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Abstract. This paper gives a characterisation of perfect Cartersian authentication 

schemes. It is shown that their existence is equivalent to the etistence of nets. Fur- 

thermore the paper presents constructions of new authentication schemes derived from 

generalised n-gons which take on the lowest combinatorial bound for the impersonation 

attack. They include, as special cases, those based on projective planes and generalised 

quadrangles which are described in [5] and [3] respectively. It investigates the properties 

of the encoding rules and contains a brief discussion of questions in connection with key 

management. 

1 A Mathematical Authentication Model 

There are three participants in the authentication model introduced by Simmons [7]: a 

transmitter, a receioer and an opponent. The transmitter wants to communicate certain 

information to the receiver, whereas the opponent tries to deceive the receiver. 

More formally, we have a set of source state3 S, a set of authenticators or authenticated 

message3 A4 and a set of Hey3 K. A source state s E S is the information which the 

transmitter wishes to communicate to the receiver. This is done under a common se- 

cret key 1 E K which defines the encoding rule el used to determine the authenticated 

message m = cl(s) sent to the receiver (this means that el is a mapping from S to M 

and hence we investigate codes without splitting). In order for the receiver to be able 

to uniquely determine the source state from the obtained message, there can be at most 

one source state which is encoded by any given authenticated message m E M (i.e. 

cl(s) # ez(s’) if s # 9’). This means that the encoding rules el, I E K, are one-to-one 

mappings from S to M. 

In the authentication codes we are going to construct every message uniquely de- 

termines the source state, independently of the key used. Such codes which offer no 

secrecy are called Cartesian. Another way of expressing the property of a scheme which 

is Cartesian is to say that there exists a map from M to S the restriction of which to 

cl(S) S M is the inverse of the map el for every key 1. 

We shall henceforth assume that every authenticated message is the image of at least 
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one source state under at  least one encoding rule. This is no restriction, since the de- 
ceiver knows the encoding rules and can thus rule out all other elements in M .  

The receiver v e s e s  the validity of a received authenticated message m* by checking 
that rrz* is contained in e l ( S ) .  If this is the case, then the unique source state 3- with 
el(s*)  = m* will be accepted. A message m* not in e l ( S )  is rejected as fraudulent. Our 
definition of the acceptance rule implies that the probability of every source state is non- 
zero and that the receiver accepts a verified source state independent of its probability. 

2 Perfect Authentication Codes 

We consider two situations in which an opponent can launch an attack. In the first 
one he / she tries to make the receiver accept an authenticated message without having 
intercepted one. This is called impersonation. The other one is substitution. Here the 
opponent replaces an intercepted authenticated message by a different one. 

We assume that there is a given probability distribution on the set of source states. 
The transmitter and receiver will determine a probability distribution on K ,  called an 
encoding strategy. We will denote by Pi the probabilities that the opponent can deceive 
the transmitter / receiver with an impersonation (i = 0) or a substitution (i = 1) attack. 

Simmons [7] defined a code to be perfect if 

with E (C K) the set of “distinct” encoding rules or transformations (since different 
keys can define the same encoding transformation). 
Perfect authentication codes were investigated by several authors [5], [i’]. In [S] it was 

shown that for uniform source distribution PI 2 1/m. So the best such a scheme 
c a n  achieve for the transmitter and receiver is l/m. We prove the following theorem 
in this paper. 

Theorem 1 There ezists a perfect  Cartesian authentication code o n  T source states,  
T .  k authenticated messages and kZ encoding rules if and only if there ezistJ CL ne t  o f  
degree f and order k (see [I], [2]). 

We remark that this equivalence is implicitly contained in the paper by Gilbert, 
MacWilliams and Sloane [S] but the proof given here is the first direct approach for 
arbitrary source distribution. 
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3 Properties of the encoding rules 

When substituting a fraudulent message for an intercepted one, the opponent may have 
one of the following three aims in mind 

(i) to “disturb” the system, 

(ii) to have any fraudulent message accepted, 

(iii) to have a particular fraudulent message accepted. 

In the schemes we consider he can always achieve (i) ,  while (ii) and (iii) have the same 
probabilities attached. 

