
Zero-Knowledge Proofs of Computational Power

Moti Yung

IBM Research Division

T.J. Watson Research Center

Yorktown Heights, NY 10598

(extended summary)

Abstract

Suppose that the NSA had announced the possession of an efEcient factorization algorithm.

The cryptology community, after recovering from the initial shock, would demand to see the

algorithm and verify it. This request, however, could not be satisfied since the algorithm would

probably be classified as top-secret information.

In this note we give a procedure which will satisfy both sides of the above imaginary dispute.

This is a way in which one party can prove possession of some “computational power” (e.g., a

special-purpose &dent factorization machine) without revealing any algorithmic detail about

this computational task (e.g., the factoring algorithm).

1 Introduction

Interactive proofs were originally developed for membership in a language by

Goldwasser, Micali and Rackoff [7]. In such a proof one party, the (P)rover, is

engaged in an interactive protocol with another party, the (V)erifier. The task

of the interaction is to convince the verifier (with overwhelming probability) that

indeed the input belongs to some language.

The notion of “zero-knowledge” interactive proof [7] was introduced to capture

the fact that an interaction validates the input membership, but does not give

any extra advantage to the Verifier. See [7,6,8,3,11] for some of the examples of

zero-knowledge interactive proofs. We assume familiarity with the above notions.

Later, interactive proofs “of knowledge” in which a polynomial-time P proves

that it “knows” (possesses) a witness for some predicate about the input z was

introduced. The formal specifications of such an interactive proof “of knowledge”

are difficult to state precisely. Indeed, several such protocols had been proposed

in the literature, and used in building cryptographic schemes, without a general

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 196-207, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

197

definition of their properties. The formal definition and implementation of zero-
knowledge interactive proof of knowledge was finally given by Feige, Fiat, and
Shamir [5] and Tompa and Woll [13].

Suppose now that a polynomial-time P possesses - not just a witness- but
access to some algorithm which gives some computational power. That is, it has
some device (which can even be a machine TM to which P has only input-output
access). The machine T M as a black box can solve instances of a given problem.
We are interested in computations which are hard in the cryptographic sense.
Thus, in the context of this paper an easy problem is assumed to be polynomial
on the average, and a hard problem is almost always hard for problem size large
enough. Here we suggest a way to formalize the notion of proving an access to

such a computational device in a zero-knowledge fashion; we call the scheme “a
zero-knowledge proof of computational power”.

We have the following possible cryptographic applications in mind:

1. The scheme can serve as a method for revealing the discovery of a new crypt-
analytic breakthrough in a responsible way. That is, convincing legal users
of the broken system that it pays to change their system, but, on the other
hand, doing so without publicly revealing the algorithmic details of the dis-
covery. Thus, preventing exploitation of the new information by malicious
users.

2. It can also serve consumers as a quality test for a cryptographic device (e.g., a
decryption machine), while simultaneously protecting the dealer by prevent-
ing the potential customer from employing the device (e.g., using the test to
decrypt messages he wants to decipher) during the test procedure.

Our scheme employs interactive proofs of knowledge [5,13,7,6,8], the perfect
zero-knowledge interactive argument systems of Brassard, Chaum and Crkpeau
[3], and generation of random solved instances as defined by Hemachandra, Abadi,
Allender, Broder and Feigenbaum [lo].

2 From Proving Knowledge t o Proving Power

While having a computational power (beyond, say, polynomial-time) is easy to
express, the question we ask is how can we model a possession of computational
power in the context of interaction between two untrusted parties. A computa-
tional power can be checked by revealing an algorithm, and proving its correctness

198

and running time. Doing so in a zero-knowledge fashion was formalized by Blum
as proving any Theorem 121. Such procedure, however requires that the prover
has the verified algorithm, and cannot be employed when the prover has only
input-output access to the algorithm. Therefore, we change the starting point
and try to extend “proof of knowledge” to a proof which demonstrates more
than just possession of a witness to some computation, but rather possession of

“algorithmic power”- We do not attempt to formalize computational power in
general, but rather concentrate on the ability to solve problems which are hard in
a cryptographic sense (on the average) as power.

