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1. INTRODUCTION AND PROBABILISTIC RESULTS

The linear complexity profile was introduced by Rueppel [7], [8, Ch. 4] as a tool for
the assessment of keystream sequences with respect to randomness and unpredictability
properties. 1In the following let F be an arbitrary field. We recall that a se-

quence of elements of F is called a kth-order linear feedback shifr register (LFSR)

sequence if it satisfies a kth-order linear recursion with constant coefficients from
F. The zero sequence 0,0,... is viewed as an LFSR sequence of order O. Now let S

be an arbitrary sequence S1sSpreee of elements of F. For a positive integer n

the (local) linear complexity Ln(S) is defined as the least k such that

51,52,...,5n form the first n terms of a kth-order LFSR sequence. The sequence

Ll(S),Lz(S),... of integers is called the linear complexity profile (LCP) of S.
For basic facts about the LCP see [4], [7], [8, Ch. 4&4].

The study of the LCP leads to the requirement that the LCP of a keystream se-
quence should simulate the LCP of a random sequence. Typical features of the LCP of
a random sequence were investigated in [5], [7], [8, Ch. 4]. An additional require—
ment was pointed out by Piper [6], namely that a keystream sequence should have an
acceptable LCP for every starting point. In other words, if Sm is the shifted se-~

quence then S = should have an acceptable LCP for every m = 0,1,... .

S v
mel?Sma2? ’
In the present paper we are mainly concerned with this requirement.

A basic technical device in this work is the identification of the sequence §

o0 ;
with its generating function z s, x ', viewed as an element of the field
i=1

-1 -
6 = F((x ")) of formal Laurent series in x ! over F {compare also with [4]).
For the probabilistic theory we take F to be the finite field Fq with q elements,
where q 15 an arbitrary prime power. Note that in practical stream cipher applica-

tions we have the binary case q = 2. The uniform probability measure on Fq assigns
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the measure 1/q to each element of Fq. This probability measure induces the com-
plete product probability measure h on the set F:o of all sequences of elements of
Fq by a standard procedure of probability theory (see [2, Sec. 4]). It is easily

seen that the measure h 1is the same as the Haar measure used in [5] when the latter

measure is transferred from the set of all generating functions to the set F:’. We

say that a stated property of elements of Fg° holds h-almost everywhere (h-a.e.) if
the property holds for all elements of a subset of F;° of h-measure 1. A property
that holds h-a.e. can be viewed as a typical property of a random sequence of elements

of F .
q

Theorem 1. Let TT be a property of elements of F:’ that holds h-a.e. Then the set
of all SeF:" for which TI holds simultaneously for all shifted sequences Sm’

m=0,1,..., has h-measure 1.

Proof. Let P be the set of all elements of F:f which have 'the property Tl and let
V be the set of all SGF? for which SméP for all m =0,1,... . Let T be the

unilateral shift operator on F:’ defined by
’C(sl,sz,...)= (52,53,...) for (51’52"")6F:°'

Then Sm =1™s, thus SmeP if and only if S 1lies in the mth iterated inverse image

©o
TmP. Therefore V = [} 'L’_mP- Now 1T is measure-preserving with respect to h by
m=0

[1, ch. 1], and so h(ZT"P) = h(P) = 1 for all m. Thus we get h(V) = 1. OO0

Theorem 2. 1If F = Fq’ then h-a.e. we have

Ln(sm) 1
lim =3 for m=0,1,...,
n—3c0
Lim 5B L) (0D ! £ = 0,1
inf log n i3 log g or m = Uhlyees
n->» 00

Proof. This follows from Theorem 1 and [5, Theorems 7 and 10]. O

From Theorem 1 ome can deduce various other probabilistic results. For example,
all the probabilistic results in [5] hold simultaneously for.all shifted sequences Sm,
with Theorem 2 just covering two instances that are easy to state. In particular, the
results about the distribution of partial quotients in the continued fraction expan—
sion of a random generating function S hold simultaneously for all Sm. In a nut-
shell, Theorem 1 provides the basis for smying that Piper's requirement is met by

random sequences of elements of Fq.
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2. SEQUENCES WITH A GOOD LINEAR COMPLEXITY PROFILE

We introduce a class of sequences for which the LCP is close to that of a random se-
quence and for which this property is retained under shifts. Put Log t = max(1,

log t) for t=x1.

Definition 1. A sequence S of elements of the field F has a good LCP if there ex-

ists a constant C (which may depend on S) such that

|Ln(S)-%léCLogn for n=1,2,... .