The probability that the opponent can successfully deceive the receiver depends on 
the way the sets e l (S)  are related to each other for the various encoding rules. We 

have to assume that the opponent has complete knowledge not only of the source states 
and authenticated messages but also of all the encoding rules. That is to say that the 
security of the scheme depends on the particular choice of ei (or I )  being kept secret. 
If, for instance, e l ( S )  n elv(S) = #I for any two distinct encoding rules, then the opponent 
can derive the encoding rule el ,  say, from every intercepted authenticated message m. 
He could thus replace m by m’ # m, m‘ E q ( S ) ,  and he can deceive the receiver with a 
probability of 1. The opponent’s probability to impersonate successfully the transmit- 
ter, that is to plant a message without having observed one, is just lel(S)I/IMI = l/lEl. 
In the other extreme we have /MI = Iel(S)l = /SI for one and hence for all keys. In 
this situation the opponent can deceive the receiver in either case with a probability of 1. 

An intercepted message m provides the opponent with some information about the 
encoding rule. I t  has to  lie in the set Em of all those encoding rules which take on m as 
an image of a source state, that is Em = ( e l  1 el E E and m E q ( S ) } .  Assuming that all 
encoding rules are equally likely, the opponent has a probability of l/lEm) of guessing 
the correct rule. He can deceive the receiver with a probability of 1 if ne l (5 ) ,  over all 
el in Em, contains an authenticated message m’ # rn. For a replacement of m by m’ 
would not be noticed by the receiver. This yields the following requirements 

(i) # 1 for all m E M ,  and 

(ii) n E -  e t ( S )  = {m} for dl m E iM. 
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Let us illustrate this by a n  example. We take S = { A , B ,  G}, E = {e l , .  . . , e4} and M 
the entries of the  matrix below which define the encoding rules. The only case where 
the opponent cannot deceive the receiver with a probability of 1 is when he intercepts 

bi.  

Let e K ( s )  denote the set of images of the source state s under all encoding rules, that 
is e K ( s )  = { e l ( s )  I I E K }  M .  Since, for Cartesian authentication schemes, distinct 
encoding rules never map distinct source states to the same authenticated message, 
distinct source states give rise to  disjoint sets. It follows that the sets e K ( s ) ,  s E S, par- 
tition the set of authenticated messages and that there is a natural 1-1 correspondence 
between S and { e K ( s )  I s E S}. The knowledge of this property gives an  opponent a 
sure way of disturbing the system. Say he intercepts the message m = e l ( s ) .  He then 
replaces m by a message m’ E e K ( s ) ,  m’ # m. Though m‘ corresponds to the  same 
source state s as the  correct message m the receiver cannot decide whether this type 
of substitution was played or whether m‘ was substituted for a message rnl = el(s1) 

authenticating a source state s1 # s. 

If the opponent wants t o  deceive the receiver, then he has to choose a message 
m’ = el(s’) in t he  set el(S) with s’ # s. Which set he chooses and which message in 
this set depends primarily on the way the encoding rules “distribute” the source states 
among the authenticated messages. We will from now on assume that there is a uni- 

form probability distribution on the set of encoding rules, that is all encoding rules are 
equally likely. 

For a message m let n, denote the number of encoding rules which take on m 

as an image, tha t  is n, = !Em/. If the opponent runs an impersonation attack, then 
he is not restricted in his choice by any message sent by the transmitter. Thus his 
probability to succeed depends solely on the distribution of the values n, in M .  If he 
does not mind which fraudulent message gets accepted he picks the message rn with 
nm = max{n, 1 rn E M } .  If he wants to run a chosen attack, that is he wants a specific 
source state s to be accepted, then he chooses the message m with the largest value 
n, among e K ( s ) .  Since all encoding rules are equally likely his chances to succeed is 

Po = n,/lEl. This yields the following inequality n,//Ei 2 ISl/lMI. We also note 
that, if nm is a constant n, both the chosen and the non-specific attack have the same 
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probability. Counting pairs ( e l , m )  with e l ( s )  = m for some s E S we obtain n . /MI = 
IEl - ISI. Hence n/\El = ~ S ~ / ~ M ~ ,  which is the lowest possible bound. The situation 
is different in the case of substitution. Firstly, the opponent, who has intercepted a 
message m, m E e x ( s ) ,  " cannot" choose a message in the "intercepted" class ex("). 
Secondly, he has obtained some knowledge about the set E"' of encoding rules which 
might have been used. Let us illustrate this again by giving an example. 

-pTT 

ee a2 C1 

Example 2 

Suppose that we have a probability distribution on 
reads as follows: 

the set of source states which 

prob(A) = 0.6, prob(B) = prob(C) = 0.2. 

