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1. INTRODUCTION AND PROBABILISTIC RESULTS 

The linear complexicy profile was introduced by Rueppel c71, [8, Ch. 41 as a cool for 

the assessment of keystream sequences with respect to randomness and unpredictability 

properties. In the following let F be an arbitrary field. We recall that a se- 

quence of elements of F is called a kth-order linear feedback shift register (LFSR) 

sequence if it satisfies a kth-order linear recursion with constant coefficients from 

F. The zero sequence O,O,... is viewed as an LFSR sequence of order 0. Now let S 

be an arbitrary sequence s1,s2,... of elements of F. For a positive integer n 

the (local) linear complexity L,(S) is defined as the least k such that 

s1,s2,...,sn form the first n terms of a kth-order LFSR sequence. The sequence 

L1(S),L2(S),... of integers is called the linear complexity profile (LCP) of S. 

For basic facts about the LCP see [4], [7], [8, Ch. 41. 

The study of the LCP leads to the requirement that the LCP of a keystream se- 

quence should simulate the LCP of a random sequence. Typical features of the LCP of 

a random sequence were investigated in [5], [7], [8, Ch. 41. An additional require- 

ment was pointed out by Piper [6], namely that a keystream sequence should have an 

acceptable LCP for every starting point. In other words, if Sm is the shifted se- 

quence ~~+~,s~+~,..., then S 
m 

should have an acceptable LCP for every m = O,l,... . 

In the present paper we are mainly concerned with this requirement. 

A basic technical device in this work is the identification of the sequence S 

with its generating function g si xwi, viewed as an element of the field 

C = F((x-1)) of formal Laurent series in x 
-1 

over F (compare also with [4]). 

For the probabilistic theory we take F to be the finite field F 

is an arbitrary prime power. 
4 

with q elements, 

where q Note that in practical stream cipher applica- 

tions we have the binary case q = 2. The uniform probability measure on F 
4 
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the measure l/q to each element of F . This probability measure induces the com- 

plete product probability measure h on the set Fo0 of all sequences of elements Of 

F by a standard procedure of probability theory (see [Z,  Sec. 4 1 ) .  It is easily 

seen that the measure h is the same as the Haar measure used in [5] when the latter 
measure is transferred from the set of all generating functions to the set 

say that a stated property of elements of Fco holds h-almost everywhere (h-awe.) if  

the property holds for all elements of a subset of Fw of h-measure 1. A property 

that holds h-a.e. can be viewed as a typical property of a random sequence of elements 
of F . 

9 

4 

q 

Fw, We 
q 

q 
4 

q 

Theorem 1. Let be a property of elements of F m  that holds h-a.e. Then the set 

of all S € F M  for which holds simultaneously for all shifted sequences Sm, 

m = O,l, ..., has h-measure 1. 

q 

(I 

Proof. Let P be the set of all elements of F M  which have'the property and let 

V be the set of all S €  F W  for which SmE P for all m = O , l ,  ... . Let Z be the 

unilateral shift operator on FW defined by 

9 

q 

9 

Then Sm =TmS, thus S m €  P if and only if S lies in the mth iterated inverse image 

T-%. Therefore V = n 2-%. Now T is measure-preserving with respect to h by 

[l, Ch. 11, and so h(Z-mP) = h(P) = 1 for all m. Thus we get h(V) = 1. 0 

06 

m=O 

Theorem 2 .  If F = F then h-a.e. we have 
q' 

for m = O,l, ... . 1 Ln(Sm) - (n/Z) 

log n - + -  - 2 log q 
lim ::$ 

Proof. This follows from Theorem 1 and [5, Theorems 7 and I O ] . C I  

From Theorem 1 one can deduce various other probabilistic results. For example, 
all the probabilistic results in [ 5 ]  hold simultaneously for.al1 shifted sequences Sm, 

with Theorem 2 just covering two instances that are easy to state. In particular, the 
results about the distribution of partial quotients in the continued fraction expan- 

sion of a random generating function S hold simultaneously for all Sm. In a nut- 
shell, Theorem 1 provides the basis for sying that Piper's requirement is met by 
random sequences of elements of F . 

4 
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2. SEQUENCES WITH A GOOD LINEAR COMPLEXITY PROFILE 

We introduce a class of sequences for which the LCP is close to that of a random se- 

quence and for which this property is retained under shifts. Put 
log t) for t s  1. 

Log t = max(1, 

DeEinition 1. A sequence S of elements of the field F has a good LCP if there ex- 

ists a constant C (which may depend on S) such that 

IL,(s) - c Log n for n = I,Z, ... . 

