any N E N ,  let IN1 denote the 
length of a suitable representation of N. For any N E N ,  let XN, YN be finite sets, and 



137 

RN C X N  x YN be a relation. Let 

domR,v = {x E X N  I (z,y) E RN for some y E Y N }  

denote the domain of Rlv, 
R N ( Z )  = {Y I (xiV) E R N )  

the image of x E XN, and 

the image of RN.  
R is commutative random self-reducible (CRSR) if and only if there is a polynomial time 
algorithm A that ,  given any inputs N E N, x E domR,v, and T E R,v(X,v), outputs 
z’ = A ( N ,  5, r)  E domR,v satisfying the following five properties. 
R1. If P is randomly and uniformly chosen on RN(XN), then z‘ is uniformly distributed 

R2. There is a polynomial time algorithm that, given N ,  x ,  r, and any y’ E RN(z’ ) ,  outputs 

R3. There is a polynomial time algorithm that, given N ,  I ,  r ,  and any y E R,(z), outputs 
some y’ E RN(z’) .  If, in addition, T is randomly and uniformly chosen on R,v(XN),  
then y’ is uniformly distributed on R N ( ~ ’ ) .  

R4. A law of composition 0 : R N ( X N )  x R N ( X N )  -+ R N ( X , ~ )  is defined, and ( R Y ( X N ) , * )  
is a commutative group. In addition, the following relation holds. 

over dOmRN.  

Y E R,v(s). 

R5. There is a polynomial time algorithm that,  given N , z ,  and x’, outputs some Z* E 
dornRN such that (x*, r-‘) E R N .  

In the conditions €or CRSR in Definition 2, R.l-R,3 are tlic smie as lliose lor i a m f o m  

self-reducible (RSR) shown in [TW], but R4 and R5 are added. In CRSR, T E R N ( X N )  
replaces T E ( 0 , l ) “  from RSR. Therefore, the set of CRSR relations is a subset of RSR 
relations. 

Example 1. Let a function f , ~  : Y -+ X as follows: 
(1) Laws of composition * : X x X -+ X and o : Y x 1. + Y are defined, and ( X , * ) ,  

(2) f N  is homomorphic. Tha t  is, 
(Y, 0) are commutative groups. 

where y1, yz E Y. 
(3) fN is regular. Here. f,v is regular [GIiL] if there exists a function in(.) such that  for 

every z E X the cardinality of R N ( z )  equals rn(lzl), where R N ( J )  = {y  I f ‘ v ( ~ )  = 2 E 
x, Y E Y). 
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(4) For any y E Y, if r is randomly and uniformly chosen on Y, then y * T is uniformly 

(5) There are polynomial time algorithms to coiiipute laws of composition * and 0 ,  and 
distributed over Y. 

to take inverses of these groups. 
Then, the relation R is commutative random self-reducible, if 

Example 2. The following three examples E l ,  E2, and E3 are random self-reducible. 
Among thcln, E l  and E2 arc coniriiutativc ra11don: sclf-rccluciblc, bccausc tllcy arc in- 
cluded in Example 1. however, E3 is not cominulative raiidoui self-reducible, because 
commutativity of a group for the condition R4 does not hold. 
E l  (square roots modN). 

(z = y2 mod N ,  y) E R,v, 

A ( N ,  r, r )  = r 2 z  mod N .  
E2 (discrete logarithms). 

(. = ay mod P ,  Y) E R(,,u), 
A ( ( p ,  a), z, r )  = art mod p .  

(G‘ = ?r(G), T )  E Rc,  
E3 (graph isomorphism). 

where G and C‘ are graphs, and T : G + G‘ and q5 : G’ --+ G” are isomorphic transforma- 
tions on graphs. 