2.1 Proof of Knowledge

Next we sketch the formalization of proving knowledge [5,13] which requires, that
the polynomial-time P demonstrate the possession of a witness. This is done by
forcing it to compute in a way which is tractable only if it has explicit access to
the witness.

The two machines P and V share a common input z and the prover has to
demonstrate that it possesses a witness w given to it as a private input. The
witness is to the fact that 2 E Domain(R) for the relation R (i.e.) w is such that
(z ,w) E R). In the factorization example the relation is trivial, 2 is an integer,
and w is its factors.

The interactive proof demonstrates the possession of w, through P‘s ability
to answer questions posed by V, without actually revealing anything about the
value of w. Thus: the “proof” is probabilistic in nature, and depends only on the
messages sent by the two machines (in turns). The verifier is not able to read
the prover’s private input tape (which the prover is presumably using in order to
compute its answers).

Formally, possession of a witness is modeled by means of a recovery algorithm,
which is a Turing machine X (for “extractor”) that interacts with any possible
prover P” in a special way - typically, while following a modified version of V’s
program. On input 2, the goal of the recovery algorithm is to extract from P a

witness. The machine X sends messages to and receives messages from P‘: just as

V would do. The only differnee is that wkik performing its computation, X may
cause a machine configuration of P* t o be saved, and then, perhaps several turns
later, X may restore the saved configuration of P* and send different messages.
The fact that X can backtrack the computation models the fact that in the “real”

199

interaction V may send a random message from a set of different ones and P’
should be able to answer them all. At the end of its interaction with P’, X writes
out its guess for w. The idea is that if X is able to extract the knowledge from the
interaction when the messages produced by P are available to it then P’ “ k n o ~ s ’ ~
the witness, and can, (if we modify it,) compute it.

Formally, let P denote the specified machine which has a private input (a
witness) and follou-s the protocol, while P* denote any machine acting as the legal
P. For any input string 2, the computation of the interaction denoted (P, V)[z]
either accepts or rejects. V ‘ s state a t the end of the computation confirming the
fact that P possesses a witness (accept) or not (reject).

We call a pair of interactive Turing machines (P , V) an interactive proof-system
of knowkdge for the binary relation R with error probability 6 (k) (where Ic is the
security parameter, i.e., the size of the input) if

1. For any (z ,w) E R, if P possesses w then (P?V)[z] accepts with (very high)
probability 1 - 6(k).

2. There exists a recovery a l g o d h m X (associated with V), as described above,
so that for any interactive Turing machine P’, for any input string z, the
probability of the event of 130th (1) (P* ,V)[z] accepts, and (2) on input
x, X interacting with P’ outputs w which does not satisfy (x, w) E R, is
vanishingly small (less than S(k)).

The algorithm X = X (V) works as specified, uniformly for any possible prover
P’, it has a limited access to the communication tapes only, and can backtrack
the computation. This extractor works in expected polynomial time, thus the
whole interaction of X with P’ is a feasible computation and can be run by P’
itself. This means that , with very high probability, if the interaction with V is
an accepting one: then the machine acting as a prover can compute the witness;
(if computing the witness is impossible for this machine, we may conclude that it
was given to it).

An interaction like this is zero-knowledge if (loosely speaking) given a verifier
V’ there is a machine which can compute its view of the interaction (which is
a probability space) in expected polynomial time. Thus, its view of the compu-
tation does not provide any computational advantage beyond expected random
polynomial time computation (i n other words, provides “no knowledge”).

200

2.2

Tompa and Woll 1131 gave a zero-knowledge interactive proof of knowledge of

factors of a given number. We start with their example and assume also that n
is a composite with two large prime factors n = pq. Their proof relies on Rabin's
proof of equivalence between extracting square roots and Factorization [12]. We
also employ the zero-knowledge proof of residuosity of Goldwasser, Micali and
Rackoff [7], formalized as proof of knowledge.

