KEYSTREAM SEQUENCES WITH A GOOD LINEAR COMPLEXITY PROFILE FOR EVERY STARTING POINT

Harald Niederreiter

Mathematical Institute, Austrian Academy of Sciences Dr.-Ignaz-Seipel-Platz 2 A-1010 Vienna, Austria

1. INTRODUCTION AND PROBABILISTIC RESULTS

The linear complexity profile was introduced by Rueppel [7], [8, Ch. 4] as a cool for the assessment of keystream sequences with respect to randomness and unpredictability properties. In the following let F be an arbitraty field. We recall that a sequence of elements of F is called a kth-order linear feedback shift register (LFSR) sequence if it satisfies a kth-order linear recursion with constant coefficients from F. The zero sequence $0,0, \ldots$ is viewed as an LFSR seqquence of order 0 . Now let S be an arbitrary sequence s_{1}, s_{2}, \ldots of elements of F. For a positive integer n the (local) linear complexity $L_{n}(S)$ is defined as the least k such that $s_{1}, s_{2}, \ldots, s_{n}$ form the first n terms of a kth-order LFSR sequence. The sequence $L_{1}(S), L_{2}(S), \ldots$ of integers is called the linear complexity profile (LCP) of S. For bastc facts about the LCP see [4], [7], [8, Ch. 4].

The study of the LCP leads to the requirement that the LCP of a keystream sequence should simulate the LCP of a random sequence. Typical features of the LCP of a random sequence were investigated in [5], [7], [8, Ch. 4]. An additional requiremenc was pointed out by Piper [6], namely that a keystream sequence should have an acceptable LCP for every starting point. In other words, if S_{m} is the shifted sequence s_{m+1}, s_{m+2}, \ldots, then S_{m} should have an acceptable LCP for every $m=0,1, \ldots$. In the present paper we are mainly concerned with this requirement.

A basic technical device in this work is the identification of the sequence S with its generating function $\sum_{i=1}^{\infty} s_{i} x^{-i}$, viewed as an element of the field $G=F\left(\left(x^{-1}\right)\right.$) of formal Laurent series in x^{-1} over F (compare also with [4]). For the probabilistic theory we take F to be the finite field F_{q} with q elements, where q is an arbitrary prime power. Note that in practical stream cipher applications we have the binary case $q=2$. The uniform probability measure on F_{q} assigns
the measure $1 / \mathrm{q}$ to each element of F_{q}. This probability measure induces the complete product probability measure h on the set $\mathrm{F}_{\mathrm{q}}^{\boldsymbol{\infty}}$ of all sequences of elements of F_{q} by a standard procedure of probability theory (see [2, Sec. 4]). It is easily seen that the measure h is the same as the Haar measure used in [5] when the latter measure is transferred from the set of all generating functions to the set $\mathrm{F}_{\mathrm{q}}^{\infty}$. We say that a stated property of elements of F_{q}^{∞} holds h-almost everywhere (h-a.e.) if the property holds for all elements of a subset of $\mathrm{F}_{\mathrm{q}}^{\infty}$ of h-measure 1 . A property that holds h-a.e. can be viewed as a typical property of a random sequence of elements of F_{q}.

Theorem 1. Let Π be a property of elements of F_{q}^{∞} that holds h-a.e. Then the set of all $S \in F_{q}^{\infty}$ for which Π holds simultaneously for all shifted sequences S_{m}, $m=0,1, \ldots$, has h-measure 1 .