Given this distribution the opponent has a success rate of 1 / 2  in 40% of all transmis- 
sions, that is when B or C is authenticated. In the remaining 60% of all transmissions 
his success rate is just 1/3. 
The probability distribution on the source sates can be counteracted by using column 
A' instead of A which requires one extra authenticated message. In this scheme all 
transmissions supply the opponent with a success rate of 1/2 > l/& = l/m. F'ur- 
thermore, Po = 1/3 and PI = 1/2 since n, = 2 for all messages rn. The reader should 
convince himself that  this is the best possible value one can achieve on three source 
states with six encoding rules. 
The transmission of a message rules out not only certain encoding rules but also certain 
messages. Say message m = bl was sent by the transmitter, then an opponent knows 
that the receiver will not accept az or cg as they are not in E"(S) .  So the condition 
which should be imposed on the encoding rules is that Em(S) = M and that Em gives 
a uniform distribution on all messages not in e K ( s ) .  It is easily seen that this cannot be 
achieved in a scheme with just three source states. An example of such a scheme can 
be constructed from columns B ,  C, A' and D extending them in the obvious way. We 
note that this is an a&e plane of order 3. 

Now let a l l  messages in M \ e K ( s )  lie on the same number n' of encoding rules in 
Em. Then by counting pairs (rn ' ,e l )  with rn' @ e K ( 8 )  and e l (s ' )  = m' for some 3' E S 
and el E Em we obtain 
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We note that 

and PI = Po in such a system if and only if 

IMI = IS1 * Ied.)I* 

The last equation holds, by the way, for the perfect schemes described in [j]. They 
are constructed from projective planes which are the projective closure of affine planes. 
These are nets of maximal degree. 

4 Perfect Schemes and Nets 

4.1 Nets 

A finite incidence strucuture P is a triple ( P , B , I )  which consists of two finite, non- 
empty and disjoint sets P and B and a subset I C P x B. The elements of I are called 
flags while those of P and B are referred to as points and lines respectively. I is called 
the incidence relation. We say that a point x and a line L are incident with each other 
and write 2 E L if and only if ( x ,  L) is a flag. 

Throughout this paper we shall only be concerned with linear incidence structures, 
which are chaxacterised by the property that distinct points are incident with at  most 
one line. As furthermore every line is incident with at least two points we can identify 
each line with the set of points it is incident with. 

An incidence structure is tactical if it has the property that every point is incident 
with the same number r of lines and every line is incident n-ith the same number k of 
points. Using /PI = u and IBI = b it is easily seen by counting flags in two different 
ways that 

A net of degree r and order lc (see Bose [l]) is an incidence structure P=(P,  B ,  I )  
which satisfies the following axioms 

(i) the lines can be partitioned into exactly r disjoint, non-empty "parallel classes" 
such that 

(a) each point is on exactly one line of each class 
(b) two lines of distinct classes intersect in exactly one point; 
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(ii) each line is incident with k points. 

Then it can be proved that the incidence structure is tactical, so each line of the net 
contains exactly k distinct points and each point of the net lies on exactly r distinct 
lines. Furthermore the net has exactly r .  k distinct lines.and k2 distinct points. 

It is easy to see that r 5 k + 1 and r = k + 1 if and only if P is an affine plane. 
An f i n e  plane is known to exist for every prime power k. Nets with (at least) r = 4 

parallel classes exist for all values of k. 

4.2 Proof of the Theorem 

We will first prove that an authentication scheme constructed from a net is perfect. 
Let ( P , B , I )  be a net of degree r and order k, and let P be its set of parallel classes. 
The construction closely resembles the one given in [5] for projective planes. Let 

S = P  

be the set of source states, 

M = B  

the set of authenticated messages and 

K = P  

the set of keys. The encoding rule el defined by the key I maps a source s to the au- 
thenticated message m which is the unique line in the parallel class s which is incident 
with 1. This is well defhed since every point of the net is incident with exactly one line 
of each parallel class. Observe also that, since each line of a net is contained in exactly 
one parde l  class, this authentication scheme is Cartesian. 

We now prove that the schemes constructed above are perfect. We show that Po = 

PI = 1/m under the assumption that there is a uniform distribution on the set of 

keys, SO p ( l )  = 1/!K[ = 1//P[. Let qO(m) be the opponents optima1 impersonation 
strategy. Then 

Setting p ( I )  = 1//Kl  and noting that Czxm 1 = k, gives 
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where the last equality follows from \PI = k2 for a net. 

