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Abstract. A two-party cryptographic protocol for evaluating any 
binary gate is presented. It is more efficient than previous two- 
party computations, and can even perform single-party (i.e. 
satisfiability) proofs more efficiently than known techniques. 
As in all earlier multiparty computations and satisfiability 
protocols, commitments are a fundamental building block. Each 
party in our approach encodes a single input bit as 2 bit 
commitments. These are then combined to form 5 bit 
commitments, which are permuted, and can then be opened to 
reveal the output of the gate. 

A Matchmaking Example 

Alice and Bob never met before and wish to fiid out whether they have 
some particular mutual interest_ But naturally each refuses to show interest 
first, because of the risk of getting an embarrassing “no” from the other. 
More formally, Alice has a secret bit CI and Bob has a secret bit b and a 
protocol is needed that reveals exactly the logical “AND” of the two bits. 
Consequently, if Bob’s bit is zero he should learn nothing about Alice’s bit; 
if his bit is one, he cannot fail to learn Alice’s bit because in that case her 
bit has the same value as the AND. 

One way to achieve the desired protocol is by physical means-more 
precisely, five cards. The back of all cards are , as usual, the same. The 
face side of two of the cards are identical, say the two-of-hearts, and the 
face of the other three are identical, say the two-of-spades. 

Initially,each party is given one card of each type and the remaining 
spade is put face down on the table and Bob then puts his cards face down 
on top of the initial spade. His secret choice of ordering for the two cards 
encodes his bit b: heart on top means I and the other way round means 0. 
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Fig. 1. Match makmg. If the table had eyes, the table would see five cards: the two 
of spades in the middle, Bob’s two cards on top (the order indicates his choice (in the 
square)), Alice’s two cards at the bottom of the stack (the order indicates her choice 
(in the octagon)). Three cases are cyclic permutations of each other, so 
indistinguishable after cutting the cards. The other case is two times yes. 
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Alice places her cards at the bottom of the stack. The secret order she 
chooses encodes her bit a, in a way that mirrors Bob: heart on the bottom 
means I and spade on the bottom means 0 (see Fig I) 

Then Bob and Alice each take turns “cutting” the cards. The result is a 
random cyclic permutation known to neither. After each is satisfied that the 
other does not know the cyclic permutation remaining in the cards, they 
display the cards on the table in a radial pattern like spokes of a wheel. 
There are only two distinct results apart from cyclic rotations (see Fig I 
where the first three cases are cyclic permutations of each other), and they 
correspond to AND (a, b). 

when both bits a and b are 1. 
It is easy to see that the two hearts are on consecutive spokes exactly 

Introduction 

What we just saw is an encoding of two bits into a five bit vector by 
putting the two bits, their inversion, and an extra zero bit in a certain order 
and applying a cyclic Permutation on this vector. Such a vector is decoded 
into I when it is a cyclic shift of ( 1, 0, 0, 0 , I )  or into 0 if it is a cyclic 
shift of ( 0 , 1 , 0 ,  I ,  0). Instead of working with bits we can make 
sequences of five “blobs”. This enables us to make a satisfiability protocol 
that is more efficient than the similar protocols [BC86]. Our protocol is 
described in the section: “The main protocol”. Satisfiability protocols are 
as explained in [BC86] ,[BCC] and [GMW86] roughly speaking a way to 
proof a claim such that the other party cannot prove the same claim by just 
exploiting the data from the conversation. The above number of five blobs 
is our gain over the number of twelve blobs used in [BC86]. 

“Assumptions on Blobs” basicly one extra demand on blobs which we need 
for efficiency reasons. In order that our idea give rise to a protocol more 
efficient then the protocol in [BCSS] we require that there exist “direct 
minimal disclosure proofs” for blob equality and blob inequality. In the 
section: “A Particular Example for a Blob” we suggest a blob which can be 
made with just one squaring and one computing of a Jacobi-symbol. In the 
section “Multi party Computations” we exploit our idea for a general multi 
party computation. 