If F = F then it follows from [5, Theorem 103 that the property of having a 
q’ 

good LCP holds h-a-e. For further analysis we need the connection between the LCP and 

continued fractions as developed in [ 4 ] .  Every S E G  has a unique continued fraction 
expans i o n  

with A.E F[x] for j 2 0  and deg(A.)& 1 for j k.1. This expansion is finite 

for rational S and infinite for irrational S. The polynomials A,,j 2 1, are called 
the partial quotients and A = : Pol(S) is the polynomial part of S. The polynomi- 

als P and Qj are defined as in [ 4 ]  and Pj/Qj is called a convergent. We note 
that 

3 J 

0 

j 

Then we have the following formula [ 4 ,  Theorem 13. 

Lemma 1. For any sequence S of elements of F and any n h  1 we have Ln(s) = 

deg(Qj), where j 2 0 is uniquely determined by the condition 

deg(Qj-l) + deg(Q.1 n 4 deg(Qj) + deg(Qj+l). (7.) 
J 

Proposition 1. If the generating function of a sequence S is irrational and 

deg(Aj) 4 C Log j for all j 1 1 ,  where C is a constant, then 
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Proof. Consider an n satisfying (2) and first assume j 4 2 .  Then Ln(S) = deg(Q,) 

by Lemma 1, hence using (1) we-get 

ILn(S) - 51 = Ideg(Q.) - :I 6 i max(deg(A.),deg(A. )) 
J J J+1 

C 
j 

4 7 Log(j+l) & f Log(deg(Q 
The proposition is easily checked 

+ 5 Log n. 

for j = 0 and j = 1. 0 

Proposition 2. If a sequence s satisfies ILn(s) - (n/2)I& c Log n for some con- 

stant Ck 1 and all n 4 1, then its generating function is irrational and 

deg(A.) < (4C Log C + 8C) Log j for all j 2 1. ( 3 )  
J 

Proof. The given condition on L (S) implies lim L (S) = m ,  and s o  the generating 

function of S is irrational. To prove ( 3 )  we proceed by contradiction, and we let 

j be the least index such that the inequality in ( 3 )  does not hold. First assume 
j = 1, so that 

n+w 

deg(A1)k 4C Log C + 8C. 

For n = deg(A ) - 1 we have n 1 4 C  Log C + 7C and also L (S) = 0 by Lemma 1. 
Thus 

1 

since the function t/Log t is increasing for t 2  e. By distinguishing between the 

cases 1 & C &.e and C 7 e one shows that 

and so (L,(S) - (n/2)1 > C Log n, a contradiction. Now let j 2 2 .  Then with C1 = 

4C Log C + 8C we have deg(Ai) < C1 Log i for 1 & i < j. Together with (1) we get 

j-1 
log deg(Q.) < log(deg(A.) + C >Log i) & log(deg(A.) + Cl(j-l) Log j). 

J J i=l J 

Since the function t-'log(t + Cl(j-l) Log j) 

deg(A.)kCl Log j, it follows that 

is decreasing for t 2 e and since 

3 
log(clj Log j) 

deg(A.). 
J l og  deg(Qj) < c1 Log 

For R = deg(Qj-l) + deg(Q.1 we have by Lemma 1 and (l), 
J 
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Therefore ,  t o  a r r i v e  a t  t h e  c o n t r a d i c t i o n  

show t h a t  

ILn(S) - (n /2)1  > C Log n ,  i t  s u f f i c e s  t o  

To prove ( 4 ) ,  we f i r s t  c o n s i d e r  j = 2 .  Then ( 4 )  a t t a i n s  the  s impler  form 

( 2  Log C + 4 ) ( 1  - *-) 2? l0g(2C1).  

We have 

For 1 & C 4 e i t  fo l lows  t h a t  

log ) > 4.41 > l o g ( 2 4 e ) k  log(24C) = 10g(2c1). 
l0g(C1 + 2 )  

( 2  Log C + 4 ) ( 1  - 

Since t h e  f u n c t i o n  ( 0 . 4 7 ) t  - l o g ( t + 2 )  is i nc reas ing  f o r  t &  1, we o b t a i n  (0 .47 ) t  + 