Assume P is given a quadratic residue (square), and is able to give a root.
This implies, by Rabin equivalence, that P possesses the factors with probability
at least 1/2. If this is repeated k independent times and P is able to give a root
each time then we conclude that P has the factors with probability greater than
1 - (1/2'). In fact, because of the equivalence, an ability of any polynomial-time
P' to give a root means he has or can (with some probability) produce the factors.
Namely, this is an interactive proof of knowledge.

The above scheme is not zero-knowledge and actually each time a root is re-
vealed, also the factorization is revealed with probability 1/2. This is a result of

Rabin's equivalence (since P gives a square root, if it is a root not known to the
verifier it might enable the factorization). Thus, instead of opening a root the
prover will "prove" (in a zero-knowledge fashion) to the verifier that it "knows a

root". This is still not a zero-knowledge proof, since the verifier may not choose
a square according to the protocol requirements; an act which may give V an ad-
vantage. Thus, when it chooses and sends a square it is also required to prove the
knowledge of a root- which implies that he indeed chose a square. This makes
the protocol zero-knowledge (see [13]).

Example: proving knowledge of factorization

A high-level description of the protocol may look like this:
P r o t o c o l 1: Proving Possession of an Integer Factorization
Given n (which can be checked in random polynomial time not to be a prime

For i=l,..,k do

1. The verifier chooses a quadratic residue yz (modn) and sends it

2. The verifier proves interactively that it knows a square root of yi (modn)

3. The prover proves interactively that it knows a square root of yi (modn)

power) as input.

If all proofs are successful V accepts, otherwise it rejects.
end-of-prot ocol

20 1

2.3

Our goal is to extend the “proof of knowledge” to “proof of computational power”.
In order to do this we must model what is a computational power. Our first
observation is that the verifier may be simply modeled as interacting with another
Turing machine TM whose “knowledge” of the witness is more complicated than
its ability to simply read the bits of w from its private input tape. The value of an
answer may be computed by TM in any possible way and we model it by letting
the prover interact with a machine which gives answers to queries (say, gives an
efficient factorization algorithm, or gives factors, or at least is able to answer
queries specified by the verifier). This machine, TM, if restricted to polynomial
time is assumed to possess the witness. The definition, however, is oblivious t o the
way TM computes: and an extractor X (in the definition of proof of knowledge)
will produce the witness.

If we could just exhaustively feed the Prover (which has an access to the algo-
rithm in its possession) with all possible inputs and observe that a correct result
is given throughout, we could say that all possible witnesses “are possessedn by
this prover. For example, asking about the factorizations of all numbers of a given
size m, enables us t o conclude that this algorithm has the claimed power.

Obviously, however, the number of inputs is prohibitively large for such an
interaction which is required to end in polynomial time. Thus we have to relax
the interactive proof and turn it into a “statistical test” which samples a random
set of inputs and observe how the prover reacts to them.

Towards a definition of proof of computat ional power

A statistical test can be based on a law of large numbers. Let Fk(E) be the
frequency of the test of k independent trials of event E. For a sample size k 2 1,
applying (for example) Bernstein’s strong version of the law of large numbers,
assuming the actual probability of the parameter is p : then for each 6 5 p(l - p)
the following holds: p o b { IFk(E) - pl 2 5) 5 2 e - k / (p (* - p)) 2 . This gives a statistical
test (by choosing a large enough k) which makes us accept the hypothesis that
the probability is indeed p with negligible error. Actually we are interested in
the one-sided hypothesis that the actual probability is (almost) one, and we will
reject the alternative hypothesis that p = T for some constant T based on the fact
that Fk(E) - T > 6.

Next, we start with the factoring example and then the formal definitions.

202

3 Proving the Power to Factor Integers

Assume that the prover claims that he can factor numbers of a certain size (say,
m-bit long numbers). This gives us a probability space which is samplable [l]
(i.e., a number with its factorization can be generated at random). We say that
a party possesses the ability to factor if he can factor any number (or all but a
negligible fraction of the numbers) in the space. While, on the other hand, if he
does not have this power we assume that factoring is (1 - E) - hard for him, that
is, he cannot factor more then E fraction of the factors (we call E the tractability
fraction).