Before we describe our protocol we exhibit in the section: 

Assumptions on Blobs 

In this section we describe requirements for blobs and give a suitable 
general formula. 
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For a protocol using blobs to be efficient we require that both creating 
blobs and opening blobs (showing that a particular blob encrypts a 
particular bit) are efficient. -Bobs are defined, as in PCC], to satisfy the 
following: no blob can be opened both as a zero as well as a one 
(authenticity) and blobs cannot be opened by the opponent (secrecy). 

a different bit (this protocol is called “blob inequality”) and also our 
building block requires that we have a protocol to show that two blobs are 
encryptions of the same bit without giving information which bit this is 
(called “blobequality”). It is known that given a protocol for one, a 
protocol for the other can be constructed. 

non-interactive zero-knowledge with perfect soundness and perfect 
completeness (see [GMS]). We envisage such a protocol for say 
blobinequality just by a message of the prover stating that two blobs hide 
different bits and containing some extra data upon which the verifier can 
easily verify the statement that the two hidden bits are different. 
Nonetheless the verifier gets no bias towards which blob hides the zero bit 
value. 

In other words we want a simple protocol where one round gives 
hundred percent certainty in the involved statement under the assumption 
that no blob itself can be opened by the prover in two ways (and the verifier 
has to assume that for any protocol exploiting commitments). 

encoding with a fast protocol for blob equality is the following: 

Our blobs should be such that the prover can prove that two blobs hide 

We also want those protocols to be efficient in the sense that they are 

In practice but still in a general setting the way to achieve a bit 

Let G and H be commutative groups, 
f a  homomorphism from G to H, 
KE H,such that the encoder can not find a CE G such thatf(c) = K.  
The encoding is done in the following way: 
take a random element T- of G and encode 0 byf(r) and encode 1 

The reason the encoder cannot find such a c is either because no such 
by Kf(r). 

value exists or because a suitable value is infeasible to find (because of a 
cryptographic assumption like the encoder cannot factor or take discrete 
logs). In the first case the opponent should not be able to distinguish 
random elements of the image offwith random elements of the coset 
which includes K because of a cryptographic assumption. In the second 
case the opponent might know a solution c for the equationf(c) = K but 
then in his view any blob could be equally likely encode a zero as well as a 
one. Both cases give different flavors of zero knowledge protocols. In the 
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second case the encoder is unconditionally protected and the opponent can 
only be fooled if the encoder could crack the underlying problem during the 
time of the protocol. In the first case the opponent is unconditionally 
protected but he could learn the satisfying assignment later on by cracking 
the underlying problem. 

Blob inequality is done by giving the fact that two blobs hide different 
bits and giving some element s to the verifier then the verifier checks 
that the product of the blobs is equal to Kf(s). Blob equality is done 
by giving a element u of G such thatf(u) is the quotient of the two 
blobs. It is easy to see that those techniques meets the demands for 
blob (in) equality. 

The Main Protocol 

In this section we exhibit our construction for a satisfiability protocol. 

circuit consisting of two-input gates realizing the Boolean expression 
implied by the assignment. All bit values outside and inside the circuit are 
probabilisticly encoded by P. The output bit of a gate might be used in 
more than one subsequent gate. The idea is that P encodes the input bits 
for the whole circuit (the bits corresponding to his secret: the satisfying 
assignment) and subsequently all bits inside the circuit. The final bit (which 
is equal to one) at the outside of the circuit has to correspond with the 
encodings of the last two bits at the input side of the last gate in the circuit. 
Now it is sufficient if the verifier is convinced that for each gate the input 
bits and the output bit satisfy the equation implied by this gate. First we 
deal with those eight gates which are of degree two. Basicly all eight are 
similarly dealt with. We show how to deal with the so-called NAND-gate. 
As is known the whole circuit could be built with NAND-gates with at most 
five times more gates than in a circuit where all ten possible two-input gates 
are allowed. 

