
More Efficient Match-Making and Satisfiability

The Five Card Trick

Bert den Boer

Cenrrum voor Wiskunde en Informa!ica

Kruislaan 413, IO98 SJ Amsterdam, The Nefherlands

Abstract. A two-party cryptographic protocol for evaluating any
binary gate is presented. It is more efficient than previous two-
party computations, and can even perform single-party (i.e.
satisfiability) proofs more efficiently than known techniques.
As in all earlier multiparty computations and satisfiability
protocols, commitments are a fundamental building block. Each
party in our approach encodes a single input bit as 2 bit
commitments. These are then combined to form 5 bit
commitments, which are permuted, and can then be opened to
reveal the output of the gate.

A Matchmaking Example

Alice and Bob never met before and wish to fiid out whether they have
some particular mutual interest_ But naturally each refuses to show interest
first, because of the risk of getting an embarrassing “no” from the other.
More formally, Alice has a secret bit CI and Bob has a secret bit b and a
protocol is needed that reveals exactly the logical “AND” of the two bits.
Consequently, if Bob’s bit is zero he should learn nothing about Alice’s bit;
if his bit is one, he cannot fail to learn Alice’s bit because in that case her
bit has the same value as the AND.

One way to achieve the desired protocol is by physical means-more
precisely, five cards. The back of all cards are , as usual, the same. The
face side of two of the cards are identical, say the two-of-hearts, and the
face of the other three are identical, say the two-of-spades.

Initially,each party is given one card of each type and the remaining
spade is put face down on the table and Bob then puts his cards face down
on top of the initial spade. His secret choice of ordering for the two cards
encodes his bit b: heart on top means I and the other way round means 0.

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 208-217, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

209

I
ii

Fig. 1. Match makmg. If the table had eyes, the table would see five cards: the two
of spades in the middle, Bob’s two cards on top (the order indicates his choice (in the
square)), Alice’s two cards at the bottom of the stack (the order indicates her choice
(in the octagon)). Three cases are cyclic permutations of each other, so
indistinguishable after cutting the cards. The other case is two times yes.

210

Alice places her cards at the bottom of the stack. The secret order she
chooses encodes her bit a, in a way that mirrors Bob: heart on the bottom
means I and spade on the bottom means 0 (see Fig I)

Then Bob and Alice each take turns “cutting” the cards. The result is a
random cyclic permutation known to neither. After each is satisfied that the
other does not know the cyclic permutation remaining in the cards, they
display the cards on the table in a radial pattern like spokes of a wheel.
There are only two distinct results apart from cyclic rotations (see Fig I
where the first three cases are cyclic permutations of each other), and they
correspond to AND (a, b).

when both bits a and b are 1.
It is easy to see that the two hearts are on consecutive spokes exactly

Introduction

What we just saw is an encoding of two bits into a five bit vector by
putting the two bits, their inversion, and an extra zero bit in a certain order
and applying a cyclic Permutation on this vector. Such a vector is decoded
into I when it is a cyclic shift of (1, 0, 0, 0 , I) or into 0 if it is a cyclic
shift of (0 , 1 , 0 , I , 0). Instead of working with bits we can make
sequences of five “blobs”. This enables us to make a satisfiability protocol
that is more efficient than the similar protocols [BC86]. Our protocol is
described in the section: “The main protocol”. Satisfiability protocols are
as explained in [BC86] ,[BCC] and [GMW86] roughly speaking a way to
proof a claim such that the other party cannot prove the same claim by just
exploiting the data from the conversation. The above number of five blobs
is our gain over the number of twelve blobs used in [BC86].

“Assumptions on Blobs” basicly one extra demand on blobs which we need
for efficiency reasons. In order that our idea give rise to a protocol more
efficient then the protocol in [BCSS] we require that there exist “direct
minimal disclosure proofs” for blob equality and blob inequality. In the
section: “A Particular Example for a Blob” we suggest a blob which can be
made with just one squaring and one computing of a Jacobi-symbol. In the
section “Multi party Computations” we exploit our idea for a general multi
party computation.

Before we describe our protocol we exhibit in the section:

Assumptions on Blobs

In this section we describe requirements for blobs and give a suitable
general formula.

