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“Any one who considers automatical methods 

is, of course in a state of sin” 

of producing random digits 

Abstract 

We shall prove in this note that the Turing-Kolmogorov-Chaitin 
complexity and the Linear Complexity are the same for practically all 

O-l-sequences of length n, already for moderately large n. 

1 Introduct ion 

The availability of reproducible random - 1ool;ing sequences is a precon- 
dition for many applications of modern cryptology, cf.[4,1,13]. 

Such sequences have to be generated at the sender’s and receiver’s side 
by deterministic automata. For this reason the generated sequences are 

called Pseudo-Random Sequences rather than random sequences. A central 

topic of research is the problem of determining the complexity of a given 

sequence S of length n, n E N, over a finite alphabet[l3,14]. The view 
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generally generated in approaching this problem is that of a cryptanalyst 
n-ho, after a plain-text attack [4,1] having obtained a long random-looking 
string, has to determine a generating automaton A of size cy as small as 
possible, reproducing S from a so-called seed key k as short as possible. 
The complexity of the sequence S is then the size cy plus the length of 
the seed key k, which is widely considered as a measure of security of 
the sequence. A common practice is to choose the generating automaton 
A from the class L of linear feedback shift registers (LFSR)[1,13,8]. The  
so-called Berlekamp-Massey-.4lgorithm [2;3,5,10] gives a fast procedure to 
construct a generating LFSR of minimal so-called linear complexity for a 
given sequence of length n. 

Amongst those, who have been working in the area of sequence complexity 
it has been known that the linear complexity measure X is only one way 
of bounding the security from above, which sometimes seems to be far out 
of the practical relevance, as some well chosen examples show, cf.[7]. In  
order to overcome such difiiculties other complexity measures have been 
considered, t o  describe the complexity of sequences and sequence genera- 
tors, cf.[14]. 

To overcome the difficulties inherent to approaching the complexity problem 
within a fixed class of automata an alternative way is to consider the wide 
class of Turing machines (TM),  as a universal class of generators instead. As 
any Turing machine (TM) can be obtained from programming a universaI 
Turing machine (UTM), the length X of a shortest program for a UTM 
malcing it produce a given sequence S is called the Turing-Kolmogorov- 
Chaitin-complexity of this sequence. In the remainder of this paper we will 
show that for the complexity measures the relation X - X holds for all 
but a set of arbitrary low probability of (0-1)-sequences of length n with 
growing n. This result can be generalized to  arbitrary alphabets. 

2 Basic Notations and Facts 

In the following technical sections we will make use of the standard concepts 
of algorithms and complexity, cf. [9]: which will lead to  the notion of 
automat a. 

Let n be a positive integer and 3" = {0,1}" denote the set of all binary 
strings of length n: whereas 2' = {0,1}* = UT=p,,2" denotes the set of all 
sequences over the alphabet (0, I}. 
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A deterministic automaton M with binary input/output is given as usually 
as M = (S,C, R, 6, a, X),-cf. [9] where 

S is the set of states with a special initial state a. The input alphabet 
I and the output alphabet 0 coincide with C = (0 , l ) .  6 : S x I --+ S 
is the next-state-function, which is naturdy extended to a mapping 
6(") : S x I" --t S by setting 

6(s;  g )  := 6" (s ;  €"-I, .", €0) 
= 6"-l(6(~; E ~ ) ;  ..., c1j 

for s E S and g = - .  , €0) E r". 

X : S2 ---t 0 denotes the output function, xvhich generates an output, 
whenever the state has reached a state in the set of final states 52 C S. 

A state s E S can be reached from a state t E 5': if there exists a sequence 
of inputs 2 E r* such that 

t = 6 ( S J ) .  

An output sequence 2 E 2" is said to be generated by M iff there exists 
a sequence (w17 0 2 ,  . . , un) E R" in which wi+l can be reached from wi for 
i = 1,2,...,n - 1 and where 

X ( 0 j )  = "j, for j E [1,2, . .  . ,721. 

The set of all sequences z E 0' generated by M will be denoted by A ( M ) ,  
and A,(M) = A ( M )  Ti C". 

The machine is then called a s e q u e n c e  g e n e r a t o r  for all n E N. 

Let p ( M )  denote the complexity of describing the finite state machine M ,  
i.e. p ( M )  = size(6) + log,(lSI) where the size (6) is the number of bits 
needed to completely specify the next-state-bction 6. Let M be a class 
of sequence generators (of a certain type). Let 

p~ : 0" ---+ N u  (02 )  
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be given by 

p ~ ( z )  = min{p(M)/M E M , L  E -4n(lvl)}. 