The intractability assumption of factoring (of composites which are multiplica-
tion of two large primes of equal size) is that it is hard on the average. Formally, it
says that for any polynomial R, the tractability fraction E 5 l /R(m) for integers
of all size parameter m large enough. Thus, in particular, we can assume that the
tractability fraction E is smaller than 1/2 (by the intractability assumption, this
is true from a certain size m and on).

The nature of a problem being hard on the average then, suggests the following
process. Let V sample and check P's ability to factor. V chooses a large enough
number of integers uniformly at racdom from the sample space and P provides
factors to all of them. If P possesses T M and can factor, then he should provide
factorization to all the sample. On the other hand, for any polynomial-time P',
eventually its probability of factoring is less than 1/'2 for a random choice of an
integer. Thus, this constitutes a statistical test.

Let Fk(E) be the frequency of the test of k independent trials of the event
that a number of size m (large enough) is being factored by a prover. Assume
the probability of factoring is (smaller than or) equal 1/2. (Recall that by the
intractability assumption, this is true for large enough m). For a sample size
k 2 1, applying Bernstein's law (we are interested in a one-sided version of it) we
get that prob{Fk(E) 2 3/4} 5 e-'/16. This gives a polynomial sample size k which
with negligible probability will give a successful statistical proof (of the ability to
factor all numbers in the given sample space). A polynomial time machine not
augmented by TM will fail with overwhelming probability to produce 3/4 of the
requests and the assumption that p = 1/2 will be rejected. Thus, a successful test
implies that the prover has some computational power and it can factor most of
the numbers (which is, by the intractability of factoring, beyond average-P). In
addition, the true prover possessing TM, will be able to answer all queries with

203

overwhelming probability, since T M can factor (almost) all numbers in the space.
Again, implementing this suggested Statistical test as a protocol is not zero-

knowledge, however, the following refinement of it is (by the fact that it uses
protocol 1 which is zero-knowledge).

Protocol 2: Proving Power to Factor numbers
On input rn size parameter, for i=l,.-,k do:

1. V picks a random integer n; of size rn and sends it

2. V uses protocol 1 to prove to P that it knows the factorization of ni

3. P uses protocol 1 to prove to V that it knows the factorization of ni

If aJ3 proofs are successful V accepts, otherwise it rejects.
end-of-protocol
This is a Statistical test, which (as we claimed above) proves that P has the

power as claimed. It is also (perfectly) zero-knowledge- given a verifier V’ the
space of possible interactions with P can be exactly simulated (or if can factor
most of the numbers it can be almost simulated with a negligible error).

4 Interactive Proof of Computational Power

In this section we generalize the above interaction to a more general class of
problems which are assumed to be hard on the average; we define the class of
problems to which such a proof can be applied.

4.1 Definitions

Let PR be a (1 - E) - hard problem (as defined above) with size parameter m and
let it be a samplable problem: denote the sample space S (m) . That is, a problem
in N P for which it is possible to generate random instances. It can be treated as
a collection of relations {R(z,w)(z E S(m) ,m E I c iV}.

A problem as above is hard on the average and a statistical test can “measure”
the difference between a polynomial time machine and a machine with augmented
power.

When a witness (a solution) is generated together with the instance, a sam-
plable problem is exactly a problem which has a (1 - E) -invulnerable generation
as defined by Hemachandra, Abadi, Allender, Broder and Feigenbaum [lo]. This

204

is, generating solved instances which cannot be solved in polynomial-time with
some fixed probability (1 - E) .

For our purposes, the requirement of random generation can be weakened.
We need not generate in polynomial time a witness, but rather we should be
able to generate in polynomial time a random YES-instance with the ability to
interactively prove (by a polynomial-time machine, our verifier) that i t is indeed
an instance which was sampled correctly at random. We call such a problem a
samplable verifiable problem.