The following proposition is a collorary of Theorem 4 in [TW]. 
Proposition 1. On inputs N and 2, there is a pdynomial time perfect zero knowledge 
interactive proof that the prover can compute some y satisfying (z, y) E RN, if R satisfies 
the following conditions: 

TO RisCRSR. 
T1 There is a probabilistic polynomial time algorithm that, given N ,  d, and y’, deter- 

mines whether (z’,y’) € RN. 
T2 There is a probabilistic polynomial time algorithm that, given N ,  outputs random 

pairs (z’, y’) E RN with z‘ uniformly distributed over damRN and y’ uniformly 
distributed over R ~ f z ’ ) .  

Theorem 1. Let the relation R be CRSR and satisfy T1 and T2. Then, on inputs 
N and z, there is a polynomial time divertible perfect zero knowledge interactive proof 
( A ,  B ,  C) that the prover can compute some y satisfying (z, y) E R N .  
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Proof Sketch: 
We start by describing a construction of divertible perfect zero knowledge interactive proof 
(A ,  5, C) that the prover can compute some y satisfyiiig (2, y) E RN.  
Construction: On inputs N and 2, the (A, B ,  C) procedure is as follows. 
The following procedure is repeated t = O(lN1) times, where z ER X denotes that 2 is 
uniformly and randomly chosen on X. 
(Procedure) 

A B C 

r E R R N  (XN) 
x' = A ( N ,  x, r )  

z - r  ( i f  4 '  = O )  
z = y - r (otherwise) 

X '  
> 

4 '  < 
Z 

> 

~ E R  ( 0 ,  1 1  
U E R R N  (XN) 
x "  = A  ( N ,  x', u )  

x * = x '  ( i f  e - 0  
, r - l ) c  R N  

(0 therwise) 
{(X* 

x 
> 

4 < 
4 '  = P e e  

2 '  
> 

(Relationship among variables when e = 1) 

R 
X Y 

( i f  S - 0 )  
x , z' ) E R N ?  

'( " (otherwise) 
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Correctness: Clearly, this construction satisfies conditions (i), (ii), and (iii) of Definition 
1. Thus, we will show that  the construction satisfies condition (iv).  First, since e is 
uniformly and randomly chosen on (0, I}, then p’ is uniformly distributed over {0,1} 
independent froin p. Sinc6 u is uniformly and randomly chosen on RN(XN), then, from 
condition R1 of Definition 2, z” is uniformly distributed over RN (XN) independent from 
2’. In addition, from condition R3 of Definition 2, z‘ is uniformly distributed over a set 
2‘ = {z ’  I t’ is validly verified by C }. Thus, the construction satisfies condition (iv) of 
Definition 1. QED 

The parallel version of the divertible zero knowledge interactive proof can be con- 
structed in manners similar to those of the Fiat-Shamir scheme [FS, FFS]. (Here, its 
parallel version is not a zero knowledge interactive proof, but it has been proven to  reveal 
no useful knowledge [FFS, 00, Ok]. 

3.2 Divertible zero knowledge interactive proof for digital sigiiatures 

An application to digital signatures of zero knowledge interactive proofs is shown in 
[FS, MS, GQ2, 001. In this section, a blind digital signatures scheme is shown based on 
the divertible zero knowledge interactive proofs. 

Definition 3. An interactive couple of Turing machines ( A ,  B )  is a diverfi61e (corn-  
putafional/perfecf) zero knowledge interactive proof for digital signal.urcs, if the following 
conditions hold. 
(i) ( A ,  B )  is a parallel version of (computational/perfect) zero knowledge interactive proof 

that the prover can compute some y satisfying (x, y) E R. 
(ii) BA outputs a digital signature t of m based on the (cornputational/perfect) zero 

knowledge interactive proof with respect to (5 ,  y) E R, where m is a message chosen 
by B. 