Suppose now that the opponent has observed the sender’s authenticated message 
m, a d  let q*(m*jrn) be his optimal strategy. Clearly, we have ql(zlm) = 0, whenever 
zllm, because parallel messages always correspond to the same source state, and the 
opponent usually is not interested in substituting m by a message corresponding to the 
same source state. Then 

PI = C ~ ( m )  - C ql(m*tm) * C p(iim). 
mEM m* EM,rn’ Um l I m , l I m -  

Since m and m* are not parallel they intersect in exactly one point. 
p(l lrn)  = l / k ,  since there are k points per line and p(Z) is uniform. This gives 

firtherrnore 

1 1 PI=-=- JT- 
Now we will prove that every perfect authentication system defines a net. Suppose 

we are given a Cartesian authentication scheme with a set of source states S, a set of 
authenticated messages M ,  a set of keys K and a set of encoding rules {el : S + M I E 

K).  We associate with our authentication scheme an incidence structure N = ( K ,  M ,  I ) ,  
with points set K ,  line set M and an incidence relation defined in the following way: 

if I E K and m E M ,  then 1 I m u there exists an s E S such that e l (s )  = m. 

Note that the term line above is an abuse of terminology since two “lines” may have 
more than one point in common. 

For each m E M we denote by ~ ( m )  the unique source state which encodes t o  F. 
This is well defined for our authentication scheme is Cartesian. The function u : M + S 
gives rise to an equivalence relation ‘‘11” on M ,  defined by 

mllm’ if and only if r(m) = ~ ( m ’ ) .  

For each s E S let P,={m E M 1 ~ ( m )  = s} denote the equivalence class of “parallel” 
lines corresponding to  s. Two distinct parallel lines m and m‘ in P, have no point in 
common. For otherwise there exists a point (key) I such that el(s‘)  = m and el($)  = m*. 
As mllm* it follows that s = s’ = s* and, since el is a mapping, m = m- contradicting 
rn # m’. It also follows that for each point I of our incidence structure N there is a 
unique line ez(s) in P, which is incident with 1. So the lines of P, partition the points 
of N and all the lines form a “pardelism”. 

The above discussion indicates that N has a net-like structure. I t  remains to show that 
each line is incident with the same number of points and that two distinct non-parallel 
lines intersect in a unique point. We denote by [m] the number of points on a line m 

and by [m,m*] the number of points the lines m and m* have in common. 
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We assume that the key is chosen according to the uniform distribution p(Z) = I/[KI. 
Let q;l(m) be any impersonation strategy selected by the opponent. Then, since the 
authentication scheme is perfect, we have 

where PA denotes the probability of a succesful impersonation. Substituting p(Z) = 

1/1K1, and 1{1 I er(u((m)) = m}l = [m], gives 

Since this inequality holds for every strategy qh(m), it follows that 

for a l l  m E M .  As a consequence we obtain 

m€M 

with equality if and only if [m] = f i  for each m. In this expression /SI is the number 
of parallel classes (i.e., the number of source states). The equality in the expression 
follows because both sides of the equation count the number of flags of the incidence 
structure. 

Suppose now that d(m) is an opponent's substitution strategy, and let q:(m*lm) be 
the strategy given that  m has been intercepted. We shall assume that p;(+lm) = 0 for 
all messages x which are parallel to m. Since the authentication scheme is perfect we 
have 

d m )  = d 4 m ) )  c PP) 
1Xm 

SO that substituting for p(Z) = l / ]K[ ,  p(Zlm) = l/[m! and noting that 1{Z 1 e l ( c ( m ) )  = 
m, e( (g(m*))  = m*)l = [m,m*], we obtain 

This holds for all choices of d(m*lm). For each m, choose an m' with 

[m,m'] 2 [m,m-l, all m' ,+z 
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and define qi(z1rn) = 1 if z = m' and 0 otherwise (Le. the strategy is to substitute 
a message which has the maximum number of points in common with m). Then we 
obtain 

c P ( Q ( r n ) )  . [rn,m/] I m. 
mEM 

But 

since [m, ml] 2 1. 
On the other hand 

Hence there results 

which gives [rn,rn'] = 1 for all m and /MI = f i 1 .  IS/. The first of these equalities 
means that [m, 771.1 5 1 for all rn, m' whilst the second equality tells us that [rn] = f i  
for a.ll m. 

It remains to argue that  if m Xlrn', then [m,m*] = 1. This is trivial. Each line a(m*) 

which meets m does so in precisely one point. There are [m] = such lines, and 

each is incident with distinct points. Thus each of the jKI points of the incidence 
structure lies on precisely one of these lines. 