Next we define the interactive proof of computational power. For any input
string m, the computation (P, V)[m] either accepts or rejects as before. P is the
specified polynomial-time machine with the power to solve instances (it possesses
a machine TM with this power), while P" is any polynomial-time machine.

Let X be a procedure which can interact with the prover P and can backtrack
the computation, furthermore, X is given an input from an input machine U which
generates random instances; these instances are unsolved for X (namely, X does
not "know" the witnesses); X tries to use the prover to solve these instances (via
the interaction) -

We call a pair of interactive Turing machines (P , V) an interactive proof-system
of computational p o w e r for the above problem PR with error probability 6(m)
(where m is the security parameter) if for m large enough:

1. If P is the specified prover which possesses a machine T M with the ability to
solve (almost) all instances from S (m) , then V accepts (with overwhelming
probability 1 - b (m)) .

2. For any machine P' acting as a prover, the probability that (P * , V)[z] accepts
and that an extraction procedure X which samples unsolved instances given
by U , using (interacting with) P*, and does not output the witnesses of all
sampled instances is vanishingly small (less than 6(m)).

The algorithm X works as specified, uniformly for any possible prover P*, it
has a limited access t o the communication tapes only, and can backtrack the
computation. This extractor works in expected polynomial time, thus the whole
interaction of X w i t h P' is a feasible computation (and can be run by P' itself).
This means again tha t , with very high probability, if the interaction with V is an
accepting one, then the machine acting as a prover can compute all the witnesses
as required and therefore can pass the statistical test (which means it has some

205

computational power, with respect to the hard problem in question). Note that we
use the fact that the instances produced by U are random and the solved instances
generated by V are sampled from the same (or almost the same) distribution,
therefore they both should fail and succeed with (almost) the same chance.

Now we can state the following

Theorem 1 Under the intractability assumption of factoring (of large numbers
multiplication of t w o large pr imes) , protocol 2 above is a “perfect zero-knowledge
proof sys t em of the computat ional po’wer to factor”.

4.2 A Protocol Scheme

The following is a general scheme for a samplable (verifiable) problem PR. Recall
that an instance of PR is in the domain of a relation R (it has a witness) and the
polynomial-time verifier can prove in zero-knowledge the validity of the chosen
instance, while the prover has to be able to prove the knowledge of a witness.

Problem
Protocol 3: Proving Computat ional Power for Samplable Verifiable

On input m (size parameter), for i=l,..,k do (k is a function of the required
statistical confidence 15):

1. V picks a random solved instance ni of size m and sends it

2. V uses a perfectly zero-knowledge proof that R.; is in the domain of the relation
R

3. P proves in perfect zero-knowledge that it knows a witness w, such that

R(ni7 Wi).

If all proofs are successful V accepts, otherwise he rejects.
end-of-prot ocol

Theorem 2 T h e above protocol scheme i s a (((perfect) [computational] zero-know-
ledge (argument) [proof] system of computational power” f o r samplable verifiable
problems which are (1 - E) - hard.

The above class of PR problems includes factoring as well as other problems
used as candidates for cryptographic applications (Discrete Logarithm, RSA inver-
sion, etc.). These problems have this property with direct verifiability in perfect
zero-knowledge, (see [lo]). They are assumed to be hard on the average and

206

an overwhelming success in solving random instances of them for large enough
security parameter, implies a computational power beyond P. (We remark that
proving of computational power can be extended to a larger set of problems, but
here we are interested in PR as the set most relevant to applications). The zero-
knowledge property of the protocol is derived from the zero-knowledge property
of proving knowledge. Note that the exact length and confidence parameters of
the proofs in steps 2 and 3 are determined by the confidence parameter 6.

When we allow computational zero-knowledge we can allow proving i n d n e r -
able NP-problems in general (an example of such problem of a special size Clique
has been recently given by Gurevich and Shelah IS]); this can be done under
additional cryptographic assump tion.