Proof. Let P be the set of all elements of F_{q}^{∞} which have the property T and let V be the set of all $S \in F_{q}^{\infty}$ for which $S_{m} \in P$ for all $m=0,1, \ldots$. Let τ be the unilateral shift operator on $\mathrm{F}_{\mathrm{q}}^{\infty}$ defined by

$$
\tau\left(s_{1}, s_{2}, \ldots\right)=\left(s_{2}, s_{3}, \ldots\right) \quad \text { for } \quad\left(s_{1}, s_{2}, \ldots\right) \in F_{q}^{\infty} .
$$

Then $S_{m}=\tau^{m} S$, thus $S_{m} \in P$ if and only if S lies in the moh iterated inverse image $\tau^{-m_{P}}$. Therefore $V=\bigcap_{m=0}^{\infty} \tau^{-m} P$. Now τ is measure-preserving with respect to h by [1, Ch. 1], and so $h\left(\tau^{-m_{P}}\right)=h(P)=1$ for all m. Thus we get $h(V)=1 . \square$

Theorem 2. If $F=F_{q}$, then h-a.e. we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{L_{n}\left(S_{m}\right)}{n}=\frac{1}{2} \quad \text { for } m=0,1, \ldots, \\
& \lim _{n \rightarrow \infty} \sup _{n \rightarrow \infty} \frac{L_{n}\left(s_{m}\right)-(n / 2)}{\log n}= \pm \frac{1}{2 \log q} \quad \text { for } m=0,1, \ldots \text {. }
\end{aligned}
$$

Proof. This follows from Theorem 1 and [5, Theorems 7 and 10]. 0

From Theorem 1 one can deduce various other probabilistic results. For example, all the probabilistic results in [5] hold simultaneously for.all shifted sequences S_{m}, with Theorem 2 just covering two instances that are easy to state. In particular, the results about the distribution of partial quotients in the continued fraction expansion of a random generating function S hold simultaneously for all S_{m}. In a nutshell, Theorem 1 provides the basis for saying that Piper's requirement is met by random sequences of elements of F_{q}.
2. SEQUENCES WITH A GOOD LINEAR COMPLEXITY PROFILE

We introduce a class of sequences for which the LCP is close to that of a random sequence and for which this property is retained under shifts. Put Log $t=\max (1$, $\log t$) for $t \geqslant 1$.

Definition 1. A sequence S of elements of the field F has a good LCP if there exists a constant C (which may depend on S) such that

$$
\left|L_{n}(S)-\frac{n}{2}\right| \leq c \log n \quad \text { for } n=1,2, \ldots
$$

If $F=F_{q}$, then it follows from [5, Theorem 10] that the property of having a good LCP holds h-a.e. For further analysis we need the connection between the LCP and continued fractions as developed in [4]. Every $S \in G$ has a unique continued fraction expansion

$$
S=A_{0}+1 /\left(A_{1}+1 /\left(A_{2}+\ldots\right)\right)=:\left[A_{0}, A_{1}, A_{2}, \ldots\right]
$$

with $A_{j} \in F[x]$ for $j \geqslant 0$ and $\operatorname{deg}\left(A_{j}\right) \geqslant 1$ for $j \geqslant 1$. This expansion is finfte for rational S and infinite for irrational. S. The polynomials $A_{j}, j \geqslant 1$, are called the partial quotients and $A_{0}=: \operatorname{Pol}(S)$ is the polynomial part of S. The polynomials P_{j} and Q_{j} are defined as in [4] and P_{j} / Q_{j} is called a convergent. We note that

$$
\begin{equation*}
\operatorname{deg}\left(Q_{j}\right)=\sum_{i=1}^{j} \operatorname{deg}\left(A_{i}\right) \quad \text { for } \quad j \geq 1 \tag{1}
\end{equation*}
$$

Then we have the following formula [4, Theorem 1].