1f F = Fq, then it follows from [5, Theorem 10] that the property of having a
good LCP holds h-a.e. For further analysis we need the connection between the LCP and

continued fractions as developed in [4]. Every S€G has a unique continued fraction

expansion

§ = Ay + 1/(A1 + 1/(A2+...)) = : [AO,AI,AZ,...]

with AJ.E F[x] for j =0 and deg(Aj)é 1 for j=1. This expansion is finite

for rational S5 and infinite for irrationmal §S. The polynomials Aj,jé 1, are called

the partial quotients and Ao = : Pol(S) is the polynomial part of S. The polynomi-
als Pj and Qj are defined as in [4] and PJ./Qj is called a convergent. We note
that
i
deg(Qj) = > deg(4,) for j=1. (1)

i=1

Then we have the following formula [4, Theorem 1].

Lemma 1. For any sequence S of elements of F and any n=1 we have Ln(S) =

deg(Qj), where j =20 is uniquely determined by the condition
V4 2
deg(Qj_l) + deg(Qj) £Ln <L deg(Qj) + deg(Qj+1). (2)

Proposition 1. If the generating function of a sequence S is irrational and

deg(A,) 4 C Log j for all j =1, where C 1is a constant, then

3

IL(S) - 31& SLogn  for all n21.
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Proof. Consider an n satisfying (2) and first assume j=2. Then L (5) = deg(Qj)

by Lemma 1, hence using (1) we get

1
L, (8) - %l = ]deg(QJ.) - §| . max(deg(Aj),deg(Aj“))

) o+ l)é.-gLog n.

£ % Log(j+1) & % Lc»g(deg(QJ

The proposition is easily checked for j =0 and j =1.0

Proposition 2. If a sequence § satisfies an(S) - (n/2)| 4 C Log n for some con-

stant C=21 and all n =1, then its generating function is irrational and

deg(Aj) < (4C Log C + BC) Log j for all j =1, (3>

Proof. The given condition on Ln(S) implies 1lim L (S) =00, and so the generating
function of S is irrational. To prove (3) wen;g?:eed by contradiction, and we let
j be the least index such that the inequality in (3) does not hold. First assume

j =1, so that
deg(Al):}. 4C Log C + 8C.

For n = deg(Al) -1 we have n=4C Log C + 7C and also Ln(S) =0 by Lemma 1.
Thus

4C Log C + 7C
2 log(4C Log C + 7C)

|Ln(5) - %I = 121-.% log n

since the function t/log t is increasing for t = e. By distinguishing between the

cases 14 C<e and C >e one shows that
4 Log C + 7 > 2 log(4C Log C + 7C) for all Cc=21,
and so [Ln(S) - (n/2)] > C Log n, a contradiction. Now let j =2. Then with c; =
4C Log C + 8C we have deg(Ai) < ¢, Log i for 1<£ i< j. Together with (1) we get
j=1

log deg(QJ.) < log(deg(Aj) + Cy 21:1 Log i) & log(deg(Aj) + € (j-1) Log j).

. - -1 . :
Since the function t “log(t + Cl(_]-l) Log j) 1is decreasing for t=e and since
deg(Aj)?‘-Cl Log j, it follows that

log(Clj Log j)

log deg(Qj) < deg(Aj).

C1 Log j

For m= deg(Qj_l) + deg(Qj) we have by Lemma 1 and (1),
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1
an(S) - %l = ldeg(Qj) - %‘(deg(Qj_l) + deg(Qj))I =3 deg(Aj)

C1 Log ] C1 Log j
>2 log(Clj Log j) log dEg(Qj)> 2 log(Clj Log j)

log %

Now n }..deg(Aj) + 2 deg(Aj_l)-}_C Log j + 2, and so

1

C, Log j
! - — (1 ~ Log 2. )} log n.
2 log(C13 Log j) 1og(Cl Log j + 2)

n
L () - 31>

Therefore, to arrive at the contradiction ILn(S) - (n/2)}| > C Log n, it suffices to
show that

log 2 1og(Clj Log i)

- ) > -
log(Cl Log j + 2)° = Log j

(2 Log C + 4)(1 - (4)

To prove (4), we first consider j = 2. Then (4) attains the simpler form

log 2 ~
(2 Log C + 4)(1 - Tog C1 " 2)) = log(ZCI).

We have

o log2 . _leg 2 .47)Log C + 2.94.
(2 Log C + &)(1 log(Cl " 2))_ (2 Log G + 4)(1 Tog 14') > (1.47)Log C +

For 1£ C<£e it follows that

lo

2
(2 Log C + &)1 - Tog(C, + 2))

> 4,41 > log(24e) = log(24C) = log(ZCl)-

Since the function (0.47)t — log(t+2) {is increasing for t =1, we obtain (0.47)t +
0.86 > log(t+2) for t=1, and so

(0.47)log C + 0.86 > log(log C +2) for C=e.
It follows that

(1.47)log C + 2.94 > log C + log 8 + log(log C + 2) = log(ZCI) for C=e,
hence (4) is shown for j = 2. For j =3 we have

log 2 log 2

- >1 -
log(Cl Log j + 2) =1 log(12 log 3 + 2)

> 0.74.