21 1

For a protocol using blobs to be efficient we require that both creating
blobs and opening blobs (showing that a particular blob encrypts a
particular bit) are efficient. -Bobs are defined, as in PCC], to satisfy the
following: no blob can be opened both as a zero as well as a one
(authenticity) and blobs cannot be opened by the opponent (secrecy).

a different bit (this protocol is called “blob inequality”) and also our
building block requires that we have a protocol to show that two blobs are
encryptions of the same bit without giving information which bit this is
(called “blobequality”). It is known that given a protocol for one, a
protocol for the other can be constructed.

non-interactive zero-knowledge with perfect soundness and perfect
completeness (see [GMS]). We envisage such a protocol for say
blobinequality just by a message of the prover stating that two blobs hide
different bits and containing some extra data upon which the verifier can
easily verify the statement that the two hidden bits are different.
Nonetheless the verifier gets no bias towards which blob hides the zero bit
value.

In other words we want a simple protocol where one round gives
hundred percent certainty in the involved statement under the assumption
that no blob itself can be opened by the prover in two ways (and the verifier
has to assume that for any protocol exploiting commitments).

encoding with a fast protocol for blob equality is the following:

Our blobs should be such that the prover can prove that two blobs hide

We also want those protocols to be efficient in the sense that they are

In practice but still in a general setting the way to achieve a bit

Let G and H be commutative groups,
f a homomorphism from G to H,
KE H,such that the encoder can not find a CE G such thatf(c) = K.
The encoding is done in the following way:
take a random element T- of G and encode 0 byf(r) and encode 1

The reason the encoder cannot find such a c is either because no such
by Kf(r).

value exists or because a suitable value is infeasible to find (because of a
cryptographic assumption like the encoder cannot factor or take discrete
logs). In the first case the opponent should not be able to distinguish
random elements of the image offwith random elements of the coset
which includes K because of a cryptographic assumption. In the second
case the opponent might know a solution c for the equationf(c) = K but
then in his view any blob could be equally likely encode a zero as well as a
one. Both cases give different flavors of zero knowledge protocols. In the

212

second case the encoder is unconditionally protected and the opponent can
only be fooled if the encoder could crack the underlying problem during the
time of the protocol. In the first case the opponent is unconditionally
protected but he could learn the satisfying assignment later on by cracking
the underlying problem.

Blob inequality is done by giving the fact that two blobs hide different
bits and giving some element s to the verifier then the verifier checks
that the product of the blobs is equal to Kf(s). Blob equality is done
by giving a element u of G such thatf(u) is the quotient of the two
blobs. It is easy to see that those techniques meets the demands for
blob (in) equality.

The Main Protocol

In this section we exhibit our construction for a satisfiability protocol.

circuit consisting of two-input gates realizing the Boolean expression
implied by the assignment. All bit values outside and inside the circuit are
probabilisticly encoded by P. The output bit of a gate might be used in
more than one subsequent gate. The idea is that P encodes the input bits
for the whole circuit (the bits corresponding to his secret: the satisfying
assignment) and subsequently all bits inside the circuit. The final bit (which
is equal to one) at the outside of the circuit has to correspond with the
encodings of the last two bits at the input side of the last gate in the circuit.
Now it is sufficient if the verifier is convinced that for each gate the input
bits and the output bit satisfy the equation implied by this gate. First we
deal with those eight gates which are of degree two. Basicly all eight are
similarly dealt with. We show how to deal with the so-called NAND-gate.
As is known the whole circuit could be built with NAND-gates with at most
five times more gates than in a circuit where all ten possible two-input gates
are allowed.

Let us denote the input bits of the NAND-gate a and b and the output
bit by c. P encodes the output bit c just by a residue C independent of
the encodings A and B of a and b. To prove the consistency of the
blobs A , B and C the prover will convince the verifier that the bit vectors
(b e 1, a, 0, b, a 9 I) and (c, c 6 1 , 0 , CB I , c) are cyclic permutations of
each other. To do this P creates another cyclic shift (do, d l , d2 , d3, d4)

of this vector. Then P encodes those bits di by blobs Di. Those five
blobs are given to the verifier and he has the choice out of two questions

The idea is that the prover P and the verifier V have agreed on some

21 3

On the first question the prover gives a residue k modulo five and
elements so, SI, s2, s3, s4 of the group Gsuch that the following equations
hold:

Dk = f (so) c,
*(k+Z} mod 5 C = Kf ($1).
' (k + 2 } mod 5 = f (q) ,

D(k+4) mod 5

D(k+3) mod 5 c = Kf (s3)7
= f (s4) c.