Lemma 1. For any sequence S of elements of F and any $n \geq 1$ we have $L_{n}(S)=$ $\operatorname{deg}\left(Q_{j}\right)$, where $j \geqslant 0$ is uniquely determined by the condition

$$
\begin{equation*}
\operatorname{deg}\left(Q_{j-1}\right)+\operatorname{deg}\left(Q_{j}\right) \leq n<\operatorname{deg}\left(Q_{j}\right)+\operatorname{deg}\left(Q_{j+1}\right) \tag{2}
\end{equation*}
$$

Proposition 1. If the generating function of a sequence S is irrational and $\operatorname{deg}\left(A_{j}\right) \leqslant C \log j$ for all $j \geqslant 1$, where C is a constant, then

$$
\left|L_{n}(S)-\frac{n}{2}\right| \leqslant \frac{C}{2} \log n \quad \text { for all } n \geqslant 1
$$

Proof. Consider an n satisfying (2) and first assume $j \geqslant 2$. Then $L_{n}(S)=\operatorname{deg}\left(Q_{f}\right)$ by Lemma 1, hence using (1) we get

$$
\begin{aligned}
& \left|L_{n}(S)-\frac{n}{2}\right|=\left|\operatorname{deg}\left(Q_{j}\right)-\frac{n}{2}\right| \leq \frac{1}{2} \max \left(\operatorname{deg}\left(A_{j}\right), \operatorname{deg}\left(A_{j+1}\right)\right) \\
& \leq \frac{C}{2} \log (j+1) \leq \frac{C}{2} \log \left(\operatorname{deg}\left(Q_{j}\right)+1\right) \leq \frac{C}{2} \log n .
\end{aligned}
$$

The proposition is easily checked for $j=0$ and $j=1$.

Proposition 2. If a sequence S satisfies $\left|L_{n}(S)-(n / 2)\right| \leqslant C$ Log n for some constant $C \geq 1$ and all $n \geq 1$, then its generating function is irrational and

$$
\begin{equation*}
\operatorname{deg}\left(A_{j}\right)<(4 C \log C+8 C) \log j \quad \text { for } a l l j \geq 1 \tag{3}
\end{equation*}
$$

Proof. The given condition on $L_{n}(S)$ implies $\lim L_{n}(S)=\infty$, and so the generating Eunction of S is irrational. To prove (3) we $n \rightarrow \infty \quad \infty \quad$ peed by contradiction, and we let j be the least index such that the inequality in (3) does not hold. First assume $j=1$, so that

$$
\operatorname{deg}\left(A_{1}\right) \geq 4 C \log C+8 C
$$

For $n=\operatorname{deg}\left(A_{1}\right)-1$ we have $n \geqslant 4 C \log C+7 C$ and also $L_{n}(S)=0$ by Lemma 1 . Thus

$$
\left|L_{n}(S)-\frac{n}{2}\right|=\frac{n}{2} \geqslant \frac{4 C \log C+7 C}{2 \log (4 C \log C+7 C)} \log n
$$

since the function $t / \log t$ is increasing for $t \geqslant$ e. By distinguishing between the cases $1 \leqslant c \leqslant e$ and $c>e$ one shows that

$$
4 \log C+7>2 \log (4 C \log C+7 C) \quad \text { for all } c \geq 1
$$

and so $\left|L_{n}(S)-(n / 2)\right|>C$ Log n, a contradiction. Now let $j \geqslant 2$. Then with $C_{1}=$ $4 C \log C+B C$ we have $\operatorname{deg}\left(A_{i}\right)<C_{1} \log i$ for $1 \leq i<j$. Together with (1) we get

$$
\log \operatorname{deg}\left(Q_{j}\right)<\log \left(\operatorname{deg}\left(A_{j}\right)+C_{1} \sum_{i=1}^{j-1} \log i\right) \leqslant \log \left(\operatorname{deg}\left(A_{j}\right)+C_{1}(j-1) \log j\right)
$$

Since the function $t^{-1} \log \left(t+C_{1}(j-1) \log j\right)$ is decreasing for $t \geqslant e$ and since $\operatorname{deg}\left(A_{j}\right) \geqslant C_{1} \log j$, it follows that

$$
\log \operatorname{deg}\left(Q_{j}\right)<\frac{\log \left(C_{1} j \log j\right)}{C_{1} \log j} \operatorname{deg}\left(A_{j}\right)
$$