Let us denote the input bits of the NAND-gate a and b and the output 
bit by c. P encodes the output bit c just by a residue C independent of 
the encodings A and B of a and b. To prove the consistency of the 
blobs A ,  B and C the prover will convince the verifier that the bit vectors 
( b e  1, a, 0, b, a 9 I )  and (c, c 6  1 , 0 ,  CB I ,  c) are cyclic permutations of 
each other. To do this P creates another cyclic shift (do, d l ,  d2 , d3, d4) 

of this vector. Then P encodes those bits di by blobs Di. Those five 
blobs are given to the verifier and he has the choice out of two questions 

The idea is that the prover P and the verifier V have agreed on some 
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On the first question the prover gives a residue k modulo five and 
elements so, SI, s2, s3, s4 of the group Gsuch that the following equations 
hold: 

Dk = f  (so) c, 
*(k+Z} mod 5 C = Kf ($1). 
' ( k + 2 }  mod 5 = f ( q ) ,  

D(k+4) mod 5 

D(k+3) mod 5 c = Kf (s3)7 
= f (s4) c. 

In case the verifier chooses for the second question it means that the 
prover has to give a residue M mod 5 and five eIements vo, ..., vd of G 
such that 

The eight gates of degree two can be described by gate(a,b) = 
NAiVD(a@ c, b 8  d )  8 e, where c, d and e are bits. For c = I we just 
interchange the positions of a and a 8  I ,  for d = I we just interchange 
the positions of b and b e  1. For e = I we decimate the positions of all 
elements in the five bit vector with a factor pIus or minus two modulo five. 

For the exclusive or gate we take XUR(a, b) = ( a 8  I , b, 0, b e  1,  a). 
If we decimate the position of the elements in this vector with a factor 
minus two and if we  assume that the middle element is at position zero 
we get EQ(a, bj = ( b e ] ,  a 8  1 ,0 ,  a,  b). This way we have dealt with all 
two bit input gates 

presented to V .  Then all first sets are gathered in one class all second sets 
in another class etcetera. For each class the verifier V request to see either 
equivalence of each set of five blobs-with either the input side of the 
involved gate or to see equivalence of each set of five blobs with the output 
side of the i&olved gate. 

For each gate several sets of five residues like (Do ,..., D4) are 
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Proof of securitv: Suppose for a class of sets of residues like (Do,-.., 
Dq) the prover has to show equivalence of each set of five residues with 
the input side of the involved gate. The prover can only survive this 
challenge if either he knows a satisfying assignment and made his blobs 
according to the protocol or in case P does not know P has made all his 
sets of residues in this class to be consistent with the inputside of involved 
gates. In the last case he does not know the equivalence for at least one set 

of five residues with the output side. So his chance of cheating is 2 
guessing or predicting the question of V and making the sets of five 
residues like (Do, ..., Dq) accordingly. Otherwise we have to assume that 
for each set of five residues like (Do ,..., Dq) in at least one class P can 
proof equivalence with both input side and output side. We may assume 
the gate is a NAND-gate then this means that the elements 

5 (bQ1,  u, 0, b, &I) and (c, c @ l ,  0, cQ1,  c) of GF(2) are cyclic 
shifts of each other. 

c = NAND(a, b). Note that for a = b = I we do not have two consecutive 
ones in the cyclic ordering of the bits in the first vector. This can only be 
the case in the second vector if c = 0. For all three other possible values 
of (a, b) there are two consecutive ones in the first vector and-such a vector 
can be brought in the form ( I ,  0, 0, 0 , I )  by a cyclic shift. This can only 
happen for c = I .  

-k 
by 

Now we will have to prove that is precisely the case when 

To increase the efficiency more efficient protocols can be made for the 
special cases (gates of degree one) of the XOR gate and the EQ gate.. We 
will show it in case the gate is the XOR gate. The first improvement on the 
protocol is to create blobs Eo and E l  and showing equality for the 
exclusive-or sum of the encoded bits with either the pair A and B or with 
the pair C and the elementf(l)(the obvious encoding of zero, where I is 
the unit element of G). The equality of the sum of the bits hidden by Eo 
and E l  and the sum of the bits hidden by A and B is shown by either 
blobequality of the blobs A and Eo and blobequality of B and E l  or by 

blobinequality of those pairs. The prover decides whether he proves 
blobequality twice or blobinequality twice and he does not say in advance 
what his choice is (and of course he has no choice otherwise it means that 
he can open blobs in two ways which violates our cryptographic 
assumption). 
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An even faster protocol is possible in case K2 can be written asf(d) 
and d is easy to find by the prover. Then the exclusive-or sum of the bits 
a an b is encoded by the product A B assuming a and b are encoded by 
the blobs A and B. This is usual the case where G and H are subgroups 
of the multiplicative group of residues modulo a composite N andfis 
taking squares. 

