A Generalization of El1 Gamal’s Public Key Cryptosystem
W.J. Jaburek, GABE Vienna

The general schems

El Gamal‘s Public Key Cryptosystem (El Gamal 1985) can be
generalized as follows (compare Shamir 1980) giving a public key
exchange system:

The potential receiver of encrypted messages chooses a function £
and publishes his public keys

s, k where k=f(s), f remains secret
G a set of functions commutative to £

The sender of message m chooses g € G and computes
k! =g(k)=g{£f(s))

He uses k'as a key for a symmetric Cryptosystem such as DES or
even simpler computes

m = m xor k'
and sends m’, g(s) to the receiver. The latter computes

f(a(s)) = g(f(s)) = K
and
m xXor k! =m

and has received m in a safe way.

Associative Operations

(Modular) Multiplication per se does not offer a secure way of
encryption. But multiplying an integer m n times by itself gives
a very popular encrypting function, modular exponentiation, which
has been used by El Gamal (El Gamal 1985) and by Rivest-Shamir-
Adleman {(Rivest 1978) as well.

The advantage modular exponentiation gives the friend against the
foe is the possibility to compute f£(x) in 1d n steps (cf Knuth
1981, p 441) whereas the enemy nearly has to go through 0(n)
steps to get n by trial and error. This advantage is caused by
the associativity of (modular) multiplication.

Associativity of the basic operation causes commutativity of the
exponentiation, <«oo.

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ’89, LNCS 434, pp. 23-28, 1990.
© Springer-Verlag Berlin Heidelberg 1990



24

Genseralisation of exponentiation

Multiplication cannot be the only possible associative operation
in that respect. Perhaps there are other operations that are
easier to compute and more secure in a cryptographic sense. That
would imply that the <resulting pseudo-exponentiation is more
easily applied to real 1life cryptography without special hard-
ware. Rueppel (Rueppel 1988) is following the track of consider-
ing function composition as a basis for pseudo-exponentiation. In
this paper binary operations are considered.

The "pseudo-exponentiation* defined as follows - at least to the
author - sounds very promising in the light of fast computation:

Let
x ... bitstring
f(x) = pa(pa( ... pa(pa(x,x),x) ...),x)

the pseudoaddition as defined below applied n times to X, n
integer

function pseudcaddition(x,y)
(x,y,accl,acc2, carry: bitstrings of length 1)
accl: =x
accl: =y
while acc2¢<>0
carry: = accl and acc2
accl: = accl xor acc2
(* Transformaticon of carry into acc2 *)
acc2: = 0
for i:=1 to 1 do
if (Bit i in carry equal to 1)
then acc2: =acc2 or tabelle(i]
end_for
end_while

Tabelle[i] is a bitstring of length 1, the i-th bit being zero
and none or another few bits being one. For all bits in
tabelle[i], i=1 .. 1, the j-~th bit (j=1 .. 1) only once has value
1 because otherwise the or-function in the above pseudo-code must
be replaced by a recursive call of pseudoaddition in order that
pseudoaddition remains associative.

In general there exist 1%+ possible values for tabelle, as tabelle
describes the mapping of 1 source bits into 1 bits, where each
source bit may be wused zero to 1 times (Variations with repe-
tition).

The while-loop must terminate, because after the and-operation
any bit of the carry has value one with probability p=0.25 and
after the =xor-operation any bit of accl has value one with p=0.5
with both probabilities clearly being smaller than one. The or-
operation with a tabelle satisfying the above given conditions
does not change the number of one-bits.



25

Example for tabelle with 1=4

tabelle(1l] = 0010
tabelle(2] = 0000
tabelle(3] = 0001
tabelle(4] = 1100

Note that tabelle(4] results in the urgently needed non-line-
arity!

Remark: Tabelle with values

0010
0100
1000
0001

describes binary addition modulo 15.

Lemma
Pseudoaddition is associative.

Proof
Can easily be verified by considering the similarity with
addition

Lemma

By repeating pseudoaddition a pseudo-exponentiation can be
defined. Pseudo-exponentiation takes ld n {(n being the number of
times pseudoaddition is repeated in the trivial way f compu-
tation) pseudoadditions.

Proof

Just take the square-and-multiply-algorithm for exponentiation
and substitute pseudoaddition for multiplication (¢f Knuth 1981,
p 441).

Example

Pseudoaddition using the above given tabelle, (2,0,1,12) when
representing the bitstrings as decimal numbers, applied to 0011
or 3 gives values when repeated: 3, 13, 1, 14, 2, 12, 15, 3,

a sequence that cannot be matched with the modular powers of 3
with any integer modulus.

Computational Complexity

Pseudoaddition takes n bit-operations in the for-loop times the
number of times the while-loop is taken. The 1latter depends on
the effect of carry-propagation. By applying the idea of a Carry
Save Adder (Vgl Brickell 1982 and the literature given there) the
while-loop ceases to exist {except in the case of normalizing the
result of the whole operation). By using special hardware



26

operating on all n bits at once, Pseudoaddition only takes o(l)
step. Pseudoexponentiaticon therfore takes 0(ld n) steps, which is
faster than modular exponentiation by a factor of n, as the
latter takes O(n . ld(n)) steps in good hardware

Remark
By implementing tabelle in hardware n= basic functions can be

chosen, adding even more security against possible attacks. In
order to prevent easy reading of the chip, it should not respond
to requests with low exponents.