In case the verifier chooses for the second question it means that the
prover has to give a residue M mod 5 and five eIements vo, ..., vd of G
such that

The eight gates of degree two can be described by gate(a,b) =
NAiVD(a@ c, b 8 d) 8 e, where c, d and e are bits. For c = I we just
interchange the positions of a and a 8 I , for d = I we just interchange
the positions of b and b e 1. For e = I we decimate the positions of all
elements in the five bit vector with a factor pIus or minus two modulo five.

For the exclusive or gate we take XUR(a, b) = (a 8 I , b, 0, b e 1, a).
If we decimate the position of the elements in this vector with a factor
minus two and if we assume that the middle element is at position zero
we get EQ(a, bj = (b e] , a 8 1 ,0 , a, b). This way we have dealt with all
two bit input gates

presented to V . Then all first sets are gathered in one class all second sets
in another class etcetera. For each class the verifier V request to see either
equivalence of each set of five blobs-with either the input side of the
involved gate or to see equivalence of each set of five blobs with the output
side of the i&olved gate.

For each gate several sets of five residues like (Do ,..., D4) are

21 4

Proof of securitv: Suppose for a class of sets of residues like (Do,-..,
Dq) the prover has to show equivalence of each set of five residues with
the input side of the involved gate. The prover can only survive this
challenge if either he knows a satisfying assignment and made his blobs
according to the protocol or in case P does not know P has made all his
sets of residues in this class to be consistent with the inputside of involved
gates. In the last case he does not know the equivalence for at least one set

of five residues with the output side. So his chance of cheating is 2
guessing or predicting the question of V and making the sets of five
residues like (Do, ..., Dq) accordingly. Otherwise we have to assume that
for each set of five residues like (Do ,..., Dq) in at least one class P can
proof equivalence with both input side and output side. We may assume
the gate is a NAND-gate then this means that the elements

5 (bQ1, u, 0, b, &I) and (c, c @ l , 0, cQ1, c) of GF(2) are cyclic
shifts of each other.

c = NAND(a, b). Note that for a = b = I we do not have two consecutive
ones in the cyclic ordering of the bits in the first vector. This can only be
the case in the second vector if c = 0. For all three other possible values
of (a, b) there are two consecutive ones in the first vector and-such a vector
can be brought in the form (I , 0, 0, 0 , I) by a cyclic shift. This can only
happen for c = I .

-k
by

Now we will have to prove that is precisely the case when

To increase the efficiency more efficient protocols can be made for the
special cases (gates of degree one) of the XOR gate and the EQ gate.. We
will show it in case the gate is the XOR gate. The first improvement on the
protocol is to create blobs Eo and E l and showing equality for the
exclusive-or sum of the encoded bits with either the pair A and B or with
the pair C and the elementf(l)(the obvious encoding of zero, where I is
the unit element of G). The equality of the sum of the bits hidden by Eo
and E l and the sum of the bits hidden by A and B is shown by either
blobequality of the blobs A and Eo and blobequality of B and E l or by

blobinequality of those pairs. The prover decides whether he proves
blobequality twice or blobinequality twice and he does not say in advance
what his choice is (and of course he has no choice otherwise it means that
he can open blobs in two ways which violates our cryptographic
assumption).

21 5

An even faster protocol is possible in case K2 can be written asf(d)
and d is easy to find by the prover. Then the exclusive-or sum of the bits
a an b is encoded by the product A B assuming a and b are encoded by
the blobs A and B. This is usual the case where G and H are subgroups
of the multiplicative group of residues modulo a composite N andfis
taking squares.

A final remark need to be made about the complexity to deal with the
NAND gate. The equivalence between the five blobs Di and the single
blob C can be checked with five applications of the homomorphismfand
six (even with five) multiplications in H and the same holds for the
equivalence between the five blobs Di and the two blobs A and B.
Assuming the prover has already created blobs A, B and C the prover can
create new blobs Di and prepare possible answers on queries without
having to do divisions in group G or H.

A Particular Example for a Blob

In [BC86] and [BCC] several implementations of blobs are given. We
will give a slightly different one. This one is based on multiplications
modulo a composite number N whose factorization has special properties (
those numbers are often called Blum integers, the first reference for such
composites is pNil801):

the number N is made by the verifier V.
the group G is the set of residues with positive Jacobi-symbol,
H is the set of squares modulo N ,
K is an element of which the prover only knows a square root with
negative Jacobi-symbol (and for which the verifier has proved with
zero-knowledge techniques that he also knows a square root with
positive Jacobi-symbol) .