A final remark need to be made about the complexity to deal with the 
NAND gate. The equivalence between the five blobs Di and the single 
blob C can be checked with five applications of the homomorphismfand 
six (even with five) multiplications in H and the same holds for the 
equivalence between the five blobs Di and the two blobs A and B. 
Assuming the prover has already created blobs A, B and C the prover can 
create new blobs Di and prepare possible answers on queries without 
having to do divisions in group G or H. 

A Particular Example for a Blob 

In [BC86] and [BCC] several implementations of blobs are given. We 
will give a slightly different one. This one is based on multiplications 
modulo a composite number N whose factorization has special properties ( 
those numbers are often called Blum integers, the first reference for such 
composites is pNil801): 

the number N is made by the verifier V.  
the group G is the set of residues with positive Jacobi-symbol, 
H is the set of squares modulo N ,  
K is an element of which the prover only knows a square root with 
negative Jacobi-symbol (and for which the verifier has proved with 
zero-knowledge techniques that he also knows a square root with 
positive Jacobi-symbol) . 

Multiparty Computations 

Our idea can be exploited for multi party computations. The setting is as is 
known a number of participants each which secret bits and some say one bit 
function they want to compute. The model we have is using one outsider 
which does not collude with any of the other parties. The outsider makes a 
product of two primes, publishes this composite number plus one non- 
quadratic residue Kwith positive Jacobi-symbol. Then the outsider proves 
with an interactive zero-knowledge protocol the involved properties. Then 
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everybody encodes their bits using QRA [GM] with the modulus and 
residue K of the outsider, they pool their blobs, and they all go as one 
entity in interaction with the outsider. They produce sequences of five 
blobs, multiply each blob with a random square, apply a random cyclic 
permutation and a random decimation (in two of the four cases resulting in 
inverting the encoded bit), and offer the resulting sequence of five blobs to 
the outsider. The outsider responds with a single blob encoding the same 
bit as the five blobs. Using those answers the group can compute the value 
they want by sending the final sequence of five blobs (which encodes the 
final output or the inverse (the group knows but not the outsider)) and ask 
to open this blob. If this protocol is well designed the outsider will learn 
nothing and the participants only the final value. One can put the outsider 
to the test by asking him to prove that all his reductions from five blobs to 
one were good and such a protocol is basicly the same as our main protocol. 
The outsider could be a computer program which data can be erased by the 
group after the protocol. The group members can only find out secrets of 
each other when they violate QRA. 

In principle our technique can be used to compute with blobs. The 
blob we get is then a sequence, having a length that is a five power, of 
single blobs. Two sets of five blobs (containing two commitments for I 
and three commitments for 0) encodes a different bit if after a decimation 
with a factor two and a cyclic shift of one of the sets the corresponding 
blobs can shown to encode the same bit. And blobequality is done likewise 
but without the decimation. To change a blob (of length jL+l)kto a blob 
which encodes the inverted bit (blob inversion) we just rearrange all blobs 
of length 5L by decimation with a factor two. Only blob inversion for the 
single blob might not be possible in general for the opponent but in the 
restricted general case we adopted for blobs it just the quotient of K with 
the blob. For the full general case the creator of the blob might have to 
create blobs to encode the inverted input values as well. Furthermore in 
order to compute with those sequences of blobs for each gate both 
sequences have to be made of the same length. This is done by blowing up 
the smallest of them with enough powers of five. To increase the length 
with a factor of five one replaces all “atom blobs” A by (A,  B ,  0, B,  A )  
where B is a blob encoding a different bit then A does and where 0 
encodes the zero bit. Then any body can compute with those blobs to arrive 
at a very large blob. 
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Open Problems and Conclusion 

It remains open how the ideas presented above can be used to conduct a 
general multiparty computation protocol with unconditional secrecy. 
It may be concluded that in principle computing with blobs is possible (an 
open question in [BC86]) and now the question is can it also be done 
without increasing the length. 
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