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ABSTRACT 

We pose the question whether there exist threshold schemes with positive and negative 

votes (shadows), that is threshold schemes in which any qualified minority can prohibit the 

intended action. Using classical projective geometry, the existence of such systems is 

proved. Finally, possible attacks on such systems are discussed. 

1. INTRODUCTION 

Threshold schemes have been introduced in order to control the access to secret data: The 

secret is divided into n “shadows” such that from any t shadows the secret can be recon- 

structed, but it is not feasable to retrieve the secret by knowing only t-l shadows. SO, only 

if a certain numbers t of participants say “yes”, the secret will be disclosed. (Threshold 

schemes have been introduced by Shamir 141; for an excellent survey on threshold schemes 

which emphasizes in particular the connections to geometry see [5].) 

In many practical situations it is desirable that a qualified minority should also be able 

to “close” the secret. Think for example of the serious (usually not solved) problem of de- 

activating a master key after a certain time. Here one would like to have a system which 

allows a qualified “no”. The aim of this note is to introduce such systems. These will be 

“ordinary threshold schemes” with an additional negative feature. Typically, every user will 

get a “positive” and a “negative” vote. 

First we will introduce some notation and then study several examples. Since we look 

for constructions using geometry we shall call the shadows points. 

A (t;s)-threshold scheme consists of a collection P U N of points such that the foj- 

lowing conditions are satisfied. 

a Any t points of P together with at most s-l points of N determine a secret X uni- 

quely; 

l if less than t points of P are “active”, then the secret X cannot be retrieved (indepen- 

dent how many points of N are active). 
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if a t  least s points o f  N are active, then it is impossible to determine the secret. 

One can think o f  t h e  points-of P as positive votes, whereas the points of N represent 
negative votes. 

2. EXAMPLES 

2.1 Basic Example 

Consider a 3-dimensional geometry. We shall restrict ourselves to  the 3-dimensional pro- 
jective space P = PC(3.q) o f  order q. (For the geometric background see [21 and I31.1 Fix a 
point X o f  P which will be identified wi th  the secret. Choose a line e, of P through X. 
Now we define 

P t o  be a set o f  points on a line e intersecting Po in X and 

N as a set of points distinct f rom f '  n cP,t,> on a line e' skew t o  e. 
Protocol: If a set U of (positive and negative) points is active, then the system com- 

putes <U> and intersects it with e,. If c U >  n e, is a point, the system takes it as the  
secret. 

X 

Analysis of the Basic Example: 

If at least t w o  points o f  P are active, but  no point of N, then the system computes e 0 

and t' n e, = X. 

If at least t w o  points of P and exactly one point Y of N is active, then the system com- 
putesthe plane E = <t ,Y>;  since Y 6E <?,Po>, we have E F <e,e,>; so, E intersects e, 
only in X. 
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0 If at least two points of P and a t  least two points of N are active, then the system 

computes <t,t'> = P, intersects it with to and gets to. The probability of choosing the 
correct secret point is only l / (q  + 1). So, the secret cannot be retrieved. 

0 If at most one point of P and a t  least two points of N are active, then the system gets 

a point different from X of to - if any. 

Conclusion: The Basic Example provides a (2;2)-thresho/d scheme. 

2.2 A general construction 

The above construction can be generalized in the following way. 

Consider P = PG(d,q) and sets P and N of subspaces of P. If a subset U C P U IV is 
active, the the system computes R = <U> and intersects R with a prefixed subspace M 
containing the secret X. If R n M = X, then the system says "yes". 

The trick is the following: If enough elements of P are active, then R will contain X; 
but if in addition enough elements of N are active, then R will contain all points of M. In 
this case, for an attacker, all point of M is equally likely; so, he can reconstruct the secret 
only with the (a priori !) probability l/(q + 1). 

In the following example we will deal only with the situation in which all elements of 
P U N are points. 

Let d = t +s-1. Fix a (t-1)-dimensional subspace T, an (s-1)-dimensional subspace S 

which is skew t o  T and a line M which intersects T in a unique point X and is skew t o  5. 
Let M be spanned by the  points X and Y. Now choose a set P of points in T, a set N of 
points of S in such a way that the set P u N u {X,Y} i s  an arc, which means that any d + 1 
of them generate the whole space. This implies: 

- Let U be a subset of P U N. If U contains a t  most t-1 points of P, then X B < U>,  so 
the secret cannot be reconstructed. 

If in  a subset U of  P u N there are a t  most s-1 points of N, then Y B <U>,  so the 
secret may be retrieved - if there are enough points of P in U. 

If U contains at least s points of N and a t  least t points of P, then <X,Y > C U. so 

the secret cannot be retrieved. 

Hence we get a (t;s)-thresho/d scheme. 

- 

- 

3. GENERALIZATION 

Let G be a geometry consisting of subspaces (the empty set, points, lines, planes, ..., i-di- 
mensional subspaces, ..., hyperplanes, the whole space) satisfying the following condition: 

For any set of subspaces U ,,..., U,, there is a unique subspace c U  ,,..., Ua> of smallest 
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dimension containing them. Such a geometry is  often called a matroid [6] and most of the 
considered geometries are matroids (for instance projective and affine spaces, vector 
spaces, ... ) 

Fix a point X in the geometry G and a line t through it. Furthermore, fix two non-ne- 
gative integers t and s. Now consider sets P and N of subspaces of G satisfying the fol- 
lowing properties. For any subspaces V,, ..., V, of P and Wl,...,Wb of N it holds 

If dim V, + ... + dim V, < t, then X B <V, ,..., V,,W, ,..., Wb>. 