5 Authentication Schemes Constructed from Gen- 
eralised Polygons 

5.1 Generalised Polygons 

Given an incidence structure P, in the sense of [2] (see also Section 4.1), we denote 
by A ( P )  the flag graph of P. Thus A(P) is the bipartite graph having vertex set the 
collection of points and blocks of P and edges the totality of flags (unordered incident 
point-block) pairs of P. 

A (thick) generalbed polygon (n E N ,  n 2 2) is an incidence structure P with the 
property that A ( P )  satisfies the following three conditions: 

(i) each vertex has valency at least 3; 
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(ii) each pair of edges is contained in a circuit of length 2n; 

(iii) there is no circuit of length less than 2n. 

In this paper w e  deal with n 2 3 and use the term “line” instead of block. 
Examples of generalised 3- and 4-gons are projective planes and generalised quadrangles 
which were used in 151 and [3], respectively to construct authentication schemes. The 
finite generalised n-gons, with which we shall be dealing exclusively, were studied by 
Feit and Higman [4]. They proved that n = 3 , 4 , 6  or 8. These structures are tactical 
configurations (which means that every point is incident with the same number of lines) 
and we follow the convention of denoting the number of points on a line by s + 1, s > 1, 
and the number of lines through a point by t + 1, t > 1. 

In discussing geaeralised n-gons the following notation and observations prove to be 
useful. 
Condition (ii) implies that A = A(P) is connected and that the distance S ( X , Y )  
between two vertices X and Y is at  most n. If S ( X , Y )  = n, then X and Y are called 
opposite.  If vertices X and Y are such that 6 ( X , Y )  < n, then there is, by condition 
(iii), a unique path of length b ( X , Y )  which joins X and Y. This path is denoted by 

Now, let X be a vertex of A, and let Ad(X) = {Y E A I 6 ( X , Y )  = d } ,  the set of all 
vertices which are a t  distance d from X. We can interprete A as a graph with root X 
and n + 1 levels 0,. . . ,n,  where the vertices at level d are the elements of A d ( X ) .  It is 
easily seen that a vertex Y at level d # 0, n is joined to exactly one vertex at  level d - 1 
and s or t vertices at  level d + 1, depending on it being a line or a point. We denote 
those at level d + i from X and level i from Y by A+;(Y). The vertices at level n are 
joined only to vertices at level n - 1. This means that the subgraph with vertex set 
U+,Ad(X) f o r m  a tree (see [S]). 
SO the number of vertices in Ad(X), d < n, is equal to the number of distinct paths of 
length d which start in X .  Hence, if X is a point, then 

< X , Y  >. 

To obtain A,(X) we have to divide A,,-l(X) by t + 1 or 9 + 1, whichever is the degree 
of the vertices opposite to X .  Here it is important to observe that s = t for n odd. 
For, if X is EL point, then an opposite vertex 2 is a line and hence there are precisely 
s + 1 distinct paths from 2 to X. Thinking of 2 as the root there are t + 1 paths from 
X to 2. But the number of paths has to be the same. These observations yield the 
expressions (2) and (3) given below. 
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5.2 The Schemes 

For every finite generalised n-gon of order n >_ 3 with parameters s and t we can define, 
making use of an arbitrary point X, a Cartesian authentication scheme with the set of 
source states 

Is1 = IAl(X)l = t + 1,  (1) 

the set of authenticated messages 

and the set of keys 

The encoding rule ez determined by the key Z maps a source Y to 

eZ( y) = z d  

where Z d  is the vertex at  distance d from X in the unique path < Y, Z >. A receiver 
with knowledge of the key Z authenticates z d  by checking that it is at distance n - d 
from Z. The corresponding source state Y is simply the vertex adjacent to X in the 
path < X,Zd >. 
Starting with a line instead of a point results in an interchange of the parameters s and 
t in the above expressions. Note that s = t for n = 3. We remark that such a scheme 
can be constructed from any tree by introducing an extra level nf 1 and joining vertices 
of level n with new ones at level n + 1. 

5.3 Implementation and Security 

When implementing a scheme it is important to strike the right balance between se- 
curity and the problem of handling. Keeping in mind that security is a relative term 
one may say that the more secure a system becomes the less managable it %-ill be. 
Furthermore, one should take into account that the security gained by keeping certain 
additional information secret could be short lived. In our case, a potentional attacker 

deduce at least part of this information from intercepted authenticated messages. 