Security Assessment

Up to now the author did not do a concise exploration of the
properties of the resulting set of binary operations. By using
the following 3-bit-pseudoaddition some properties of the
operations are discussed.

tabelle{l]= 010
tabelle(2]= 101
tabelle{3]= 000

results in the Cayley table for pseudocaddition

f |000 001 010 011 100 101 110 111

000(000 001 010 011 100 101 110 111
001)001 010 011 101 101 110 111 0O1
010010 011 101 110 110 111 001 0O10
011j011 101 110 111 111 ©CO1 010 011
100§100 101 110 111 000 0Ol 010 011
1011101 110 111 001 001 010 011 101
110110 111 001 Q010 010 011 101 110
111)111 001 010 011 O11 101 110 111

Some properties can be deduced:

* There is an Identity Elemsnt: 000 and a sort of dual represen-
tation of it: 111 (Compare to addition with negative numbers
represented as cne’s complement). The latter 11..111 could be
called pseudo-identity.

* For each possible operand x there exists a value y so that
pa(x,y) = 111.,.1111, the pseudo-identity. The Psaudo-Invaerse of
each bitstring can be calculated by applying the NOT-operation.

* Operations in general are not commutative as can be shown by
using a second oreration g described by tabelle 110, 000, 001 or
the Cayley table:



27

g |000 00! 010 O11 100 101 11C 111

000|000 001 010 011 100 101 110 111
001,001 110 011 100 101 011 111 0OO1
010}010 011 000 0C1 110 111 100 101
011j011 100 001 110 111 001 101 O1l1l
100{100 101 110 111 00! 110 O1l1 100
101101 011 111 GCO1 110 111 100 101
110110 111 2100 101 011 100 001 110
1111111 001 101 ©O11 100 101 110 111

For example f(g(010,110),101) = £(100,101) = 001 and
g(f(010,110}, 1C1) = g(001,101) = 011.

* Operations f with any tabelle[i] that includes two one-bits,
applied @ times to one value x result in the value x itself. @ is
Euler’s Totient Function of the largest prime-number in the value
range used. In the example given above ¢ = p-1 = 6 as 7 is the
largest prime number representable with 3 bits.

Potential Weaknesses:

1. Pseudo-exponentiation could be represented as multiplication
and therefore easily inverted, as one of the pseudoadditions is
addition. Examples chosen at will show that pseudoexponentiation
cannot be represented neither as addition nor as multiplications,
except in the linear <case of addition or permutations of
addition’' s carry-tabelle.

2. By applying pseudoaddition repeatedly the identity-element may
be produced. That is the same problem with modular exponentiation
and therefore does not seem to be critical.

3. For some values in the example-f
pseudoaddition(a, b) = pseudoaddition( a+l, b-1)

The author &id not find a way how to exploit that potential
weakness.

If other securi<y threats to the system should become known it
seems to be pcssible to expand the algerithm for pseudo-addition
in a number of ways - e.g. by using a more complex transformation
of carry into acc2 - without changing the run-time complexitiy of
the algorithm.

Conclusion

The above givern idea of creating pseudcadditions has twc advan-
tages cover El Gamal’s scheme:

* The basic function only takes 0O(1l) step. El Gamal’'s takes O(n).



28

* No large primes have to be calculated for initializing the
system.

The new operation pseudo-exponentiation can be applied to all
cryptographic procedures using modular exponentiation as a one-
way~-function, e.g. the Pohlig-Hellmann Public Key Distribution
System (Pohlig 1978) or the one-way encipherment of passwords in
computer-systems. Thus a new set of operations worth studying for
cryptographic purposes seems to emerge.

References

Brickell 1982

Brickell, E.F., A Fast Modular Multiplication Algorithm With
Applications to Two Key Cryptography, in: Chaum et al(Eds),
Advances in Cryptology - Proceedings of Crypto 82, Plenum 1983,
51-60

El Gamal 1885

El Gamal, A public key cryptosystem and a signature scheme based
on discrete logarithms, IEEE Trans. Inf. Theory, IT-31 (1985),
469-472

Knuth 19381
Knuth, D.E., The Art of Computer Programming2, Vol 2: Semi-
numerical Algorithms, Addison-Wesley 1981

Pohlig 1978

Pohlig - Hellmann, An Improved Algorithm for Computing Logarithms
Over GF(p) and its Cryptographic Significance, IEEE Trans. Inf.
Theory, IT-24 (1978), 106-110

Rivest 1978

Rivest =~ Shamir - Adleman, A Method of Obtaining Digital
Signatures and Public Key Cryptosystems,

Communications of the ACM 1978, 120 - 126

Rueppel 1988
Rueppel, R., Key Agreements Based on Function Composition, Proc.
EUROCRYPT’ 88, LNCS 330, Springer 1988, 3-10

Shamir 1980

Shamixr, A., On the Power of Commutativity in Cryptography, in
Automata, languages, and programming, Proc ICALP 1980, Lecture
Notes in Computer Science 85, Springer 1980, 582-595



	A Generalization of El Gamal's Public Key CryptoaystemW.J. Jaburek, GABE Viennas
	The general scheme
	Associative Operations
	General i s ation of exponentiation
	Computational Complexity
	Security Ass ass nent
	Some properties can be deduced:
	Conclusion
	References