For $n_{m}=\operatorname{deg}\left(Q_{j-1}\right)+\operatorname{deg}\left(Q_{j}\right)$ we have by Lemma 1 and (1),

$$
\begin{aligned}
& \left|L_{n}(S)-\frac{n}{2}\right|=\left|\operatorname{deg}\left(Q_{j}\right)-\frac{1}{2}\left(\operatorname{deg}\left(Q_{j-1}\right)+\operatorname{deg}\left(Q_{j}\right)\right)\right|=\frac{1}{2} \operatorname{deg}\left(A_{j}\right) \\
& >\frac{C_{1} \log j}{2 \log \left(C_{1} j \log j\right)} \log \operatorname{deg}\left(Q_{j}\right)>\frac{C_{1} \log j}{2 \log \left(C_{1} j \log j\right)} \log \frac{n}{2} .
\end{aligned}
$$

Now $n \geqslant \operatorname{deg}\left(A_{j}\right)+2 \operatorname{deg}\left(A_{j-1}\right) \geqslant C_{1} \log j+2$, and so

$$
\left|L_{n}(S)-\frac{\pi}{2}\right|>\frac{C_{1} \log j}{2 \log \left(C_{1} j \log j\right)}\left(1-\frac{\log 2}{\log \left(C_{1} \log j+2\right)}\right) \log n .
$$

Therefore, to arrive at the contradiction $\left|L_{n}(S)-(n / 2)\right|>c \log n$, it suffices to show that

$$
\begin{equation*}
(2 \log c+4)\left(1-\frac{\log 2}{\log \left(C_{1} \log j+2\right)}\right) \geq \frac{\log \left(C_{1} j \log j\right)}{\log j} \tag{4}
\end{equation*}
$$

To prove (4), we first consider $j=2$. Then (4) attains the simpler form

$$
(2 \log C+4)\left(1-\frac{\log 2}{\log \left(C_{1}+2\right)}\right) \geqslant \log \left(2 C_{1}\right)
$$

We have

$$
(2 \log C+4)\left(1-\frac{\log 2}{\log \left(C_{1}+2\right)}\right) \geq(2 \log C+4)\left(1-\frac{\log 2}{\log 14}\right)>(1,47) \log C+2.94
$$

For $1 \leqslant c \leqslant e$ it follows that
$(2 \log C+4)\left(1-\frac{\log 2}{\log \left(C_{1}+2\right)}\right)>4.41>\log (24 e) \geqslant \log (24 C)=\log \left(2 C_{1}\right)$.
Since the function (0.47)t $-\log (t+2)$ is increasing for $t \geqslant 1$, we obtain (0.47) $t+$ $0.86>\log (t+2)$ for $t \geqslant 1$, and so

$$
(0.47) \log c+0.86>\log (\log c+2) \text { for } c \geqslant e .
$$

It follows that

$$
(1.47) \log c+2.94>\log c+\log 8+\log (\log c+2)=\log \left(2 C_{1}\right) \quad \text { for } \quad c \geqslant e
$$

hence (4) is shown for $j=2$. For $j \geq 3$ we have

$$
1-\frac{\log 2}{\log \left(C_{1} \log j+2\right)} \geq 1-\frac{\log 2}{\log (12 \log 3+2)}>0.74
$$

Since the function $\log \left(C_{1} t \log t\right) / \log t$ is decreasing for $t \geqslant e$, we obtain (4) for $j \geq 3$ if we can show that

$$
\begin{equation*}
(1.48) \log C+2.96 \geq \frac{\log \left(3 C_{1} \log 3\right)}{\log 3} \tag{5}
\end{equation*}
$$

For $1 \leq c \leq e$ we have
$(1.48) \log C+2.96=4.44>\frac{\log (36 \mathrm{e} \log 3)}{\log 3} \geq \frac{\log \left(3 C_{1} \log 3\right)}{\log 3}$,
hence (5) holds. The function (0.62) $t-\log (t+2)$ is increasing for $t \geqslant 1$, thus $(0.62) t+0.67>\log (t+2)$ for $r \geq 1$, and so

$$
(0.62) \log c+0.67>\log (\log c+2) \text { for } c \geq e .
$$

Adding $\log C+\log (12 \log 3)$ on both sides and then dividing by $\log 3$, we obtain (5).