(iii) Only A can compute some y satisfying (5 ,  y) E R. 
(iv) For any message m chosen by any party, any prover A’ accepted by a valid verifier 

c, and any string s, ((A*(y, s ) ,B(m)) (s ) ,  Z(BA’(Y*’))(rn, z)) and ((A*(y, s),C)(z), 
Z ( A ( y ) ) ( m ,  t)) are (polynomially indistinguishable/equivalent), where A is a valid 
generator of digital signatures based o n  the (computntional/l,~rfect) zero knowledge 
interactivc proofs with respecl to ( L ,  y) E I < .  Z(’[’)( tr~,  x) dc~iotcs thc probability space 
that assigns to  the signature t the probability that T outputs t, on input x and m. 

Theorem 2. On inputs N and t, there is a polynomial time divertible perfect zero 
knowledge interactive proof for digital signatures ( A ,  B )  that the prover can compute 
some y satisfying (x, y) E RN, if the relation R is CRSR and satisfies T1 and T2’. 

T2’ There is a probabilistic polynomial time algorithm that, on input y’, outputs 2’ 
satisfying (z‘,y’) E RN. If, in addition, y’ is randomly and uniformly chosen on 
R N ( X N ) ,  then z‘ is uniformly distributed on d o r n H ~ .  
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Proof Sketch: 
Construction. On inputs N and 2, the procedure of ( A ,  8) is as follows. 

A B C 

1 - 2 0 1  Z I  = u 1  Z I  

m ,  2 1 '  * * ~ t '  
a 1  * * a t  > 

Correctness. 
construction satisfies conditions (i)-(iv) of Definition 3. 

It can be proven in a manner similar to the proof of Theorem 1 that this 
QED. 

Note: When we replace pi by x"i (i = 1,.  . . ,i!) as a part of signature information of m, 
we do not need to replace condition T2 by T2'. 

4. Pract ical  imp lemen ta t ion  of divertible zero knowledge interact ive proofs 
Some practical protocols such as multi-key versiori and higher degree version [C3, FS, 

FFS, GQ, 00, Oh11 have been proposed based on a basic zero kiiowledge proof protocol 
for quadratic residuosity [GMR] or discrete logarithm problem. 

In this section, we show that a specific class of CRSR problems, endomorphic CRSR 
(ECRSR) problems, has multi-keys and higher degree version divertible zero knowledge 
interactive proofs. 
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Defiiiition 4. For any N E N ,  let XN be a finite set, and RN E XN x XN be a relation. 
R is e n d o m o r p h i c  c o m m u t a i i u e  r a n d o m  self-reducible (ECRSR) if 
(1) A law of composition a : XN x XN -P XN is defined, and (X, e) is a commutative 

(2) (Z = yL, y) E RN, where z E XN, y E XN, L is an integer, and 
group. 

L times 

y L - .  

(3) There exists a function m(.) such that for every z E doninhi the cardinality of R N ( ~ )  

(4) For any y E XN, if r is randomly and uniformly chosen on XN, then y a T is uniforlnly 

( 5 )  There are polynomial time algorithiiis to compute the law of composition 0 ,  and to 

equals rn(lN1). 

distributed over XN. 

take inverse of this group. 

Here, using ECRSR relations, we show a protocol that is a divertible zero knowledge 
interactive proof with multi-keys and higher degree. 

Protocol  (nauki -keys  a n d  h i g h e r  degree ver s ion  diverfable zero knowledge  in t e rac t i ve  p r o o f )  
On inputs N ,  L and 21, 22,. . . , zk, the following procedurk is repeated i = O(liU1) times. 

4 ' 1  z = r  * I J y l  
1 

A B 

> X '  

B ' =  ( 6 ' 1 )  < 
Z 

> - c i  
z I = u .  Z ' Q X i  

1 
c 1 = 1  ( 0 i < e 1 )  
c I = 0 (otherwise) 

> i 

C 

? 1 - P I  
x " =  z '  L. g XI 
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Theorem 3. If the relation R is ECRSR, then this protocol is a polynomial time 
divertible perfect zero knowledge interactive proof that the prover can compute some yi 
satisfying (zi, yi) E R,v for all i E {I ,  2, . . . , k}. 

iVoies: 
(1) Variations of this protocol are shown in Appendix B, which are based on the  Fiat- 
Shamir type protocol (Appendix A). 
(2) When t = 1, k + ILI = O(lNI) ,  this protocol has not been proven to be zero knowledge, 
however, it  has been proven to  reveal no useful knowledge [FFS, 00, Ok]. 
(3)  By combining the ideas shown in Section 3.2 and this section, we can easily construct 
multi-keys and higher degree version divertible perfect zero knowledge interactive proofs 
for digital signatures. 

