
On the Security of Schnorr’s Pseudo Random
Generator

Rainer A. Rueppel
Crypt0 AG, P.O. Box 474, 6301 Zug

Switzerland

Abstract

At Eurocrypt 88 Schnorr [S] proposed a pseudo random generator for which he
claimed that it could not be distinguished from a truly random source with less than
2O(“) output bits, even when unlimited computing power was available. We show that
this generator can, in fact, be distinguished with only 4n bits of output. Moreover,
we present an efficient (linear-time) algorithm which recovers the key from a sub-
string only slightly larger than the generator’s keysize. Consequently, the generator is
insecure.

1 Intro duct ion

There are two ways in which one can (conceptually) 1 imit the opponent’s capabilities (we
assume that the description of the generator is public, and that the opponent is allowed
to obtain pure keystream).

1. The opponent has limited computing resources. For instance, one may assume that
only polynomial-time attacks are feasible.

2. The opponent has limited access to the keystream bits. For instance, one may assume
that it is unfeasible to collect more than I consecutive keystream bits, or, that it is
unfeasible to collect a total of more than m keystream bits.

The basic notion of security for a pseudo random generator is that of indistinguishability
[2, 3, 6, lo]. Ideally, one would like to design keystream generators that, below the unicity
distance, cannot be distinguished from a random source, even with unlimited computing
power; and that, beyond the unicity distance, cannot be distinguished from a random
source under the assumption of reasonably bounded resources.

4 comple.xiity-theoretic framework has emerged over the past few years [2,3, 6,9, 101 that
defines a pseudo random generator to be perfect or cryptogmplzicnlly secure if it passes
all polynomial-time statistical tests. So far, it is not clear whether perfect generators
do edst. Nevertheless, if one introduces some reasonable complexity hypothesis, one can
prove “perfectness” of a generator. For instance, “perfect” generators have been postulated
based on the discrete log [3], based on quadratic residuosity [‘2], based on one-way functions
[lo], based on RSA [l, 61. At Eurocrypt 88 Schnorr proposed a pseudo random generator
and a different notion of security such that the security of the generator is not based on any
such unproven assumption [8]. H’ IS construction makes use of the permutation function
generator proposed in [4]. This permutation generator consists of a m-round DES-like
structure, where in each round i a different (pseudo) random function f; is applied. It is
shown that 3 rounds suffice to prove perfectness (polynomial-time indistinguishability) of
the resulting permutation generator, provided the functions f; are indistinguishable.

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 423-428, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

424

Schnorr's pseudo random generator G = {Gk} is defined as follows:
Znput 2: the key (seed) is a random function f : In + I,; size of description n2".

I. set y;" = i for i = O,I, ..., 2'" - 1.

2. F o r j = 0 , 1 , 2 d o
?d+' = (R(LJ-3, L(yi) 63 f (R(2))))

{L and R mean left and right half of argument}.

Output Gk(z): the sequence of y!,i = 0,1,2, ..., 2'" - 1. Note that the key z has size

k = n2" (the function description) and that Gk(z) has length 2n2'". Thus, the generator
stretches a seed of length k into roughly k2 pseudo random bits.

The main claim in [S] is tha t this generator passes all statistical number tests (even
those with unlimited time bound) that depend on at most 2"/3-('0g")2 bits of Gk(z). This
result refers to the situation where the opponent has limited access to the keystream bits,
but otherwise has unlimited computing power. In Section 2 it is shown that Schnorr's
claim is erroneous; more precisely, a statistical test is exhibited which distinguishes G
with as little as 4n bits of G~(z) . This fact was independently discovered by Ohnishi [7],
Zheng, Matsumoto, and Imai [ll], who were studying the construction of pseudo-random
permutations, as proposed by Luby and Rackoff [4]. Maurer and Massey (51 identified
and took up the constructive problem hidden in Schnorr's approach, namely to design
what they called perfect focal mndomizers; these are algorithms that stretch a short string
of random bits into a long pseudo-random sequence of bits with the property that every
subset of e output bits is completely random (in the information-theoretic sense). They
showed that such perfect local randomizers can elegantly be constructed using coding-
theoretic tools. However, in a practical application the assumption that the opponent
cannot observe more than e bits may be too restrictive. Therefore, if a local randomizer
is proposed for direct use as keystream generator [S] , it is mandatory to analyze its
computational security. For Schnorr's Generator we present an attack that recovers the
key f from a small subset of n2" + O (n) bits of the output sequence of Gk(z). Moreover,
this algorithm runs in time O(n2"). Note, that this attack reaches the performance limits
of any attack, since simply reading the key from memory requires linear time and linear
space in the size of the key. It is also demonstrated that some generalizations of Schnorr's
generator are prone to the same kind of efficient attack.

2 Results

Let some yo = (l , r) , and let Fj denote the permutation of I?,, as indexed by the key f.
Then

Ly3 = LFj(1, r) = @ J (i fB f (r))

Ry3 = RFj([,7) = 1 @ f (~) @ f(r@ f (/ @ f (~ >))
We will drop the subscript f whenever the same key f is used in every round of the
generator. Let OF be the oracle that evaluates F (y) at specific arguments y (in one
computational step). We are interested in distinguishing the 2 cases, (1) F is a random
function, (2) F = F f , as used in G.