0.86 > l o g ( t + 2 )  f o r  t k  1, and so  

(0 .47) log  C + 0.86 > log(1og C + 2 )  f o r  C 2 e 

It fo l lows  t h a t  

(1 .47) log  C + 2.94 > log  C + l og  8 + log(1og C + 2) = 10g(2C1) f o r  C &  e ,  

hence ( 4 )  i s  shown f o r  j = 2 .  F o r  j 3 we have 

> 0.74. l o  2 Log 2 
l og (c l  Lfg j + 2) - log(12  log  3 + 2 )  1 -  

Since the  f u n c t i o n  

j 2 3  

l og (Cl t  l og  t)/log t i s  decreas ing  f o r  t 2 e ,  we o b t a i n  ( 4 )  f o r  

i f  we can  show t h a t  



1og(3C1 log 3 )  

log 3 * 
(1.48)Lo& C + 2.962 

For I & C 4 e we have 

(1.48)Log C 

hence (5)  holds. 
(0.62)t + 0.61 > 

(0.62)log C 

lo (36e l o g  3) log(3C1 log 3 )  

- log 3 ’ + 2.96 = 4.44> log 

The function (0.62)t - log(t+2) is increasing for t& 1, thus 
log(t+2) for t& 1, and s o  

+ 0.67 > log(1og C + 2)  for C A  e. 

Adding log C + log(12 log 3) on both sides and then dividing by log 3 ,  we obtain 

( 5 ) .  0 

Theorem 3. A sequence S has a good LCP if and only if its generating function is ir- 

rational and there exists a constant C (which may depend on S )  such that deg(A 
L C  Log j for all j &I. 

1 

Proof. This follows from Propositions 1 and 2 . 0  

Note that the generating function of S is irrational if and only if S is not 
an LFSR sequence (see [4, Sec. 21). We now use the valuation v on G introduced in 

[4, Sec. 31. We also write Fr(S) = S - Pol(S) f o r  S E G .  

1 Lemma 2. If S E G  and f,gEF[x] with f f 0 and v(fS - g ) <  - v(f), then f = DQ 

and g = DP for some j 2 0, where DEF[x] and D f 0. 
j 

Proof. We have v ( f S  - g )  < 0, so [ 4 ,  Lemma 31 can be applied and yields 

f = >k=O j DkQk, g = z:=, DkPk, where DkE F[x], v(Dk) < v(Aktl) f o r  0 & k 6 I t  

and D. f 0; moreover, if i is the least index with Di f 0, then v ( f S  - g)  = 

v(Di) - V(Q,+~). If we had i <  j, then 
J 

V(fS - 9) V(D.) - ~ ( 9 . )  2 - V ( Q j )  A - V(f), 
J 

a contradiction. Thus i = j, hence f = DQ and g = DP with D = D I3 
j j j’ 

f 
g 

Lemma 3 .  Let SEG and f,gEF[x] with fg f 0. Let -S = [A&,Ai,Ai, . . . I  and let 

P I I Q :  be the corresponding convergents. If v(A;) v(f) t v(g) for some j 2 1, 
then there exists an i k 1 such that v(A!) & v(Ai) + v(f) t v(g) and v(Q~-~) 6 
v(Q;-,) + df). 

J 
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where we used again [ 4 ,  eq. (6)] in the last step. El 

Theorem 4 .  If S has a good LCP and f , g ~  F[x] with fg 4 0, then the sequence with 
generating function Fr(-S) has a good LCP. f 

g 

Proof. We use the notation in Lemma 3 and recall that v(f) = deg(f) 

We have The hypothesis and Theorem 3 yield 

for all i 1. Now let j 9 1 be such that v(A!) > v(f) + v(g). Then Lemma 3 J 
implies v(A!) -L C Log i + v(f) + v(g) 
thus 

for any fEF[x]- 

v(Ai)& C Log i f 
g 

Fr(-S) = [O,Ai,A;, ...]. 

and i & v(Qi-,) + 1 L v(Q! ) + v(f) + 1, 
J J -1 

v(A!)& C L~g(v(Qj-~) + v(f) + 1) + v(f) + v(g). ( 6 )  
J 

This holds trivially if 

let n k 1 be arbitrary, then with a suitable j 3 0 we get by Lemma 1 and ( 6 ) ,  

v(Aj)& v(f) + v(g), and so (6) holds for all j 2 1. Now 

f n 1  lLn(Fr(-S)) - max(v(A!), v(A! ) )  
g J J + 1  

C 1 1 L 2 Log(v(Q!) + v(f) + 1) + yv(f) + y(g) 
J 

L 2 Log(n + v(f) + 1) + -v(f) 1 + -v(g) 1 L c1 ~ o g  n 2 2 

with a suitable constant cl. n 

COrollarY 1 -  If S has a good LCP, then every shifted sequence Sm, m = l,Z, ..., has 
a good LCP. 

Proof .  The generating function of Sm is given by Fr(xmS), and s o  the desired result 
pollows from Theorem 4 .  
- 
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For S E G  we put K(S)  = s u p deg(A.). If the sequence S has an irra- 3 1 1 - 1  - -  
tional generating function and K(S)< m, then Theorem 3 shows that S has a good 

LCP. Thus by Corollary 1, every shifted sequence Sm has a good LCP. More precisely 
we have the following. 