5 .  Applications 
In this section, the positive properties of divertible zero knowledge iriteractive prooh 

are shown. They can be useful for electronic checking and secret electronic balloting. In 
these applications, divertible zero knowledge interactive proofs for digital signatures shown 
in Section 3.2 are used as follows: 
(1) After authority A checks the identity of member B ,  A gives E his digital signature on 

a message made by B through the zero knowledge interactive proofs between A and 
B. However, A cannot see his own signature or the message that he signs. That  is, A 
makes a blind signature. 

(2)  B presents A’s signature on B’s message to a verifier C. C checks whether the 
message was signed by A.  However, C cannot detgrmine who made the message. 

(3)  Even if A and C are colluding with each other, they cannot know who made B’s 
message with A’s signature. This is because there is no information that shows the 
relationship between the A-B interaction for the generation of A’s signature and B’s 
message with A’s signature. 
When the above-described digital signature protocol is used for an electronic checking 

protocol, A is a banker, E a customer and C the owner of a shop. A gives B a check, after 
A checks the identity of 5. B uses the check at  C’s shop, where C checks the validity 
of the check. Even if A and C are in collusion with each other, they cannot know who 
used the check at C’s shop. This protocol is useful for privacy protection regarding this 
customer’s activities. 

On the other hand, when this digital signature protocol is used for a secret ballot, A 
is a ballot publisher, B a voter, and C a ballot counter. After A checks the validity of B 
based on voter registration records, A signs (stamps) the outside of an  unopened envelope 
that contains a ballot for B and a facing piece of carbon paper. LJ takes B’s ballot with 
the carbon image of A’s signature out of the envelope, and sends i t  to C. C counts it, 
after C checks the validity of the carbon image of the signature on the ballot. Even if A 
and C are in collusion with each other, they cannot know whose ballot it is. Therefore, 
the privacy of each voter is guaranteed. 

The above check protocol and secret ballot protocol were proposed in [Cl, C2, Oh2]. 
However, the digital signatures used in these protocols are the RSA scheme or an RSA-like 
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scheme. Hence, lliese protocols are riot provably secure a d  are iiot eficieiit. 111 coiilrasl, 
when divertible zero knowledge interactive proofs for digital signatures are used for these 
protocols, they are provably secure under some conditions and are efficient if square root 
modN is adopted as a proof problem. 

6. Abuses a n d  the pro tec t ive  measiires 

In this section, we turn to the negative side of divertible zero knowledge interactive 
proofs. We show some abuses and a number of measures to counter them. 

6.1 Abuses 

(1) Identification based on divertible zero knowledge interactive proofs 
Let us explain our abuse by using an example similar to that shown in [DGB]. &lice) 

identifies herself to B(ob). B impersonates A and claims to be A.  Then, C(har1ie) checks 
the identity of E who is claiming to  be A.  Even if A and C are aware of the abuse, they 
cannot obtain any evidence but the relationship between the time when A claimed to be 
A and that B claimed to be A.  To make it easier understand, we assume B and C are the 
owners of a restaurant and a jewelry shop with electronics paytnetil respectively, where 
customers can pay electronically. A is a customer of B’s restauratit. At the inoinent that 
A is ready to pay and to prove her identity to B ,  B determines to buy an expensive thing 
at C’s shop, and C is starting to check B’s (in fact A’s) identity. While C is checking the 
identity of B ,  E is checking the identity of A,  where the interaction between A and B k 
affected by the interaction between B and C and viceversa. In this abuse, B leaves no 
evidence that proves the relationship between the A- B interaction and the B-C interaction. 