Since the function log(Clt log t)/log t is decreasing for t = e, we obtain (4) for

§j=3 if we can show that
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log(3C, log 3)

tog 3 5

(1.48)Log C + 2.96 2>

For 14 C < e we have

log(36e log 3) 103(301 log 3)
log 3 - log 3 ?

(1.48)Log C + 2.96 = 4.44 >

hence (5) holds. The function (0.62)t - log(t+2) 1is increasing for t= 1, thus
(0.62)t + 0.67 > log(t+2) for t=1, and so

(0.62)log C + 0.67 > log(log C + 2) for C>Xe.

Adding log C + log(1l2 log 3) on both sides and then dividing by log 3, we obtain
(5). O

Theorem 3. A sequence S has a good LCP if and only if its generating function is ir-
rational and there exists a constant C (which may depend on S) such that deg(Aj)

£C Log j for all j=1.
Proof. This follows from Propositions 1 and 2.0

Note that the generating function of S is irratiomal if and only if S5 1is not
an LFSR sequence (see [4, Sec. 2]). We now use the valuation v on G introduced in

[4, Sec. 3). We also write Fr(S) = S - Pol(S) for SE€G.

Lemma 2. If SEG and f,geF{x] with f £ 0 and v(fS - g)< - v(f), then f = DQ
and g = DPj for some j =0, where DeF[x] and D # Q.

J

Proof. We have v(fS -~ g) < 0, so [4, Lemma 3] can be applied and yields
=53 -5 £k £
£ Zk:O Dka, 8 k=0 kak’ where Dke F(x], v(Dk) < V(Ak+1> for 0&£ k£ j,

and D, %+ 0; moreover, if 1 1is the least index with D, $ 0, then v(fS - g) =
V(Di) - V(Qi+1). If we had i < j, then

v(fsS - g) EV(Di) - V(QJ.) = - V(Qj)é - v(£),

a contradiction. Thus i = j, hence f = DQ_j and g = DPj with D = Dj' a

Lemma 3. Let S€G and f,geF[x] with fg $ 0. Let §-S = [A',Ai,A'Z,...] and let
P_Ii/Q.’i be the corresponding convergents. If v(A3)> v(f) + v(g) for some j=1,
then there exists an i =1 such that v(A3)£—. v(Ai) + v(£) + v(g) and v(Qi_l)é

V(Q_I']—l) + v(f).
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Proof. By [4, eq. (6)] we have V<Q3-1 és - P}—l) = - V(Qi—l) - V(A"j>, hence

v(A_'j) > v(£) + v(g) implies \;(fQ:i_l s - 893_1) < - v(fQi_l). Then Lemma 2 yields
1 = 1 = i > & D 0. It
fQj—l DQi—l and ng-—l DPi-—l for some i =1, where DgF[x] and £
< =
follows that V(Qi—l) £ v(DQi_l) v(Q}_l) + v(f). Moreover,

V(Aj) £ v(Ai) - V(Qi_l) + V(le'—i) + v(f)

- V(Qi-l) ~ v(fQ3 _15-¢8 P&_l) + v(£) + v(g)

- V(Qi—l) - v(DQi_1 S - DPi-l) + v(f) + v(g)

4 - V(Qi-l) - V(Qi_1 S - Pi-l) + v(£) + vig) = v(Ai) + v(E) + v(g),

where we used again [4, eq. (6)] in the last step. [

Theorem 4. If S has a good LCP and f,ge F[x] with fg ¢ O, then the sequence with
generating function Fr(gs) has a good LCP.

Proof. We use the notation in Lemma 3 and recall that v(f) = deg(f) for any £e&F[x].
We have Fr(-é—S) = EO,Ai,A‘z,...]. The hypothesis and Theorem 3 yield v(Ai)é o] Logv i
for all i =1. Now let j =1 be such that v(A3)> v(f£) + v(g). Then Lemma 3
implies v(AJ'.)_A_ C Log i + v(f) + v(g) and i< v(Qi_l) + 1 é_v(QJ‘__I) + v(£) + 1,

thus

v(A}) £ € Log(v(Q)_;) + v(£) + 1) + v(£) + v(g). (6)

This holds trivially if v(A.'],)_é_ v(f) + v(g), and so (6) holds for all j ==1. Now

let n =1 be arbitrary, then with a suitable j 20 we get by Lemma 1 and (6),

Ly (Fr(zs)) - F1 £ 3 max(v(a), viay )

Fa ch(v(Q.'i) + v(f) + 1) + %—v(f) + %—v(g)

[N ¥e]

< 3 Logln + v(f) + 1) + %v(f) + %v(g)é C, Logn

ol

1

with a suitable constant Cl' =]

Corollary 1. If S has a good LCP, then every shifted sequence §,m=1,2,..., has
a good LCP.