If p ~ ( ' )  E N we say that the output sequence g with respect to the 
machine type M affords a description of length p ~ ( 2 ) .  

3 The Well-Known Case : Linear Sequence 
Generators 

Let L be the class of linear feedback shift registers (LFSR), i.e. the class 
of linear recursions over GF(2) .  Each linear recursion L is uniquely de- 
scribed by the feedback polynomial q ( z )  E GF(2)[ z ]  and an initial state 
( 5 0 , .  . . , xl-l), where 1 = deg q(x). The sequence of length n generated by 
the linear automaton L is ( x o , .  . . , X I - ~ , Z ~ ,  . . . ,z,,-~), where 

and q ( 5 )  = 2' + EL-' c l x i  . 

The complexity p ( L )  of describing L within the class t of LFSR is p ( L )  = 
2 .  1. 

For a given sequence 2 E 2" we denote by 

A(z) := P&) 

the l i n e a r  c o m p l e x i t y  of the sequence 2, which in other words is twice the 
length of the shortest linear feedback shift register which could have "pro- 
duced" 2. 

Theorem 3.1 For a n y  given 2 E 2" the Ber lekamp-Massey-a lgor i thm will 
c o m p u t e  A ( a ) , p ( z ) ,  a n d  q ( z )  in O(n2 logn) bit opera t ions .  

Proof. This is the well-known result from shift-register analysis, cf. 
[ 5,lO ,131. 

Theorein 3.2 Let k E [0 : n]. Let N,,(k)  := I{& E 2"/X(5) = 2 k } ] .  Then 

Proof. [13] 
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4 The Most General Case: Turing Machine 
As Sequence Generator 

Let 7 be the class of Turing machines (TM) 

A Turing Machine TM can be considered as a b i t e  state machine with 
an additional infinite tape as work space of tape symbols 2 = {0,1, #}, 
which can be read from or printed to via a tape head that itself is controlled 
by the finite state control through move-commands +l(left), -l(right) or 
O(stop). The formal description extends that of a finite state machine 

T = (S, I, 2; 6, a ,  sz). 
The next-state fmction 6 is extended to a next-move function 

6: s x I x  2 4 s x (2 x (2,)) 

which from a given state CT E S, an input symbol i E I and a read symbol 
z E 2 computes 

i.e. it changes the state from u into CT’, write a new tape symbol and moves 
the tape head by n E 2 3  (left, right or not at all). The work tape is upon 
start of the TM empty, i.e. filled with blanks #. 

The concept of a Turing Machine can now be used to construct the so-called 
Universal Turing Machine (UTM), which in essence is a general purpose 
Turing Machine capable of simulating any other Thd as given above. 

q C T ,  i, z )  = (CT’, z’, m) 

The Universal Turing Machine is a Turing Machine U whose finite state 
control is designed such that it generates output strings 2 E {0,1}* of the 
form 2 = ( z ,g(T) )  where p ( T )  is an input equal to the binary program 
which makes li behave likethe Turing machine T generating 5. 

Theorem 4.1 Any Turing machine T c a n  be simulated in this form b y  a 
universal Turing machine li. 

Proof. [9] 
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Definition 4.2 L e t  E 2" be a b i n a r y  sequence .  L e t  T be a g i v e n  T u r i n g  
m a c h i n e  g e n e r a t i n g  x. L e t  p(T) be t h e  p r o g r a m  , w h i c h  m a k e s  this UTM 
s i m u l a t e  T .  

_ -  

T h e n  t h e  n u m b e r  
0) := l J p > I  

i .e.  t h e  l e n g t h  Ipl - o f  t h e  p r o g r a m  p - i s  called t h e  size of  T .  

T h e  n u m b e r  

X(-) := p T ( 2 )  = min{,u(T)/T generates 2,T E T }  

is  called t h e  Turing- Kolmogorov-Chaitin complexity uf t h e  s e q u e n c e  g. 

Theorem 4.3 T h e  f u n c t i o n  X genera l l y  is  not c o m p u t a b l e  ( b y  a T u r i n g  
m a c h i n e )  

Proof. Suppose X is computable. Construct a Turing Machine T k  which 
generates and inspects binary sequences in say lexicographical order until 
a sequence of complexity X(2) > K larger than the constant IC is found 
and then accepts t h s  sequence .z. 