( 2 )  Digital  signatures based on divertible zero knowledge interact ive proofs 
By using the divertible zero knowledge interactive proof, we can construct an abuse 

of digital signatures, as described below. 
A identifies herself to B. B tries to forge A’s signature on any message made by B. 

Then, C checks the validity of the forged signature, which ’ B is claiming, was generated 
by A .  Even if A and C are aware of the abuse, they cannot obtain evidence of it. For 
illustractive purposesI consider an example similar to that in (1). B is a shop owner, and C 
is a banker. A is a customer of B’s shop. While B is checking the identity of A,  R is forging 
A’s signature on a promissory note to C’s bank written by B.  Here, 5 ’ s  interaction with A 
is determined according to  the promissory note. In this abuse, 5 leaves no evidence which 
proves the relationship between the A-B interaction and the signature message forged by 
B .  

6.2 Protect ive measures 
Here, we show two types of measures to protect against the above-described abuses; 

operational measures and algorithmic measures. Note that in the applications shown 
in Section 5 ,  oiily operational Iiieasurcs call be used 10 c o u ~ ~ ~ c r  tticsc abuscs, bccausc 
algorithmic measures cannot used without losing the positive properties of divertible zero 
knowledge interactive proofs. 
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(1) Operational measures 
Regarding the abuse in identification, essentially there is no operational protective 

measure except using a unique physical description as mentioned in [DGB]. In order to  
protect against the abuse in digital signatures, using a key for digital signatures different 
from that for identification is effective. Then, even if a forged signature message from 
Alice is made by Bob through the abuse described in Section 6.1, she can claim that the 
signature is invalid, although it is valid with respect to her identification key. 
(2)  Algorithmic measures 

For these divertible perfect zero knowledge interactive proofs, it is essential that  a 
verifier can determine the values of random bits to be sent to a verifier. Therefore, there 
are algorithmic measures in which the values are not determined by only the verifier. Two 
measures are shown in the following, 
( i )  Measure 1 

In the first measure, the values of random bits to be sent froin a verifier to a prover are 
determined by the cooperation of the verifier and the prover. Here, the vaIues cannot be 
controlled by either the prover alone or the verifier alone. A coin flipping protocol for two 
persons has been shown in [B, BL]. In this measure, the previous perfect zero knowledge 
interactive proofs are used, replacing the verifier’s coin flips with two people’s coin flips. 
The other procedures in the divertible perfect zero knowledge interactive proofs are the 
same. 
(ii) Measure 2 

Recently, non-interactive zero knowledge proofs have been proposed (BFM, DMP]. 
In these zero knowledge proofs, the prover and verifier share common random bits before 
the prover starts the proofk Therefore, these proofs are algorithmic measures to  protect 
against this abuse, because the common random bits are not determined only by the 
verifier . 

7. Open problems 
Many problems regarding the divertible zero knowledge interactive proofs remain 

open. Here, we introduce some typical ones: 
(1) What class of relations has divertible zero knowledge interactive proofs except CRSR 

relations? (Do all N P  relations have divertible zero knowledge interactive proofs?) 
(2) What class of relations has divertible perfed zero knowledge interactive proofs ex- 

cept CRSR relations? (Do all RSR relations have divertible perfect zero know!edge 
interactive proofs?) 

(3) What class of relations has  multi-keys O T  higher degree version divertible zero knowl- 
edge interactive proofs except ECRSR relations? (Do all CRSR relations have multi- 
keys or higher degree version divertible zero knowledge interactive proofs?) 

Acknowledgements: The authors would like to thank Prof. Adi Shamir for his valuable 
suggestions, especially on the formal definition of divertible zero knowledge interactive 
proofs. They would also like to thank Prof. Yvo Desmedt for informing them of the 
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Appendix A 
In this appendix, we show two types of perfect zero knowledge interactive proofs 

based on the commmutative -random self-reducible relation. One is the Tompa-Woll type 
[TW], and the other is the Fiat-Shamir type. Although all of the protocols shown in this 
paper are based on the Tompa-Woll type, we can construct similar protocols based 011 llie 
Fiat-Shamir type, including the multi-keys and higher degree versions (Appendix B). 

