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Abstract 

Suppose that the NSA had announced the possession of an efEcient factorization algorithm. 

The cryptology community, after recovering from the initial shock, would demand to see the 

algorithm and verify it. This request, however, could not be satisfied since the algorithm would 

probably be classified as top-secret information. 

In this note we give a procedure which will satisfy both sides of the above imaginary dispute. 

This is a way in which one party can prove possession of some “computational power” (e.g., a 

special-purpose &dent factorization machine) without revealing any algorithmic detail about 

this computational task (e.g., the factoring algorithm). 

1 Introduction 

Interactive proofs were originally developed for membership in a language by 

Goldwasser, Micali and Rackoff [7]. In such a proof one party, the (P)rover, is 

engaged in an interactive protocol with another party, the (V)erifier. The task 

of the interaction is to convince the verifier (with overwhelming probability) that 

indeed the input belongs to some language. 

The notion of “zero-knowledge” interactive proof [7] was introduced to capture 

the fact that an interaction validates the input membership, but does not give 

any extra advantage to the Verifier. See [7,6,8,3,11] for some of the examples of 

zero-knowledge interactive proofs. We assume familiarity with the above notions. 

Later, interactive proofs “of knowledge” in which a polynomial-time P proves 

that it “knows” (possesses) a witness for some predicate about the input z was 

introduced. The formal specifications of such an interactive proof “of knowledge” 

are difficult to state precisely. Indeed, several such protocols had been proposed 

in the literature, and used in building cryptographic schemes, without a general 
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definition of their properties. The formal definition and implementation of zero- 
knowledge interactive proof of knowledge was finally given by Feige, Fiat, and 
Shamir [5 ]  and Tompa and Woll [13]. 

Suppose now that  a polynomial-time P possesses - not just a witness- but 
access to  some algorithm which gives some computational power. That  is, it  has 
some device (which can even be a machine TM to which P has only input-output 
access). The machine T M  as a black box can solve instances of a given problem. 
We are interested in computations which are hard in the cryptographic sense. 
Thus, in the context of this paper an easy problem is assumed to  be polynomial 
on the average, and a hard problem is almost always hard for problem size large 
enough. Here we suggest a way to formalize the notion of proving an access to  

such a computational device in a zero-knowledge fashion; we call the scheme “a 
zero-knowledge proof of computational power”. 

We have the following possible cryptographic applications in mind: 

1. The scheme can serve as a method for revealing the discovery of a new crypt- 
analytic breakthrough in a responsible way. That is, convincing legal users 
of the broken system that  it pays to change their system, but, on the other 
hand, doing so without publicly revealing the algorithmic details of the dis- 
covery. Thus, preventing exploitation of the new information by malicious 
users. 

2. It can also serve consumers as a quality test for a cryptographic device (e.g., a 
decryption machine), while simultaneously protecting the dealer by prevent- 
ing the potential customer from employing the device (e.g., using the test to 
decrypt messages he wants to decipher) during the test procedure. 

Our scheme employs interactive proofs of knowledge [5,13,7,6,8], the perfect 
zero-knowledge interactive argument systems of Brassard, Chaum and Crkpeau 
[3], and generation of random solved instances as defined by Hemachandra, Abadi, 
Allender, Broder and Feigenbaum [lo]. 

2 From Proving Knowledge t o  Proving Power 

While having a computational power (beyond, say, polynomial-time) is easy to 
express, the question we ask is how can we model a possession of computational 
power in the context of interaction between two untrusted parties. A computa- 
tional power can be checked by revealing an algorithm, and proving its correctness 
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and running time. Doing so in a zero-knowledge fashion was formalized by Blum 
as proving any Theorem 121. Such procedure, however requires that the prover 
has the verified algorithm, and cannot be employed when the prover has only 
input-output access to the algorithm. Therefore, we change the starting point 
and try to extend “proof of knowledge” to a proof which demonstrates more 
than just possession of a witness to some computation, but rather possession of 

“algorithmic power”- We do not attempt to formalize computational power in 
general, but rather concentrate on the ability to solve problems which are hard in 
a cryptographic sense (on the average) as power. 

2.1 Proof of Knowledge 

Next we sketch the formalization of proving knowledge [5,13] which requires, that 
the polynomial-time P demonstrate the possession of a witness. This is done by 
forcing it to compute in a way which is tractable only if it has explicit access to 
the witness. 