If dim V, + ._. + dim V, 2 t and dim W, + ... + dim Wb < s, then 

<v, ,..., v,,w, ,..., wb> n e = {XI. 

0 If dim V, + ... + dim V, 2 t and dim W, + .__ + dim Wb 2 s, then 

f <v, (-.., v,,w, ,._., wb>. 

Clearly, such an arrangement fulfills our initial requirements. Namely: The first con- 
dition says that if V,, ..., V, are too small alltogether, then the secret cannot be reached. 
The second condition guarantees that if cV,, ..., V,> is big enough, but CW l,....Wb> is 
not too spacious, then the secret will be retrieved automatically. Finally, the last condition 
says that a great portion cW,, ..., Wb> of subspaces of N can obstructthe system. 

We note that this system is very flexible in as much as the elements of P and N may 
have different dimensions. This corresponds to real-world requirements, since in reality not 
all men are equal: User i gets subspaces Vi E P and Wi C N whose dimensions correspond 
to  the (positive, resp. negative) power (importance, level in the hierarchy, ...) of i. In other 
words, this is a (t;s)-threshold scheme only if the subspaces in P U N are just points. 

On the other hand, there is an abundance of geometries with the above properties. In 
section 2 we have indicated that one can use flats for the construction of such systems. But 
many other objects do the job, for instance curves of a certain degree, surfaces, and SO on. 
In such a way one can generalize also Shamir's original construction [41. 

We remark that for ordinary threshold schemes a similar approach has been under- 
taken in  [ I ] .  

4. AlTACKS 

There is an obvious attack against our models of (t;s)-threshold schemes: Sombody who 
knows a set P' U N'  of active positive and negative points (with IP'I t) has a good chance 
to  forge the system. If he knows P', he can directly determine the secret. if, on the other 
hand, he knows 'only' P' U N', then he can form all t-element subsets of this set and try 
each possibility; since the number of all t-element subsets of P' u N' i s  much smaller than 
the number of points per line, also this is  a reasonable attack. 
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These attacks imply strong restrictions on the machine which evaluates the incoming 
votes (points). Firstly, the machLne must keep all inputs secret. Furthermore, t he  machine 
must operate trustworthy: I t  must not  be possible to misuse it in order t o  obta in  the  
positive or negative votes. 

Therefore, there seem t o  be strong restrictions in using such a system. This is  true. But it 
is only fair t o  mention that  similar restrictions apply to  all kinds of threshold schemes. 

1. In any threshold scheme, the  machine evaluating the shadows has t o  keep these 
shadows secret. (Otherwise, everybody who has access to  the machine could obtain a 

sufficient number o f  shadows.) So, although the machine is  not supposed t o  keep secrets 
for  a long time, i t  must be able to  keep secrets for a short time and then destroying them 
reliably. 

2. Let us look a t  another example, namely Simmon's [5 ]  realization o f  rabusr shared 
secret systems. In i t s  simplest form, the shadows are points on a line t? and any t w o  
shadows are sufficient t o  determine the secret X = e r l  t?,. As a guarantee that the points 
are correct, the system wants a th i rd point; if all three points lie on the same line, t he  
system is convinced that  all points are correct. 

Of course, such a procedure makes only sense if the machine works t rustworthy:  
Otherwise, given any t w o  shadows, the machine could easily compute a third po int  on the  
line given by the t w o  shadows and could so 'convince' itself that the points are correct. 

TO sum up, t he  restrictions on the machine, namely secrecy for short-term secrets and 
trustworthy operation are shared by many, if not all threshold schemes. But o f  course, there 
might exist systems (wi th or wi thout  negative votes) which have these properties only t o  a 
certain extend or n o t  at all. 

5. CONCLUSION 

We present an extension o f  threshold schemes which allows negative votes. The philosophy 
behind the construction o f  these new schemes i s  the following. in an (ordinary) threshold 
scheme, the secret cannot be reconstructed, if there is too little information. W i th  negative 
votes, the secret may also no t  be retrieved, if there is too much information. Using geome- 
tric structures we  construct several infinite families of such threshold schemes. 

REFERENCES 

[ I ]  A: Beutelspacher and K. Vedder, Geometric structures as threshold schemes. The In- 
stitute of Mathematics and its Applications, Conference Series 20, Cryptography and 
Coding (ed. by H.J. Beker and F.C. Piper), 1989,255-268. 

[21 A. Beutelspacher, Einfuhrung in die endliche Geometrie 1. Blockpiane. B.1.-Wissen- 
schaftsverlag, Mannheim - M e n  -Zurich, 1982. 

[3] P. Dembowski, Finite Geometries. Springer-Verlag, 1963. 



496 

141 A. Shamir, How toshare a secret. Comm. ACM Vol. 22 (l), 612-613 (1979). 
151 G.J. Simmons, How to (really) share a secret. To appear in Proc. of Crypto '88. 
[6] D.J.A. Welsh, Matroid theory. Academic Press, London, New 'fork, $an Francisco, 1976. 


	HOW TO SAY “NO”
	ABSTRACT
	1. INTRODUCTION
	2. EXAMPLES
	2.1 Basic Example
	2.2 A general construction

	3. GENERALIZATION
	4. AlTACKS
	5. CONCLUSION
	REFERENCES