The size of this machine is given by 

p ( T )  = O(logI<) , 

so that the fact p ( T )  < IC for large 11' creates a contradiction. 

In spite of this result we derive the following result on the average behaviour 
of x: 

Theorein 4.4 L e t  I; E [I : n]. Then 

j{E E 2"IX 5 k } l  5 Pf*  

Proof. Amongst the 2kT1 Turing machines T with p ( T )  5 k there are at 
most P+l sequence generators. 

3 
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CoroIlary 4.5 O n  t h e  space  2" of all  0 - I - s e q u e n c e s  w i t h  e q u i d i s t r i b u t e d  
probabi l i ty  t h e  f o l l o w i n g  h o l d s  for all  E ,  0 < E < 1: 

Prob{s E 2 " / X ( s )  > (1 - E ) n }  > 1 - TEn+' 

This corollary shows that practically all sequences of moderately large 
length have a Turing-Kolmogorov-Chaitin complexity close to the length 
of the sequence. 

In other words this is intuitively clear: 

A "true" random sequence of length n has no shorter description than just 
the sequence itself. 

In the next section we shall investigate the relation between the TKC- 
complesity measure X and the linear complexity A. 

5 The Main Result 

T h e o r e m  5.1 For a n y  real  n u m b e r  ic? 0 < E < 1, a r b i t r a r y  i n t e g e r  n ,  a n d  
a n  a r b i t r a r y  s t r i n g  E 2", w e  h a v e  

Leiiiiiia 5.2 For a n y  p o s i t i v e  real n u m b e r s  t and u, s u c h  t h a t  

n + t < 2 n ;  u < n ,  

w e  h a v e  

P 1- 0 0 f. 
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The assertion “3.” and the proposition ‘‘1. and 2. + 3. =+ 4.” are trivial. 
Thus we need only to prove 1. By Theorem 3.2 we have 

Leiiiina 5.3 For a n y  p o s i t i v e  Teal n u m b e r  t, we have  

1 1 + - .  < - .  C)n-f+l 3 
- 3  

Proof (of the Theorern 5.1) 
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1. Take t := &n, then (1 - E)(n + t )  = n - t .  Now we have 

Prob{(l - E ) X ( S )  I X(s)} 
2 Prob{X(s) 2 n i- t ,  (1 - &)(n -k t )  I x(s)} 
= Prob{X(s) 5 n + t , n  - t 5 K ( s ) }  

The effect of theorem 5.1 can be written in simpliiiied form as 

Corol lary 5.4 FOT all E (0 < E < 1) 

P,,, := Prob{s E 2"/(1 - E )  2X(s) 5 X(s) I (1 + E )  . 2X(s)} -+ 1 

when n + cm. 

Numer ica l  example 5.5 
For E = 0.01 we have for sequence lengths n. 

6 Infinite Sequences 

Following Niederreiter !?2] we denote by ( S Z ,  3, m, 7 )  the dynamical system 
on R = (0, with the one-sided Bernoulli-shifi r on the product space 
with the unique Haar-measure m (identical to the product measure). 

For 2 E s2 and rn; n E N with rn 5 n we denote 2; = ( s m . .  . . , s,). 

Especially let &'' := $. 

Then we formulate the above results in terms of probability as follow 
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Theorem 6.1 FOT 5 E R 

m-almost everywhere. 

Proof. Apply the Borel-Cantelli le-mma (cf. [6]) to the independant cylin- 
der sets 

:= (5 E Rl(1 - &) . 2x(&:) 5 x(&:) 5 (1 + E )  ~ X ( & M  2k-I)}  

for k E No and e > 0. 

From corollary 5.4. we conclude that 
m 

for all k E No and E > 0. 

Thus the assertion. 

We aze indebted to Prof. Harald ru'iederreiter for suggesting this formula- 
tion of our results. 

7 Conclusions 

The results of section 6 show that for almost all sequences, which have 
a short Turing Machine description, cannot be considered as random se- 
quences. 

The introduction of the 'Turing machine concept shows as a consequence 
that there is no way by which a large subset of truly random looking se- 
quences in 2n can be generated by a comparatively small finite state ma- 
chine. In other words, the results show that the use of so called non-linear 
generators is not gaining much in terms of the complexity of sequences, if 
the complexity of the generators is evaluated properly. 

The implications to the design of new, highly complex secure encipherment 
algorithms cf. [11] will have to be investigated further, especially in view 
of circuit or VLSI complexity. 
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