The two machines P and V share a common input z and the prover has to 
demonstrate that  it possesses a witness w given to it as a private input. The 
witness is to  the fact that  2 E Domain(R) for the relation R (i.e.) w is such that 
(z ,w)  E R). In the factorization example the relation is trivial, 2 is an integer, 
and w is its factors. 

The interactive proof demonstrates the possession of w, through P‘s ability 
to  answer questions posed by V, without actually revealing anything about the 
value of w. Thus: the “proof” is probabilistic in nature, and depends only on the 
messages sent by the two machines (in turns). The verifier is not able to read 
the prover’s private input tape (which the prover is presumably using in order to  
compute its answers). 

Formally, possession of a witness is modeled by means of a recovery algorithm, 
which is a Turing machine X (for “extractor”) that interacts with any possible 
prover P” in a special way - typically, while following a modified version of V’s 
program. On input 2, the goal of the recovery algorithm is to extract from P a 

witness. The machine X sends messages to and receives messages from P‘: just as 

V would do. The only differnee is that wkik performing its computation, X may 
cause a machine configuration of P* t o  be saved, and then, perhaps several turns 
later, X may restore the saved configuration of P* and send different messages. 
The fact that X can backtrack the computation models the fact that in the “real” 
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interaction V may send a random message from a set of different ones and P’ 
should be able to answer them all. At the end of its interaction with P’, X writes 
out its guess for w. The idea is that  if X is able to extract the knowledge from the 
interaction when the messages produced by P are available to it then P’ “ k n o ~ s ’ ~  
the witness, and can, (if we modify it,) compute it. 

Formally, let P denote the specified machine which has a private input (a 
witness) and follou-s the protocol, while P* denote any machine acting as the legal 
P. For any input string 2, the computation of the interaction denoted (P, V)[z] 
either accepts or rejects. V ‘ s  state a t  the end of the computation confirming the 
fact that P possesses a witness (accept) or not (reject). 

We call a pair of interactive Turing machines (P ,  V )  an interactive proof-system 
of knowkdge for the binary relation R with error probability 6 ( k )  (where Ic is the 
security parameter, i.e., the size of the input) if 

1. For any (z ,w)  E R, if P possesses w then (P?V)[z]  accepts with (very high) 
probability 1 - 6(k). 

2. There exists a recovery a l g o d h m  X (associated with V), as described above, 
so that for any interactive Turing machine P’, for any input string z, the 
probability of the event of 130th ( 1 ) (P* ,V)[ z ]  accepts, and ( 2 ) on input 
x, X interacting with P’ outputs w which does not satisfy (x, w) E R, is 
vanishingly small (less than S(k)). 

The algorithm X = X ( V )  works as specified, uniformly for any possible prover 
P’, it has a limited access to the communication tapes only, and can backtrack 
the computation. This extractor works in expected polynomial time, thus the 
whole interaction of X with P’ is a feasible computation and can be run by P’ 
itself. This means that ,  with very high probability, if the interaction with V is 
an accepting one: then the machine acting as a prover can compute the witness; 
(if computing the witness is impossible for this machine, we may conclude that it 
was given to it).  

An interaction like this is zero-knowledge if (loosely speaking) given a verifier 
V’ there is a machine which can compute its view of the interaction (which is 
a probability space) in expected polynomial time. Thus, its view of the compu- 
tation does not provide any computational advantage beyond expected random 
polynomial time computation ( i n  other words, provides “no knowledge”). 
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2.2 

Tompa and Woll 1131 gave a zero-knowledge interactive proof of knowledge of 

factors of a given number. We start with their example and assume also that n 
is a composite with two large prime factors n = pq. Their proof relies on Rabin's 
proof of equivalence between extracting square roots and Factorization [12]. We 
also employ the zero-knowledge proof of residuosity of Goldwasser, Micali and 
Rackoff [7], formalized as proof of knowledge. 

Assume P is given a quadratic residue (square), and is able to give a root. 
This implies, by Rabin equivalence, that P possesses the factors with probability 
at least 1/2. If this is repeated k independent times and P is able to  give a root 
each time then we conclude that  P has the factors with probability greater than 
1 - (1/2'). In fact, because of the equivalence, an ability of any polynomial-time 
P' to give a root means he has or can (with some probability) produce the factors. 
Namely, this is an interactive proof of knowledge. 