Theorem 3. A sequence S has a good LCP if and only if its generating function is irrational and there exists a constant C (which may depend on S) such that $\operatorname{deg}\left(A_{j}\right)$ $\leq C \log j$ for all $j \geqslant 1$.

Proof. This follows from Propositions 1 and 2.

Note that the generating function of S is irrational if and only if S is not an LFSR sequence (see [4, Sec. 2]). We now use the valuation v on G introduced in [4, Sec. 3]. We also write $\operatorname{Fr}(S)=S-\operatorname{Pol}(S)$ for $S \in G$.

Lemma 2. If $S \in G$ and $f, g \in F[x]$ with $f \neq 0$ and $v(f S-g)<-v(f)$, then $f=D Q_{j}$ and $g=D P_{j}$ for some $j \geqslant 0$, where $D \in F[x]$ and $D \neq 0$.

Proof. We have $v(f S-g)<0$, so [4, Lemma 3] can be applied and yields $f=\sum_{k=0} D_{k} Q_{k}, g=\sum_{k=0}^{j} D_{k} P_{k}$, where $D_{k} \in F[x], v\left(D_{k}\right)<v\left(A_{k+1}\right)$ for $0 \leq k \leq j$, and $D_{j} \neq 0$; moreover, if i is the least index with $D_{i} \neq 0$, then $v(f S-g)=$ $v\left(D_{i}\right)-v\left(Q_{i+1}\right)$. If we had $i<j$, then

$$
v(£ S-g) \geqslant v\left(D_{i}\right)-v\left(Q_{j}\right) \geqslant-v\left(Q_{j}\right) \geqslant-v(f)
$$

a contradiction. Thus $i=j$, hence $f=D Q_{j}$ and $g=D P_{j}$ with $D=D_{j}$. \square

Lemma 3. Let $S \in G$ and $f, g \in F[x]$ with $f_{g} \neq 0$. Let $\frac{f}{g} S=\left[A_{0}^{\prime}, A_{1}^{\prime}, A_{2}^{\prime}, \ldots\right]$ and let $P_{j}^{\prime} / Q_{j}^{\prime}$ be the corresponding convergents. If $v\left(A_{j}^{\prime}\right)>v(f)+v(g)$ for some $j \geq 1$, then there exists an $i \geq 1$ such that $v\left(A_{j}^{\prime}\right) \leqslant v\left(A_{i}\right)+v(E)+v(g)$ and $v\left(Q_{i-1}\right) \leqslant$ $v\left(Q_{j-1}^{\prime}\right)+v(f)$.

Proof. By [4, eq. (6)] we have $v\left(Q_{j-1}^{\prime} \frac{f}{g} S-P_{j-1}^{\prime}\right)=-v\left(Q_{j-1}^{\prime}\right)-v\left(A_{j}^{\prime}\right)$, hence $v\left(A_{j}^{\prime}\right)>v(f)+v(g)$ implies $v\left(f Q_{j-1}^{\prime} S-g P_{j-1}^{\prime}\right)<-v\left(f Q_{j-1}^{\prime}\right)$. Then Lemuna 2 yields $E Q_{j-1}^{\prime}=D Q_{i-1}$ and $g_{j-1}^{\prime}=D P_{i-1}$ for some $i \geq 1$, where $D \in F[x]$ and $D \neq 0$. It follows that $v\left(Q_{i-1}\right) \leq v\left(D Q_{i-1}\right)=v\left(Q_{j-1}^{\prime}\right)+v(f)$. Moreover,