Theorem 5. Let S E G  with K(S) C 04 and f,gEF[x] with fg f 0. Then 

K ( Z S ) L  K ( S )  + degcf) + deg(g). 

Proof. If in the notation of Lemma 3 we have v(A!) > v(f) + v(g) 

then by this lemma we get 

holds trivially if v(A!) 4 v(f) + v ( g ) .  Recall also that v(f) = deg(f) for any 

fEF[x]. 

for some j A 1, 
1 

v(A’,) L K ( S )  + v(f) + v ( g ) ,  and the latter inequality 
J 

3 

Proof. This follows from Theorem 5 since the generating function of Sm is Fr(xmS). 

In particular, Corollary 2 shows that if K(S)<M, then K(S,)< w for all m. 

The result of Corollary 2 is in general best possible, as is proved by considering the 
following generalized Rueppel sequence S constructed in [ 3 ] .  Let F = F2 and let 

si = 1 for some j 2 1 and si = 0 otherwise. Then K ( S )  = 1 by 

[ 3 ,  p. 23.21. Now let m = Z J  - 1 for some j 1. Then the generating function Of 

Sm has the form x + smaller powers, and so the first partial quotient of Sm 

has degree 2’. Thus K(S,) 2’. On the other hand, Corollary 2 yields K(S,) & 
K(Sj + m = 2’, hence K(S ) = 2 j .  Thus for this sequence S we have K(S ) = K(S)  + m 

for infinitely many m. 

if i = 2 j  - 1 

- 2 j  

m m 

3 .  SEQUENCES WITH A UNIFORMLY GOOD LINEAR COMPLEXITY PROFILE 

It follows from Corollary 1 that if S has a good LCP, then for every rn 2 0 there 

exists a constant Cm (which may depend on S and m) such that 

IL,(s,) - 51 L cm Log n for all n I. 

In this context it is of interest to consider the following notion. 

Definition 2. A sequence S of elements of the field F has a uniformly good LCP if 

there exists a constant C (which may depend on S but not on m) such that 
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ILn(Sm) - 4 C Log n for all m 2 0 and n 2 1. 

Theorem 6. If F = F then the set of all sequences with a uniformly good LCP has 

h-measure 0. 
q’ 

Proof. Let W be the set in question. Let the sequence S E F ”  be such that it con- 

tains somewhere a string of zeros of length be the first term 

of this string. Then L (S ) = 0, hence if also SEW,  then it follows from Defini- 

tion 2 that 

9 

s ~ + ~  r 2 1 ,  and let 

r k  

This implies that r is bounded from above by a constant which depends only on C. 

Thus W G  B, where B is the set of all S E F W  f o r  which all strings oE zeros have 

bounded length. We have B = u Br, where Br is the set of a11 S E  F m  for which 

all strings of zeros hale length L r. Fix r 2 1, and for any integer t 2 0 let 

Bit) be the set of all S E F m  with the following property: for each j = 0,1, ..., t 

OQ 9 

r=l 9 

9 
at least one of the terms s .  is 4 0. Then 

B r E  5 BSt). The probability that at least one of any r + 1 consecutive si is 

4 0 is given by 1 - q-r-l, and s o  h(B(t)) = (1 - q-r-l)t+l. It follows that 

j(r+l)+l’ ‘j(r+1)+2’ * . *  ”( j+D(r+I) 

t =o 

and letting t+a, on the right we get h(Br) = 0. This yields h(B) - 0, and so 

W S  B implies h(U) = 0. 0 

Theorem 6 shows that having a uniformly good LCP is a typical property of a 

random sequence of elements of F . Sequences with a uniformly good LCP can also be 

characterized in terms of continued fraction expansions. Let [O,Aim),A:m), . . .] be 

the continued fraction expansion of the generating function of the shifted sequence 
Sm, m = O,l, ... . 

9 

Theorem 7 -  A sequence S has a uniformly good LCP if and only if its generating func- 
tion is irrational and there exists a constant C (which may depend on S but not 

on m) such that deg(A.m)) 1. C Log j for all j 11 and m 2 0. ( 
J 

proof. This follows from Propositions 1 and 2. 0 - 
It is an open question whether there actually exists a sequence with a uniformly 

good LCP. Another open question is to decide whether there exists a sequence S for 
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which s u p K(S,)<W. A positive answer to the second question will of course 

imply a positive answer to the first quescion. 
m = O ,  1,. . . 
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