In the extreme one could keep everything but the underlying scheme secret, that 
is not only the key Z but also the level d and the root X could be part of the keying 
information. This is certainly interesting from a theoretical point of view. It would, 
however, make the system extremely difficult to handle since the receiver needs to know 
how the source states are labelled in order to pick the correct authenticated message. 
Thus all the information about the source states becomes part of the key and the system 
becomes unmanagable. 
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As d can be derived from the knowledge of X and an intercepted authenticated mes- 
sage, keeping d secret has no effect on the probability of a successful substitution by an 
interceptor. It does, however, increase the likelihood of detecting an impersonation at- 
tack. For any vertex not equal to X or at distance n from X could be an authenticated 
message and not only IS1 messages at distance d. So the security gained by making d 
part of the key might well justify the additional overhead. 

We will now assume that both X and d are known and that all keys are e q u d y  
likely. The probability to guess the correct key is l/lKi if no message is intercepted, 
and l/lA,,-d(m) i l  An(X)I if one message m is intercepted. 
For d > n/2  any two authenticated messages uniquely determine the key since there is 
no circuit of length less than 2n. This has two important consequences. Firstly, the 
key has to be changed after each transmission. Secondly, distinct keys define distinct 
encoding rules since their “corresponding” set of authenticated messages have at most 
one element in common. 
For d 5 n/2 the situation depends on the structure of the underlying geometry. We will 
highlight this in Section 5.4. 

5.4 Impersonation and substitution 

Obviously, for d = 1 every source state is encoded by itself and this encoding is indepen- 
dent of the key. This implies that Po = PI = 1. We will henceforth assume that d > 1 
and that X is a point. If X is a line, then the values of s and t have to be interchanged 
in all the following formulas. 

We have the following probabilities for the impersonation attack. 

The sets A+(d-I)(s), s E S, partition the set of vertices at level d. For a given key k 
each of them contains exactly one authenticated message. 
We note that PO = IS//lMI which is the lowest possible combinatorial bound for an 
impersonation attack (see [7]). 

For the substitution attack we obtain 

PI = Po for d 5 n/2 

whilst for d > n / 2 ,  we have 



489 

l / ( s t ) ( " - d ) / 2  n even, d even 
p1 = l / s ( s t ) ( " - d - ' ) / 2  n even, d odd I llt n = 3, d = 2. 

For d > n/2  any two authenticated messages uniquely determine the key k. This 
means that a successful substitution attack is equivalent to determining the key. Let m 
be the intercepted message. Then choose any vertex in A n - d ( m )  r l  A,,(X), say k'. 
If k' = k, then every vertex in A n - d ( k ' )  is an authenticated message. Pick your favourite 
one. 
If k' # k, then except for rn no vertex in A,,-d(k') is an authenticator. 
For d < n/2 it  follows from Axioms (ii) and (iii) that for every source state s exactly 
one vertex in L?L+(d-- l ) (s)  is an authenticated message. We note that in all cases the 
probability to have one's favourite source state accepted is the same as having any odd 
source state accepted and that the probabilities are independent of the distribution on 
the source states (assuming that all of them have non-zero probability). 

We conclude this section with a complete list of the schemes for all possible values of 
n. An entry * in the  tables below means that the value depends, as already mentioned, 
upon the structure of the generalised n-gon. 

n = 3: projective pIanes 
IS( = t + 1, 1x1 = t 2  

n = 4: generalised quadrangles 



n = 6: generalised hexagon 
(SI = t + 1, IKl = s3t2 

2 
s ( t  + 1) 

1/J 
11s 
* 

J(t + 1) Jt(t + 1) 

11s l / s t  

3 4 5 6 7 
st(t + 1) s2t(t + 1) (st)Z(t + 1) s3tyt + 1) ( S t ) 3 ( t  + 1) 

l / s t  l/s% 1 / (st) l l s 3 t 2  1/(StI3 
l l s t  l /s? 112t l l s t  115 

* 54t3 54t3 * 54t3 

n = 8: generalised octagon 
IS1 = t + 1, IKI = s4t3 

4 
2 t ( t  + 1) 

l/s2t 
l / s t  
s3t2 
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5 
(st)'(t + 1) 

1 /(st)' 
I/" 
53t2 

Remark For n even, i.e. TZ = 2m, it is possible to construct perfect schemes when using 
as root a regular vertex X with d = m. 
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