$$
\begin{aligned}
v\left(A_{j}^{\prime}\right) & \leq v\left(A_{j}^{\prime}\right)-v\left(Q_{i-1}\right)+v\left(Q_{j-1}^{\prime}\right)+v(f) \\
& =-v\left(Q_{i-1}\right)-v\left(f Q_{j}^{\prime}-1 S-g P_{j-1}^{\prime}\right)+v(f)+v(g) \\
& =-v\left(Q_{i-1}\right)-v\left(D Q_{i-1} S-D P_{i-1}\right)+v(f)+v(g) \\
& \leq-v\left(Q_{i-1}\right)-v\left(Q_{i-1} S-P_{i-1}\right)+v(f)+v(g)=v\left(A_{i}\right)+v(f)+v(g)
\end{aligned}
$$

where we used again [4, eq. (6)] in the last step. \square

Theorem 4. If S has a good LCP and $f, g \in F[x]$ with $f g \neq 0$, then the sequence with generating function $\operatorname{Er}\left(\frac{\mathrm{f}}{\mathrm{g}} \mathrm{S}\right)$ has a good LCP.

Proof. We use the notation in Lemma 3 and recall that $v(f)=\operatorname{deg}(f)$ for any $E \in F[x]$. We have $\operatorname{Fr}\left(\frac{f}{g} S\right)=\left[0, A_{1}^{\prime}, A_{2}^{\prime}, \ldots\right]$. The hypothesis and Theorem 3 yield $v\left(A_{i}\right) \leq C \log i$ for all $i \geqslant 1$. Now let $j \geqslant 1$ be such that $v\left(A_{j}^{\prime}\right)>v(f)+v(g)$. Then Lemma 3 implies $\quad v\left(A_{j}^{\prime}\right) \leqslant C \log i+v(f)+v(g)$ and $i \leqslant v\left(Q_{i-1}\right)+1 \leqslant v\left(Q_{j-1}^{\prime}\right)+v(f)+1$, thus

$$
\begin{equation*}
v\left(A_{j}^{\prime}\right) \leqslant C \log \left(v\left(Q_{j-1}^{\prime}\right)+v(f)+1\right)+v(f)+v(g) \tag{6}
\end{equation*}
$$

This holds trivially if $v\left(A_{j}^{\prime}\right) \leqslant v(f)+v(g)$, and so (6) holds for all $j \geqslant 1$. Now let $n \geq 1$ be arbitrary, then with a suitable $j \geq 0$ we get by Lemma 1 and (6),

$$
\begin{aligned}
& \left|L_{n}\left(F r\left(\frac{f}{g} S\right)\right)-\frac{n}{2}\right| \leq \frac{1}{2} \max \left(v\left(A_{j}^{\prime}\right), v\left(A_{j+1}^{\prime}\right)\right) \\
& \quad \leq \frac{C}{2} \log \left(v\left(Q_{j}^{\prime}\right)+v(E)+1\right)+\frac{1}{2} v(f)+\frac{1}{2} v(g) \\
& \quad \leq \frac{C}{2} \log (n+v(f)+1)+\frac{1}{2} v(f)+\frac{1}{2} v(g) \leq C_{1} \log n
\end{aligned}
$$

with a suitable constant \mathcal{C}_{1}. \square

Corollary 1. If S has a good LCP, then every shifted sequence $S_{m}, m=1,2, \ldots$, has a good LCP.

Proof. The generating function of S_{m} is given by $\operatorname{Fr}\left(x^{m}\right)$, and so the desired result Eollows from Theorem 4. W]

For $S \in G$ we put $K(S)=s u_{j}^{p} \quad \operatorname{deg}\left(A_{j}\right)$. If the sequence S has an irrational generating function and $-\underset{K}{ } \mathrm{~J}(\mathrm{~S})<\infty$, then Theorem 3 shows that S has a good LCP. Thus by Corollary 1 , every shifted sequence S_{m} has a good LCP. More precisely we have the following.