The above scheme is not zero-knowledge and actually each time a root is re- 
vealed, also the factorization is revealed with probability 1/2.  This is a result of 

Rabin's equivalence (since P gives a square root, if it is a root not known to the 
verifier it might enable the factorization). Thus, instead of opening a root the 
prover will "prove" (in a zero-knowledge fashion) to  the verifier that it "knows a 

root". This is still not a zero-knowledge proof, since the verifier may not choose 
a square according to the protocol requirements; an act which may give V an ad- 
vantage. Thus, when it chooses and sends a square it is also required to prove the 
knowledge of a root- which implies that he indeed chose a square. This makes 
the protocol zero-knowledge (see [13]). 

Example: proving knowledge of factorization 

A high-level description of the protocol may look like this: 
P r o t o c o l  1: Proving Possession of an Integer Factorization 
Given n (which can be checked in random polynomial time not to be a prime 

For i=l,..,k do 

1.  The verifier chooses a quadratic residue yz (modn) and sends it 

2. The verifier proves interactively that it knows a square root of yi (modn) 

3. The prover proves interactively that it knows a square root of yi (modn) 

power) as input. 

If all proofs are successful V accepts, otherwise it rejects. 
end-of-prot ocol 
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2.3 

Our goal is to extend the “proof of knowledge” to  “proof of computational power”. 
In order to do this we must model what is a computational power. Our first 
observation is that  the verifier may be simply modeled as interacting with another 
Turing machine TM whose “knowledge” of the witness is more complicated than 
its ability to simply read the bits of w from its private input tape. The value of an 
answer may be computed by TM in any possible way and we model it by letting 
the prover interact with a machine which gives answers to queries (say, gives an 
efficient factorization algorithm, or gives factors, or at least is able to answer 
queries specified by the verifier). This machine, TM, if restricted to polynomial 
time is assumed to  possess the witness. The definition, however, is oblivious t o  the 
way TM computes: and an extractor X (in the definition of proof of knowledge) 
will produce the witness. 

If we could just exhaustively feed the Prover (which has an access to  the algo- 
rithm in its possession) with all possible inputs and observe that a correct result 
is given throughout, we could say that all possible witnesses “are possessedn by 
this prover. For example, asking about the factorizations of all numbers of a given 
size m, enables us t o  conclude that this algorithm has the claimed power. 

Obviously, however, the number of inputs is prohibitively large for such an 
interaction which is required to  end in polynomial time. Thus we have to relax 
the interactive proof and turn it into a “statistical test” which samples a random 
set of inputs and observe how the prover reacts to them. 

Towards a definition of proof of computat ional  power 

A statistical test can be based on a law of large numbers. Let Fk(E) be the 
frequency of the test of k independent trials of event E.  For a sample size k 2 1, 
applying (for example) Bernstein’s strong version of the law of large numbers, 
assuming the actual probability of the parameter is p :  then for each 6 5 p(l - p )  
the following holds: p o b {  IFk(E) - pl 2 5 )  5 2 e - k / ( p ( * - p ) ) 2 .  This gives a statistical 
test (by choosing a large enough k) which makes us accept the hypothesis that 
the probability is indeed p with negligible error. Actually we are interested in 
the one-sided hypothesis that  the actual probability is (almost) one, and we will 
reject the alternative hypothesis that p = T for some constant T based on the fact 
that Fk(E) - T > 6. 

Next, we start with the factoring example and then the formal definitions. 
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3 Proving the Power to Factor Integers 

Assume that the prover claims that he can factor numbers of a certain size (say, 
m-bit long numbers). This gives us a probability space which is samplable [l] 
(i.e., a number with its factorization can be generated at random). We say that 
a party possesses the ability to  factor if he can factor any number (or all but a 
negligible fraction of the numbers) in the space. While, on the other hand, if he 
does not have this power we assume that factoring is (1 - E )  - hard for him, that 
is, he cannot factor more then E fraction of the factors (we call E the tractability 
fraction). 

The intractability assumption of factoring (of composites which are multiplica- 
tion of two large primes of equal size) is that it is hard on the average. Formally, it 
says that for any polynomial R, the tractability fraction E 5 l /R(m)  for integers 
of all size parameter m large enough. Thus, in particular, we can assume that the 
tractability fraction E is smaller than 1/2 (by the intractability assumption, this 
is true from a certain size m and on). 

The nature of a problem being hard on the average then, suggests the following 
process. Let V sample and check P's ability to factor. V chooses a large enough 
number of integers uniformly at racdom from the sample space and P provides 
factors to all of them. If P possesses T M  and can factor, then he should provide 
factorization to all the  sample. On the other hand, for any polynomial-time P', 
eventually its probability of factoring is less than 1/'2 for a random choice of an 
integer. Thus, this constitutes a statistical test. 