Proof. The generating function of Sm is given by Fr(me), and so the desired result
follows from Theorem &, o
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For SEG we put K(S) = s up deg(AJ.). If the sequence S has an irra-
BER!
tional generating function and K(S)< 00, then Theorem 3 shows that S has a good

LCP. Thus by Corollary 1, every shifted sequence Sm has a good LCP. More precisely

we have the following.

Theorem 5. Let S€G with K(S)< o0 and f£,g€F[x] with fg # 0. Then

K(gs) £ K(s) + deg(f) + deg(g).

Proof. If in the notation of Lemma 3 we have v(A&) > v(f) + v(g) for some j=1,

then by this lemma we get v(A&) < K(S) + v(f) + v(g), and the latter inequality
holds trivially if V(AB) Z v(f) + v(g). Recall also that v(f) = deg(f) for any
feF(x]. O

Corollary 2. If K(S5)< co, then K(Sm)é K(S) +m for m=1,2,... .
Proof. This follows from Theorem 5 since the generating function of § = 1is Fr(x™s). O

In particular, Corollary 2 shows that if K(S)< o0, then K(Sm)< o0 for all m.
The result of Corollary 2 is in general best possible, as is proved by considering the
following generalized Rueppel sequence S constructed in [3]. Let F = F, and let
s, =1 1f i=2 -1 for some j=1 and s, = 0 otherwise. Then K(S) =1 by

i i
[3, p. 232]. Now let m = 23 -1 for some j = 1. Then the generating function of

3

Sm has the form x_2 + smaller powers, and so the first partial quotient of Sm
has degree 23, Thus K(Sm) = 29, 0On the other hand, Corollary 2 yields K(Sm)é
K(S) + m = 2'1, hence K(Sm) = 2J. Thus for this sequence S we have K(Sm) =K(S) +m

for infinitely many m.

3. SEQUENCES WITH A UNIFORMLY GOOD LINEAR COMPLEXITY PROFILE

It follows from Corollary 1 that if S has a good LCP, then for every m = 0 there

exists a constant cm (which may depend on S and m) such that
e >
]Ln(Sm) 2! < Cm Log n for all n=>1.

In this context it is of interest to consider the following notion.

Definition 2. A sequence S of elements of the field F has a uniformly good LCP if

there exists a constant G (which may depend on S but not on m) such that
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[Ln(Sm) - %!é C Log n for all m =0 and n=1.

Theorem 6. 1f F = I’-‘q, then the set of all sequences with a uniformly good LCP has

h-measure O,

Proof. Let W be the set in question. Let the sequence SeF:’ be such that it con~

tains somewhere a string of zeros of length r =1, and let be the first term

s
k+1
of this string. Then Lr(Sk) = 0, hence if also Se&W, then it follows from Defini~

tion 2 that
r
lbr(Sk) - 5| = > 4C Log r.
This implies that r is bounded from above by a constant which depends only on C.
Thus WS B, where B is the set of all SEF&” for which all strings of zeros have

00
bounded length. We have B = (J Br’ where Br: is the set of all S¢g Fc‘:" for which
r=1
all strings of zeros haw length 4 r. Fix r =1, and for any integer t =0 let
Bit) be the set of all S€F;° with the following property: for each j = 0,1,...,t

is % 0. Then

at lea;t one of the terms Sj(r+1)+1’ sj(r+1)+2"”'s(j+1)(r+1)
Brg n Bit). The probability that at least one of any r + 1 consecutive 5 is
t=0
£ 0 is given by 1 - q_r_l, and so h(BE_t)) = (1 - q~r_1)t+1. It follows that
oo
(B )< h( N BEE)) £ -¢TH ferall 2o,

t=0
and letting t—>60 on the right we get h(Br) = 0. This yields h{(B) = O, and so
W& B implies h(W) = 0.0

Theorem 6 shows that having a uniformly good LCP is not a typical property of a
random sequence of elements of F_. Sequences with a uniformly good LCP can also be
characterized in terms of continued fraction expansions. Let [O,Aim),A§m>,---] be
the continued fraction expansion of the generating function of the shifted sequence

S ,m=0,1,... .
m

Theorem 7. A sequence S has a uniformly good LCP if and only if its generating func—
tion is irrational and there exists a constant C (which may depend on S but not

on m) such that deg(AEm)) £CLog j forall j>1 and m=0.
Proof. This follows from Propositions 1 and 2. O

It is an open question whether there actually exists a sequence with a uniformly

good LCP. Another open question is to decide whether there exists a sequence § for
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which s u p K(Sm) < o0, A positive answer to the second question will of course

m=0,1,...

imply a positive answer to the first question.

(1]
f2]
{3l

(4]

{s]

fe]
(7]

(8]
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