Theorem 5. Let $S \in G$ with $K(S)<\infty$ and $f, g \in F[x]$ with $f g \neq 0$. Then

$$
K\left(\frac{f}{g} S\right) \leq K(S)+\operatorname{deg}(f)+\operatorname{deg}(g) .
$$

Proof. If in the notation of Lemma 3 we have $v\left(A_{j}^{\prime}\right)>v(f)+v(g)$ for some $j \geqslant 1$, then by chis lemma we get $v\left(A_{j}^{\prime}\right) \leqslant K(S)+v(f)+v(g)$, and the latter inequality holds trivially if $v\left(A_{j}^{\prime}\right) \leqslant v(f)+v(g)$. Recall also that $v(f)=\operatorname{deg}(f)$ for any $f \in F[x]$.

Corollary 2. If $K(S)<\infty$, then $K\left(S_{m}\right) \leq K(S)+m$ for $m=1,2, \ldots$.

Proof. This follows from Theorem 5 since the generating function of S_{m} is $\operatorname{Fr}\left(x^{m} S\right)$. \square

In particular, Corollary 2 shows that if $K(S)<\infty$, then $K\left(S_{m}\right)<\infty$ for all m. The result of Corollary 2 is in general best possible, as is proved by considering the following generalized Rueppel sequence S constructed in [3]. Let $F=F_{2}$ and let $s_{i}=1$ if $i=2^{j}-1$ for some $j \geqslant 1$ and $s_{i}=0$ otherwise. Then $K(s)=1$ by [3, p. 232]. Now let $m=2^{j}-1$ for some $j \geq 1$. Then the generating function of S_{m} has the form $x^{-2^{j}}+$ smaller powers, and so the first partial quotient of S_{m} has degree 2^{j}. Thus $K\left(S_{m}\right) \geq 2^{j}$. On the other hand, Corollary 2 yields $K\left(S_{m}\right) \leq$ $K(S)+m=2^{j}$, hence $K\left(S_{m}\right)=2^{j}$. Thus for this sequence S we have $K\left(S_{m}\right)=K(S)+m$ for infinitely many m.
3. SEQUENCES WITH A UNIFORMLY GOOD LINEAR COMPLEXITY PROFILE

It follows from Corollary 1 that if S has a good LCP, then for every $m \geqslant 0$ there exists a constant C_{m} (which may depend on S and m) such that

$$
\left|L_{n}\left(S_{m}\right)-\frac{\pi}{2}\right| \leqslant C_{m} \log n \quad \text { for all } n \geq 1
$$

In this context it is of interest to consider the following notion.

Definition 2. A sequence S of elements of the field F has a uniformly good LCP if there exists a constant C (which may depend on S but not on m) such that

$$
\left|L_{n}\left(S_{m}\right)-\frac{n}{2}\right| \leqslant c \log n \quad \text { for all } m \geqslant 0 \quad \text { and } n \geqslant 1
$$

Theorem 6. If $F=F_{q}$, then the set of all sequences with a uniformly good LCP has h-measure 0 .

Proof. Let W be the set in question. Let the sequence $S \in F_{q}^{\infty}$ be such that it contains somewhere a string of zeros of length $r \geq 1$, and let s_{k+1} be the first term of this string. Then $L_{r}\left(S_{k}\right)=0$, hence if also $S \in W$, then it follows from Definition 2 that

$$
\left|L_{r}\left(S_{k}\right)-\frac{r}{2}\right|=\frac{r}{2} \leq C \text { Log } r
$$