Let Fk(E) be the frequency of the test of k independent trials of the event 
that a number of size m (large enough) is being factored by a prover. Assume 
the probability of factoring is (smaller than or) equal 1/2. (Recall that by the 
intractability assumption, this is true for large enough m). For a sample size 
k 2 1, applying Bernstein's law (we are interested in a one-sided version of it) we 
get that prob{Fk(E) 2 3/4} 5 e-'/16. This gives a polynomial sample size k which 
with negligible probability will give a successful statistical proof (of the ability to 
factor all numbers in the given sample space). A polynomial time machine not 
augmented by TM will fail with overwhelming probability to produce 3/4 of the 
requests and the assumption that p = 1/2 will be rejected. Thus, a successful test 
implies that the prover has some computational power and it can factor most of 
the numbers (which is, by the intractability of factoring, beyond average-P). In 
addition, the true prover possessing TM, will be able to answer all queries with 
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overwhelming probability, since T M  can factor (almost) all numbers in the space. 
Again, implementing this suggested Statistical test as a protocol is not zero- 

knowledge, however, the following refinement of it is (by the fact that it uses 
protocol 1 which is zero-knowledge). 

Protocol  2: Proving  Power  to Factor numbers 
On input rn size parameter, for i=l,.-,k do: 

1. V picks a random integer n; of size rn and sends it 

2. V uses protocol 1 to prove to P that it knows the factorization of ni 

3. P uses protocol 1 to prove to V that it knows the factorization of ni 

If aJ3 proofs are successful V accepts, otherwise it rejects. 
end-of-protocol 
This is a Statistical test, which (as we claimed above) proves that P has the 

power as claimed. It is also (perfectly) zero-knowledge- given a verifier V’ the 
space of possible interactions with P can be exactly simulated (or if can factor 
most of the numbers it can be almost simulated with a negligible error). 

4 Interactive Proof of Computational Power 

In this section we generalize the above interaction to a more general class of 
problems which are assumed to be hard on the average; we define the class of 
problems to which such a proof can be applied. 

4.1 Definitions 

Let PR be a (1 - E )  - hard problem (as defined above) with size parameter m and 
let it be a samplable problem: denote the sample space S ( m ) .  That is, a problem 
in N P  for which it is possible to generate random instances. It can be treated as 
a collection of relations {R(z,w)(z  E S(m) ,m  E I c iV}. 

A problem as above is hard on the average and a statistical test can “measure” 
the difference between a polynomial time machine and a machine with augmented 
power. 

When a witness (a solution) is generated together with the instance, a sam- 
plable problem is exactly a problem which has a (1 - E) -invulnerable generation 
as defined by Hemachandra, Abadi, Allender, Broder and Feigenbaum [lo]. This 
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is, generating solved instances which cannot be solved in polynomial-time with 
some fixed probability (1 - E )  . 

For our purposes, the requirement of random generation can be weakened. 
We need not generate in polynomial time a witness, but rather we should be 
able to generate in polynomial time a random YES-instance with the ability to 
interactively prove (by a polynomial-time machine, our verifier) that  i t  is indeed 
an instance which was sampled correctly at  random. We call such a problem a 
samplable verifiable problem. 

Next we define the interactive proof of computational power. For any input 
string m, the computation (P,  V)[m] either accepts or rejects as before. P is the 
specified polynomial-time machine with the power to solve instances (it possesses 
a machine TM with this power), while P" is any polynomial-time machine. 

Let X be a procedure which can interact with the prover P and can backtrack 
the computation, furthermore, X is given an input from an input machine U which 
generates random instances; these instances are unsolved for X (namely, X does 
not "know" the witnesses); X tries to use the prover to solve these instances (via 
the interaction) - 

We call a pair of interactive Turing machines (P ,  V) an interactive proof-system 
of computational p o w e r  for the above problem PR with error probability 6(m) 
(where m is the security parameter) if for m large enough: 

1. If P is the specified prover which possesses a machine T M  with the ability to 
solve (almost) all instances from S ( m ) ,  then V accepts (with overwhelming 
probability 1 - b ( m ) ) .  

2. For any machine P' acting as a prover, the probability that ( P * ,  V)[z] accepts 
and that an extraction procedure X which samples unsolved instances given 
by U ,  using (interacting with) P*, and does not output the witnesses of all 
sampled instances is vanishingly small (less than 6(m)). 