Next we suggest what to do when the interactive proofs cannot be implemented
in perfect zero-knowledge without additional assumption, and an assumption is
needed.

The proof of the correct sampling in step 2, is given by the verifier to a prover
whose power is not known. In particular, P may hold some advantage in factoriza-
tion, and our encryption on which the security (zero-knowledge-ness) of the proof
is accepted may rely on the same problem (that is, factorization)! In this case en-
crypting the proof may not be enough, hiding it perfectly is required. Therefore,
a natural proof system for an NP-statement to be used in this context is Bras-
sard, C h a m , CrCpeau’s system of perfect zero-knowledge interactive argument
proof [3]. The correctness of the proof relies on V’s restriction to polynomial time
(which means it can cheat with negligible probability).

In step 3, when P proves t o V , if this step can be done perfectly the proof sys-
tem is perfectly zero-knowledge (otherwise, it is computationally zero-knowledge).
Actually, we observe that P can prove using an argument system as well (mak-
ing the system perfectly zero-knowledge). The proof system is correct based on
the underlying cryptographic assumption. If the legal P (possessing the extra
power) interacts with V it will follow the protocol, and will not abuse its power.
On the other hand: any cheating P’ (which is in polynomial time) will not be
able to cheat in the proof under the cryptographic assumption, but with a neg-
ligible probability. This completes the proof. The interactive argument system
originated in [3] can be implemented under a general assumption that one-way
homomorphism exists [ll], and it requires only a constant number of iterations
[4] which is important for various applications.

207

References

[l] E. Bach, Generating Random lvumbers with Known Factors, SIAM Journal
on Computing.

[2] M. Blum, How to Prove a Theorem so No One can Claim It, International
Conf. of. Math., 1987.

[3] G. Brassard, D. Chaum and Cripeau C., Minimum Disclosure Proofs of
Knowledge, J . Comp. Sys. Sci. 37-2, pp. 156-189.

[4] G. Brassard, Crpeau C. and M. Yung, Any statement can be proved in
perfect zero-knowledge in bounded number of r o u n d s , ICALP 1989.

[5] U. Feige, A. Fiat and A. Shamir, Zero-Knowledge Proof of Identity, Proc.
19th STOC, 1987, pp. 210-217.

[6] Z. Galil,, S. Haber and M. Yung, A Private Interactive Test of a Boolean
Predicate and Minimum-Knowledge Public-Key Cyptosystems, FOCS, 1985
pp. 360-371.

[7] S. Goldwasser, S. Micali and C. Rackoff, The Knowledge Complexity of In-
teractive Proof-Systems, Proc. 17th STOC, 1985. pp. 291-304.

[8] S. Goldreich, S. Micali and A. Wigderson, Proofs that Y ie lds Nothing But
their Validity, and a Methodology of Cryptographic Protocol Design, Proc.
27th FOCS, 1986.

[9] U. Gurevich and S. Shelah, , Private Communication.

[lo] L. Hemachandra, M. Abadi, E. Allender, A. Broder, and J. Feigenbaum On
Generating Solred Instances of Computational Problems, Proc. of Crypto 88.

[11] R. Impagliazzo and 5f. Yung, Direct i’dinimum-Knowledge Computations ,
Crypto 87.

[12] M. 0. Rabin, Digital Signatures and Public Key Functions as Intractable as
Factoring, Technical Memo TM-212, Lab. for Computer Science, MIT, 1979.

[13] M. Tompa and H. Woll, Random SeIf-reducibility and Zero-Knowledge Inter-
active PTOOfS of Possession of Information, FOCS, 1987, pp 472-482.

	Zero-Knowledge Proofs of Computational Power
	Abstract
	1 Introduction
	2 From Proving Knowledge to Proving Power
	2.1 Proof of Knowledge
	2.2 Example: proving knowledge of factorization
	2.3 Towards a definition of proof of computational power

	3 Proving the Power to Factor Integers
	4 Interactive Proof of Computational Power
	4.1 Definitions
	4.2 A Protocol Scheme

	References