(Tompa- Woll type) 

Prover Verif p-> r E R R N  ( X N )  
x ’  = A  (N, x ,  r >  

z = r  ( i f  p = O )  ( z = Y r (otherwise) 

ier 

x ’  = A ( N ,  x ,  z)? 

( x ’  , Z I E R N ?  
(if O = O )  

(0 therwise) 

(Fiat-Shamir type) 

Prover  
( x ’  , r >  E R N  

B E R  ( 0 ,  1 )  

( i f  13 = 0 )  
z = y-’ r (otherwise) ( x ’  , Z ) E R N ?  

x ’  = A  ( N ,  X ,  Z) ? 
(if f l  = O >  

(otherwise) 
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(x' , ,  r )  E R N  

z = r  ( i f  6' = o )  ( z = Y-' r (otherwise) 

Appendix B 
In this appendix, we show some protocols of divertible zero knowledge interactive 

proofs based on the Fiat-Shamir type (Appendix A), including the multi-keys and higher 
degree versions. 

Protocol B1 is the Fiat-Shamir type of the protocol shown in the proof of Theorem 1 
(basic version). In this protocol, we must replace condition R5 with R5' shown as follows: 
R5'. There is a polynomial time algoritlini that, given N ,  z, and x', outputs some z* E 

the pru~ocol s l iowi i  i i i  Scctiuri 4 (iliulti-lwys 
and higher degree version). The protocol described in [DGB] as a subliminal-channel- 
free identification system based on the Fiat-Shamir scheme corresponds to the quadratic 
version of Protocol B2. 
(Protocol E l )  

dontRN such that (z*, y 0 r-')  E R,. 
Protocol 8 2  is Llie FiaL-SIimiiir l y p c  

On inputs N and 2, the following procedure is repeated t = O(lN1) times. 

A B C 

X '  - > eER ( 0 ,  1)  
u E R R N  (X~N) 
X "  = A  ( N ,  X I ,  u )  

x * ,  y RN 
( i f  e = 0 )  

(0 therw i se) 

x " 
> 

a 
< . 4 E R  ( 0 ,  1 )  

0' = D e e  
P '  < 
Z 

> 
Z I  = u  . z I - 2 0  

2 '  

> 
A ( N ,  x ,  z' ) ?  

( i f  0 = 1 )  
, Z' ) E R N ?  
(a therwise) 
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(Protocol B2) 
On inputs N ,  L and X I ,  xz,.. . , xk, the following procedure is repeated 1 times. 

N o f e :  We can replace x” = u” 0 z’ 0 ni zYei , z = r 0 ni y,:’:, z’ = u z 0 ni ziti, and 
2’’ = z ‘ ~  0 ni x f i  with 5’’ = uL 0 5‘ ni zf i ,  z = r 0 ni y!‘, z’ = TJ 0 z 0 ni zril and 
2” = Z’L 0 n; .;Pi. 

r E R R N  ( X N )  

x ’  = r  
L 

- 6 ’ 1  z = r  * p y i  

A B 

X ’  

C 


	Divertible Zero Knowledge Interactive Proofs andCommutative Random Self-Reducibility
	Abstract
	1. Introduction
	2. Divertible zero knowledge interactive proofs
	3. Commutative random self-reducible problems and divertible perfect zeroknowledge interactive proofs
	3.1 Commutative random self-reducible
	3.2 Divertible zero knowledge interactive proof for digital sigiiatures

	4. Practical implementation of divertible zero knowledge interactive proofs
	5. Applications
	6. Abuses and the protective measiires
	6.1 Abuses
	6.2 Protective measures

	7. Open problems
	Appendix A
	Appendix B