The algorithm X works as specified, uniformly for any possible prover P*, it 
has a limited access t o  the communication tapes only, and can backtrack the 
computation. This extractor works in expected polynomial time, thus the whole 
interaction of X w i t h  P' is a feasible computation (and can be run by P' itself). 
This means again tha t ,  with very high probability, if the interaction with V is an 
accepting one, then the machine acting as a prover can compute all the witnesses 
as required and therefore can pass the statistical test (which means it has some 
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computational power, with respect to the hard problem in question). Note that we 
use the fact that the instances produced by U are random and the solved instances 
generated by V are sampled from the same (or almost the same) distribution, 
therefore they both should fail and succeed with (almost) the same chance. 

Now we can state the following 

Theorem 1 Under  the intractability assumption of factoring (of large numbers 
multiplication of t w o  large pr imes ) ,  protocol 2 above is a “perfect zero-knowledge 
proof sys t em of  the computat ional  po’wer to  factor”. 

4.2 A Protocol  Scheme 

The following is a general scheme for a samplable (verifiable) problem PR. Recall 
that an instance of PR is in the domain of a relation R (it has a witness) and the 
polynomial-time verifier can prove in zero-knowledge the validity of the chosen 
instance, while the prover has to be able to prove the knowledge of a witness. 

Problem 
Protocol  3: Proving  Computat ional  Power for Samplable Verifiable 

On input m (size parameter), for i=l,..,k do (k is a function of the required 
statistical confidence 15): 

1. V picks a random solved instance ni of size m and sends it 

2. V uses a perfectly zero-knowledge proof that R.; is in the domain of the relation 
R 

3. P proves in perfect zero-knowledge that it knows a witness w, such that 

R(ni7 Wi). 

If all proofs are successful V accepts, otherwise he rejects. 
end-of-prot ocol 

Theorem 2 T h e  above protocol scheme i s  a (((perfect) [computational] zero-know- 
ledge  (argument)  [proof] system of computational power” f o r  samplable verifiable 
problems which are (1 - E )  - hard. 

The above class of PR problems includes factoring as well as other problems 
used as candidates for cryptographic applications (Discrete Logarithm, RSA inver- 
sion, etc.). These problems have this property with direct verifiability in perfect 
zero-knowledge, (see [lo]). They are assumed to be hard on the average and 
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an overwhelming success in solving random instances of them for large enough 
security parameter, implies a computational power beyond P. (We remark that 
proving of computational power can be extended to a larger set of problems, but 
here we are interested in PR as the set most relevant to applications). The zero- 
knowledge property of the protocol is derived from the zero-knowledge property 
of proving knowledge. Note that the exact length and confidence parameters of 
the proofs in steps 2 and 3 are determined by the confidence parameter 6. 

When we allow computational zero-knowledge we can allow proving i n d n e r -  
able NP-problems in general (an example of such problem of a special size Clique 
has been recently given by Gurevich and Shelah IS]); this can be done under 
additional cryptographic assump tion. 

Next we suggest what to do when the interactive proofs cannot be implemented 
in perfect zero-knowledge without additional assumption, and an assumption is 
needed. 

The proof of the correct sampling in step 2, is given by the verifier to a prover 
whose power is not known. In particular, P may hold some advantage in factoriza- 
tion, and our encryption on which the security (zero-knowledge-ness) of the proof 
is accepted may rely on the same problem (that is, factorization)! In this case en- 
crypting the proof may not be enough, hiding it perfectly is required. Therefore, 
a natural proof system for an NP-statement to be used in this context is Bras- 
sard, C h a m ,  CrCpeau’s system of perfect zero-knowledge interactive argument 
proof [3]. The correctness of the proof relies on V’s restriction to  polynomial time 
(which means it can cheat with negligible probability). 

In step 3, when P proves t o  V ,  if this step can be done perfectly the proof sys- 
tem is perfectly zero-knowledge (otherwise, it  is computationally zero-knowledge). 
Actually, we observe that P can prove using an argument system as well (mak- 
ing the system perfectly zero-knowledge). The proof system is correct based on 
the underlying cryptographic assumption. If the legal P (possessing the extra 
power) interacts with V it will follow the protocol, and will not abuse its power. 
On the other hand: any cheating P’ (which is in polynomial time) will not be 
able to  cheat in the proof under the cryptographic assumption, but with a neg- 
ligible probability. This completes the proof. The interactive argument system 
originated in [3] can be implemented under a general assumption that one-way 
homomorphism exists [ll], and it requires only a constant number of iterations 
[4] which is important for various applications. 
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