425

Theorem 1 Schnorr's generator G can, for any number of rounds, m, be distinguished
from a truly mndom source by 2 omcle calls, i.e., by observing 4n output bits of Gk(2).

Proof: let F,,,(l, r) denote the m-round permutation function on I2,,. Then, for any m > 0,
F,,, and its inverse FG1 are related as follows:

F;'(l,r) = PH(Fm(pH(l,r))) (1)

PH denotes the permutation function that switches left and right half of its argument.
The proof is by induction; assume (1) holds for m, and let F;'(l,r) = (a , b) , then

G;Jw = (b 3 f(a),a)

Fm+1 (f ' ~ ([r r)) = (a76 @ f (a))

Thus (1) holds also for (m + 1). For m = 1

F l (L T) = (r , l @ j(.))
Thus 1 holds for any m > 0. It follows

(l , r) = F m o F Z * (l , r) = F , , , o P ~ o F , o P ~ (l , r)

To distinguish Gk(z) from a purely random string, we apply PH to an arbitrary argument
(1, r) , call the oracle OF, apply PH a second time, and call the oracle a second time. The
result will be (I , r) with probability 1 if F, was used by the oracle. For a random function
the probability that (I, r) will be the result is 2-2". 0

Corollary 1 If two functions f , g are used alternately, then G can still be distinguished
by observing 4n output bits of Gk(z), provided the number of rounds is odd.

Proof: Let g be the function used in odd rounds 1,3,5,.. and let f be the function used
in even rounds 2,4,6,..; then

F,f,l([, r) = (r @ dl), 9

F,f,3(4 r) = [r 63 r(l@ S(.>)l I @ !7(r) @ S(r 3 1" @ s(.)))l
F;:,(L r) = (r , 1 @ !7(r))

F;:3(4 r) = [r El 9(l) @ g (l @ f (r 63 g (l))) , l e3 f (r @ !7(1))1

Hence, relation (1) still holds. 0 Ohnishi [7] has independently discovered that this result
holds for any palindromic arrangement of functions, that is, for any sequence of functions
where reversing the order of the functions does not change the sequence of the functions.
In the sequel, the computational security of G shall be analyzed for the case where the
opponent has acquired a keystream-segment whose length is comparable to the keylength.
This seems also interesting in the light of the generator's close structural ties to DES. The
following algorithm will recover the key from a substring of size about 722" of G~(z) . It is
based on the observation that one can always find an i E (0,1, ..,2" - 11 such that

426

For any r there must exist a unique i such that f(r) = i@r which implies f (i @ f (r)) = i @ r
which in turn implies (2).The converse is not true in general, since f need not be invertible,
that is, for an image i @ r there-may be more than one preimage. The case LF(1,r) = 1
but f(r) # I @ r is called a "false alarm". Such a "false alarm" can be easily eliminated
by noting that

L F (L F (j , r) , I @ r @ j) = j , j = 0,1,2 ,..., 2" - 1
has to hold with probability 1 if j (r) = 1 @I r. But if f(r) # I @ T the check equation will
only hold with probability 2-" for any j. Thus, one additional test will usually discover
a "false alarm". After verification that f(r0) = I0 @ ro key and keystream are related
through the simple equation:

f(j) = L F (j @ f (ro) , ro) @I TO V j + TO

Algorithm: Recover key f

1. fix some ro; set i = 0

2. test if LF(i , ro) = i {lock-in condition}
if false set i = i + 1 and test again.

3. set io = i
{define uj = j fB io @ ro and v, = L F (j , T O) ; these variables serve to check for correct
lock-in}
test if LF(vj, uj) = j for j = 0,1, ..
{usually one test suffices t o rule out a false lock-in}
if false set i = i, + 1 and go back to (2).

4. j (ro) = i, @ r,
for all j # To set f(j) = L.F(j @ f (To) , To) @ To

{the key f is recovered}

The number of bits required from the output sequence Gc(z), in order to recover the
complete key, is n2" + O (n) , that is, just a little more than the keysize. The running time
is 0(2"), if n-bit operations are counted. The algorithm cannot be faster, since i t has
to look at each entry of the key f . From [4] it is known that the use of 3 independent
random functions g , f , h results in a pseudo random permutation Fg,f,h. According to
[ll], it was proved in [7] that two independent random functions g, f used either in order
g, f , f or g,g, f suffice to guarantee pseudo randomness of Fg,f . Consider the correspond-
ing generalization of Schnorr's generator where Ff is replaced by .Fg,f. Then the local
randomness property of G' directly follows from the indistinguishability of Fg,f. Now the
computational security of the generalized generator G' shall be addressed. For G' i t holds

Ly3 = LFg,f([, r> = r @I f (l CB g(r))

421

Algorithm (Sketch): Recover key g,f

1. fix some t o ;
get Fg,j(l, ro) for 1 = 0,1, ..., 2" - 1.