This implies that r is bounded from above by a constant which depends only on C. Thus $W \subseteq B$, where B is the set of all $S \in F_{q}^{\infty}$ for which all strings of zeros have bounded length. We have $B=\bigcup_{r=1}^{\infty} B_{r}$, where B_{r} is the set of all $S \in F_{q}^{\infty}$ for which all strings of zeros have length $\leqslant \mathrm{r}$. Fix $\mathrm{r} \geqslant 1$, and for any integer $t \geqslant 0$ let $B_{r}^{(t)}$ be the set of all $S \in F_{q}^{\infty}$ with the following property: for each $j=0,1, \ldots, t$ at least one of the terms $s_{j(r+1)+1}, s_{j(r+1)+2} \cdots, s_{(j+1)(r+1)}$ is $\neq 0$. Then $B_{r} \subseteq \bigcap_{t=0}^{\infty} B_{r}^{(t)}$. The probability that at least one of any $r+1$ consecutive s_{i} is $\neq 0$ is given by $1-q^{-r-1}$, and so $h\left(B_{r}^{(t)}\right)=\left(1-q^{-r-1}\right)^{t+1}$. It follows that

$$
h\left(B_{r}\right) \leq h\left(\bigcap_{t=0}^{\infty} B_{r}^{(t)}\right) \leq\left(1-q^{-r-1}\right)^{t+1} \quad \text { for all } t \geqslant 0
$$

and letting $t \rightarrow \infty$ on the right we get $h\left(B_{r}\right)=0$. This yields $h(B)=0$, and so $W \subseteq B$ implies $h(W)=0$.

Theorem 6 shows that having a uniformly good LCP is not a typical property of a random sequence of elements of F_{q}. Sequences with a uniformiy good LCP can also be characterized in terms of continued fraction expansions. Let $\left[0, A_{1}^{(m)}, A_{2}^{(m)}, \ldots\right]$ be the continued fraction expansion of the generating function of the shifted sequence $S_{m}, m=0,1, \ldots$.

Theorem 7. A sequence S has a uniformly good LCP if and only if its generating function is irrational and there exists a constant C (which may depend on S but not on m) such that $\operatorname{deg}\left(A_{j}^{(m)}\right) \leqslant C$ Log j for all $j \geq 1$ and $m \geq 0$.

Proof. This follows from Propositions 1 and 2.

It is an open question whether there actually exists a sequence with a uniformly good LCP. Another open question is to decide whether there exists a sequence S for
which $s u p h\left(S_{m}\right)<\infty$. A positive answer to the second question will of course $m=0,1, \ldots$
imply a positive answer to the first question.

REFERENCES

[1] U. Krengel: Ergodic Theorems, de Gruyter, Berlin, 1985.
[2] M. Loève: Probability Theory, 3rd ed., Van Nostrand, New York, 1963.
[3] H. Niederreiter: Continued fractions for formal power series, pseudorandom numbers, and linear complexity of sequences, Contributions to General Algebra 5 (Proc. Salzburg Conf., 1986), pp. 221-233, Teubner, Stuttgart, 1987.
[4] H. Niederreiter: Sequences with almost perfect linear complexity profile, Advances in Cryptology - EUROCRYPT 187 (D. Chaum and w. L. Price, eds.), Lecture Notes in Computer Science, Vol. 304, pp. 37-51, Springer, Berifin, 1988.
[5] H. Niederreiter: The probabilistic theory of linear complexity, Advances in Cryptology - EUROCRYPT 188 (C. G. Günther, ed.), Lecture Notes in Computer Science, Vol. 330, pp. 191-209, Springer, Berlin, 1988.
[6] F. Piper: Stream ciphers, Elektrotechnik und Maschinenbau 104, 564-568 (1987).
[7] R. A. Rueppel: Linear complexity and random sequences, Advances in Cryptology EUROCRYPT ' 85 (F. Pichler, ed.), Lecture Notes in Computer Science, Vol. 219, pp. 167-188, Springer, Beriin, 1986.
[8] R. A. Rueppel: Analysis and Design of Stream Ciphers, Springer, Berlin, 1986.