Multiparty Computations

Our idea can be exploited for multi party computations. The setting is as is
known a number of participants each which secret bits and some say one bit
function they want to compute. The model we have is using one outsider
which does not collude with any of the other parties. The outsider makes a
product of two primes, publishes this composite number plus one non-
quadratic residue Kwith positive Jacobi-symbol. Then the outsider proves
with an interactive zero-knowledge protocol the involved properties. Then

21 6

everybody encodes their bits using QRA [GM] with the modulus and
residue K of the outsider, they pool their blobs, and they all go as one
entity in interaction with the outsider. They produce sequences of five
blobs, multiply each blob with a random square, apply a random cyclic
permutation and a random decimation (in two of the four cases resulting in
inverting the encoded bit), and offer the resulting sequence of five blobs to
the outsider. The outsider responds with a single blob encoding the same
bit as the five blobs. Using those answers the group can compute the value
they want by sending the final sequence of five blobs (which encodes the
final output or the inverse (the group knows but not the outsider)) and ask
to open this blob. If this protocol is well designed the outsider will learn
nothing and the participants only the final value. One can put the outsider
to the test by asking him to prove that all his reductions from five blobs to
one were good and such a protocol is basicly the same as our main protocol.
The outsider could be a computer program which data can be erased by the
group after the protocol. The group members can only find out secrets of
each other when they violate QRA.

In principle our technique can be used to compute with blobs. The
blob we get is then a sequence, having a length that is a five power, of
single blobs. Two sets of five blobs (containing two commitments for I
and three commitments for 0) encodes a different bit if after a decimation
with a factor two and a cyclic shift of one of the sets the corresponding
blobs can shown to encode the same bit. And blobequality is done likewise
but without the decimation. To change a blob (of length jL+l)kto a blob
which encodes the inverted bit (blob inversion) we just rearrange all blobs
of length 5L by decimation with a factor two. Only blob inversion for the
single blob might not be possible in general for the opponent but in the
restricted general case we adopted for blobs it just the quotient of K with
the blob. For the full general case the creator of the blob might have to
create blobs to encode the inverted input values as well. Furthermore in
order to compute with those sequences of blobs for each gate both
sequences have to be made of the same length. This is done by blowing up
the smallest of them with enough powers of five. To increase the length
with a factor of five one replaces all “atom blobs” A by (A, B , 0, B, A)
where B is a blob encoding a different bit then A does and where 0
encodes the zero bit. Then any body can compute with those blobs to arrive
at a very large blob.

217

Open Problems and Conclusion

It remains open how the ideas presented above can be used to conduct a
general multiparty computation protocol with unconditional secrecy.
It may be concluded that in principle computing with blobs is possible (an
open question in [BC86]) and now the question is can it also be done
without increasing the length.

References

[BCC]
proofs of knowledge” . Journal of computer and system sciences, 3 7 , 2 ?

October 1988,156-189.
[BC86] Brassard, G and Crepeau, C. “Zero-Knowledge Simulation of
Boolean circuits.” Advances in Cryptology - Crypto ’86, A.M. Odlyzko,
Lecture Notes in Computer Science 263,223-233, Springer-Verlag.
[GM] Goldwasser, S., and Micali, S., “Probabilistic encryption”, JCSS, 28,

[GMW86] Goldreich, O., Micali, S., Wigderson, A. “How to prove all NP
statements in Zero-knowledge” Advances in Cryptology - Crypto ’86,
A.M. Odlyzko, Lecture Notes in Computer Science 263, 171-185,
Springer-Verlag .
[GMS] Goldreich, O., Mansour, Y., Sipser, M. “Interactive Proof systems:
Provers that never fail and random selection”. Symp. on Found. of Comp.

[wil80]
encryption procedure.” IEEE Trans. Inform. Theory, 26 (B), 726-729,
November 1980.

Brassard, G., Chaum, D. and Crepeau, C. “ Minimal disclosure

2,1984,270-299.

SC., 28, OCt 87,449-461.
Williams, H.C., “A modification of the RSA public-key

	More Efficient Match-Making and SatisfiabilityThe Five Card Trick
	Abstract
	A Matchmaking Example
	Introduction
	Assumptions on Blobs
	The Main Protocol
	A Particular Example for a Blob
	Multiparty Computations
	Open Problems and Conclusion
	References