2. define jo(1) = LF(1,ro) @ ro and fi(l) = fo(l@ i);
{if g(r0) = i then f must equal f; and RFg,f = 1 @ @ f ; (LFg , j) }
for i = 0,1, .. assume g(r0) = i;
if RFg,j = 1 @ i @ f;(LF,,,) for I = (),I,.. (only few checks are necessary) then
g(r0) = i and f = f;.

3. fix some I0
get F,j(lo, r) for r = 0,1, ..., 2n - 1
compute g(r) = BFg,j(l0,r) @ 1 @ f(LF,,,([o,r)) for all r.

The number of bits required from the output sequence G;(z), in order to recover the
complete key f , g , is 4n2", that is, about double the keysize. The running time is O (n 2 ") ,
that is, it is linear in the keysize. Again, the algorithm cannot be faster, since i t has to
look at each entry of the key f.

3 Concluding Remarks

Schnorr's generator offers neither a provable local randomization nor a reasonable resis-
tance against cryptanalytic attacks. In fact, i t can be predicted in linear time. Hence, it
sbould not be used for encryption purposes. But i t raises some interesting questions:

1. The local randomization problem, identified and taken up by Maurer and Massey (51:
Can one construct perfect local randomizers Gk(z) which stretch a key z of length k
into a pseudo random sequence of length I > k in such a way that any e < k bits of
the pseudo random sequence are truly random? They showed that this problem can
elegantly be solved using coding-theoretic tools. In fact, they obtained much better
results than what Schnorr hoped for using the complexity-theoretic approach. The
following example compares Schnorr's generator with a linear local randomizer of
identical parameters:
Example [5]: take an [N , K] extended Reed-Solomon code over GF(2*") where
N = 2'" and K = 2"-'; if this code is mapped into GF(2) a binary code with
parameters N' = 2n2'" and K' = 2 n Y - l = n2" is obtained. Such a code has
the property that every subset of e 2 Ir' = n2"-* columns of the encoding matrix
G is linearly independent. Consequently, if the n2" information bits are chosen
independently and uniformly, the corresponding codeword of length 2n2*" has the
property that every subset of e 2 2"-' bits is completely random. Note that this is
about the third power of Schnorr's bound.

2. The pseudo random permutation construction problem [ll]: is it possible to con-
struct, with only one random function f, a permutation function Fj which is provably
pseudo random? Then the local randomness property would be inherited by a bit
generator construction such as Schnorr's.

But, what one would really like is a generator with both a proof of local randomization
and a proof of unpredictability (under the assumption of reasonably bounded resources)

428

Acknowledgment
I wish to thank J im Massey and Ueli Maurer for helpful discussions on the topic of t h e
locd randomizer. I would also like to thank Prof. C.P. Schnorr and Prof. T. Matsumoto
for their comments.

References
111 W. Alexi, B. Chor, 0. Goldreich, and C.P. Schnorr, "%A and &bin Functions: Certain

Parts are as Hard as the Whole", SIAM Journal on Comput. 17 (1988), pp.194-209.

[2] L. Blum, M. Blum, and M. Shub, "A simple unpredictable pseudo-random number generator",
SIAM J. Comput. 15 (1986), pp. 364-383.

[3] M. Blum, S. Micali, "How to generate cryptographically strong sequences of pseud-random
bits", SIAhl J . Comput. 13 (1984), pp. 850-864.

[4] M.Luby, C. Rackoff, "How to construct pseudorandom permutations from pseudorandom
functions", SIAM J.Comput. 17 (1988), pp. 373-386.

[5] U.Maurer, J.L.Massey, "Perfect Local Randomness in Pseuderandom Sequences", submitted
to Crypto 89.

[6] S. Micali, C.P. Schnorr, "Efficient, perfect random number generators" Preprint MIT, Uni-
versity of Frankfurt, 1988.

[7] Y. Ohnishi, "A study on data security", Master Thesis (in Japanese), Tohuku University,
Japan, 1988.

[a] C.P. Schnorr, "On the construction of random number generators and random function gen-
erators", Proc. Of Eurocrypt 88, Lecture Notes in Computer Science 330, Springer Verlag,
1988.

191 A. Shamir, "On the generation of cryptographically strong pseuderandom sequences", 8th In-
ternational Colloquium on Automata, Languages, and Programming, Lecture Notes in Com-
puter Science 62, Springer Verlag, 1981.

[lo] A.C.Yao, "Theory and applications of trapdoor functions", Proc. of the 25th IEEE Symp. on
Foundations of Computer Science, New York, 1982.

[ll] Y. Zheng, T. Matsumoto, H. Imai, "Impossibility and Optimality Results on Constructing
Pseudorandom Permutations", Proceedings of Eurocrypt 89, this Volume, Lecture Notes in
Computer Science, Springer Verlag, 1989.

	On the Security of Schnorr’s Pseudo RandomGenerator
	Abstract
	1 Intro duct ion
	2 Results
	3 Concluding Remarks
	Acknowledgment
	References

